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Abstract

With the ever-growing presence of social media
platforms comes the increased spread of harm-
ful content and the need for robust hate speech
detection systems. Such systems easily over-
fit to specific targets and keywords, and eval-
uating them without considering distribution
shifts that might occur between train and test
data overestimates their benefit. We challenge
hate speech models via new train-test splits of
existing datasets that rely on the clustering of
models’ hidden representations. We present
two split variants (SUBSET-SUM-SPLIT and
CLOSEST-SPLIT) that, when applied to two
datasets using four pretrained models, reveal
how models catastrophically fail on blind spots
in the latent space. This result generalises when
developing a split with one model and evalu-
ating it on another. Our analysis suggests that
there is no clear surface-level property of the
data split that correlates with the decreased per-
formance, which underscores that task diffi-
culty is not always humanly interpretable. We
recommend incorporating latent feature-based
splits in model development and release two
splits via the GenBench benchmark.'

1 Introduction

Developing generalisable hate speech detection sys-
tems is of utmost importance due to the environ-
ment in which they are deployed. Social media us-
age is rapidly increasing, and the detection of harm-
ful content is challenged by non-standard language
use, implicitly expressed hatred, a lack of consen-
sus on what constitutes hateful content, and the
lack of high-quality training data (Yin and Zubiaga,
2021a). When developing hate speech detection
models in the lab, it is, therefore, vital to simulate
evaluation scenarios requiring models to generalise
outside the training context. ‘In the wild’, NLP
models may encounter text from different periods

'Our implementation is available at https://github.
com/MaikeZuefle/Latent-Feature-Splits

ititov@inf.ed.ac.uk

(o] te]
L L

~
L

Second dimension
w E=Y wu [=)]

First dimension

Figure 1: A UMAP projection of BERT’s represen-
tations, showing the proposed train-test split, that is
constructed by grouping clusters in the latent space.

(Lazaridou et al., 2021), authors (Huang and Paul,
2019) or dialects (Ziems et al., 2022), including
unseen words (Elangovan et al., 2021) and words
whose spelling changed or was obfuscated (Serra
et al., 2017). Performing successfully on this data
despite such distributional changes is called out-of-
distribution (0.0.d.) generalisation.

How can the ability to generalise best be mea-
sured? Despite recent work illustrating that i.i.d.
testing does not adequately reflect models’ gener-
alisability (e.g. S@gaard et al., 2021), evaluation
using randomly sampled test sets is still the sta-
tus quo (Rajpurkar et al., 2016; Wang et al., 2018,
2019; Muennighoff et al., 2023). Potentially, this
is because obtaining and annotating new data is
expensive, and it is hard to define what o.0.d. data
is (Arora et al., 2021). For humans, properties like
input length (Varis and Bojar, 2021) or spelling
mistakes (Ebrahimi et al., 2018) might determine
difficulty. But this need not be the same for mod-
els. Evaluating models using a notion of model-
dependent difficulty is gaining some traction (e.g.
Godbole and Jia, 2022) but still remains largely
unexplored.

Contributing to that line of work, we propose a
method that reuses existing datasets but splits them
in a new way by relying on models’ latent features.
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We cluster hidden representations using k-means
and distribute clusters over the train and test set
to create a data split. An illustrative example of
such a split is shown in Fig. 1. We present two vari-
ants (SUBSET-SUM-SPLIT and CLOSEST-SPLIT).
While this method is in principle applicable to any
classification problem, we experiment with four
language models and two hate speech datasets (that
include Reddit, Twitter and Gab data). The results
suggest that these splits approximate worst-case
performance. Models fail catastrophically on the
new test sets, while their performance on indepen-
dent test data is on par with other systems trained
on i.i.d. training sets. The difficulty is relatively
stable across different models. We analyse the data
splits through correlation analyses, and do not find
one clear surface-level property of the data split to
be predictive of split difficulty. This underscores
that model-based difficulty can be quite elusive.
We release two of our data splits for inclusion in
the GenBench benchmark.

The remainder of this work is structured as
follows: Section 2 elaborates on related work,
followed by the introduction of the hate speech
datasets (Section 3) and the proposed splitting
method (Section 4). Section 5 presents model eval-
uation results, Section 6 analyses the splits in detail,
and we conclude in Section 7. The GenBench eval
card can be found in Appendix A.

2 Related Work

This section discusses related work on o0.0.d. gen-
eralisation evaluation (Section 2.1), followed by
a discussion on why generalisation is a persisting
challenge in hate speech detection (Section 2.2).

2.1 Generalisation evaluation

It is now well-established within NLP that models
with high or even human-like scores (e.g. Chowd-
hery et al., 2022) on i.i.d. splits do not generalise
as robustly as the results would suggest. This has
been demonstrated using synthetic data (i.a. Lake
and Baroni, 2018; McCoy et al., 2019; Kim and
Linzen, 2020) and for natural language tasks (i.a.
Sinha et al., 2021; Sggaard et al., 2021; Razeghi
et al., 2022). Alternative methods of evaluation
have become more prominent, such as testing with
different domains (e.g. Tan et al., 2019; Kamath
et al., 2020; Yang et al., 2022) and adversarial test-
ing, using both human-written (Kiela et al., 2021)
and automatically generated adversarial examples

(e.g. Zhang et al., 2020; Chen et al., 2019; Guru-
rangan et al., 2018; Ebrahimi et al., 2018).

However, these types of evaluation require col-
lecting or creating new data points, which is not
always feasible for datasets that have been in use
for years. Re-splitting existing datasets in a non-
i.i.d. manner makes more efficient use of existing
datasets, and, accordingly, new data splits have
been developed, that typically use a feature of the
input or the output to separate train from test exam-
ples. Splits that rely on the input use, for example,
word overlap (Elangovan et al., 2021), linguistic
structures (Sggaard, 2020), the timestamp (Lazari-
dou et al., 2021), or the context of words in the data
(Keysers et al., 2019) to generate a split. Similarly,
Broscheit et al. (2022) maximise the Wasserstein
distances of train and test examples. Alternatively,
one can evaluate generalisation using output-based
non-i.i.d. splits: Naik et al. (2018) analyse the pre-
dictions of a model to find challenging phenomena,
and Godbole and Jia (2022) re-split a dataset based
on the predicted log-likelihood for each example.

The splitting method we propose relies neither
on the discrete input tokens nor the output, but in-
stead uses the internal representations of finetuned
models.

2.2 Hate speech detection

With the rise of social media platforms, hate speech
detection gained traction as a computational task
(Jahan and Oussalah, 2023), leading to a wide range
of benchmark datasets. Most of these datasets rely
on data from social media platforms, such as Reddit
(Qian et al., 2019; Vidgen et al., 2021), Twitter
(ElSherief et al., 2021), Gab (Qian et al., 2019;
Mathew et al., 2020), or Stormfront (de Gibert
et al., 2018). This work is restricted to hate speech
classification using a Reddit dataset (Qian et al.,
2019) and a Twitter and Gab dataset (Mathew et al.,
2020), which we will elaborate on in Section 3.
Recent advances in NLP such as the introduction
of large language models have led to impressive re-
sults in hate speech detection (Fortuna and Nunes,
2018; Vidgen et al., 2019). Nonetheless, non-i.i.d.
generalisation is a persisting challenge (Yin and
Zubiaga, 2021b), because models tend to overfit to
specific topics (Nejadgholi and Kiritchenko, 2020;
Bourgeade et al., 2023), social media users (Arango
et al., 2019), or keywords, such as slurs or pejo-
rative terms (Dixon et al., 2018; Kennedy et al.,
2020; Talat et al., 2018; Palmer et al., 2020; Kurrek
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et al., 2020). When such overt terms are missing,
models often fail to detect hate speech (ElSherief
et al., 2021). In response to these generalisation
issues, recent works combine existing hate speech
datasets (Fortuna et al., 2018; Salminen et al., 2020;
Chiril et al., 2022; Bourgeade et al., 2023), which
is a challenging task in itself considering the in-
consistent definition of hate-speech across datasets
(Nejadgholi and Kiritchenko, 2020).

Augmenting datasets or evaluating whether a
model overfits to particular users or data sources
requires annotated data. However, these character-
istics are often unavailable due to privacy require-
ments or because the annotations were not included
in the dataset release. Therefore, this work aims
to find a data split that can evaluate generalisation
without such annotations, relying instead only on a
model’s internal representations.

3 Data

We develop and evaluate our splitting method using
the following two hate speech datasets.

3.1 Reddit

We use a widely used topic-generic Reddit dataset,
proposed by Qian et al. (2019). The dataset in-
cludes 22,317 examples. Each example in the
dataset is labelled as either hate (23.5%) or no-
Hate (76.5%). The dataset was collected from
ten different subreddits by retrieving potential hate
speech posts using hate keywords taken from EISh-
erief et al. (2018). The hate keywords correspond
roughly to the following categories: archaic, class,
disability, ethnicity, gender, nationality, religion,
and sexual orientation. The data is structured in
conversations that consist of at most 20 comments
by the same or different authors. These comments
were manually annotated with hate or noHate, with
each annotator assigned five conversations.

3.2 HateXplain

The second dataset is HateXplain (Mathew et al.,
2020), which is also topic-generic and widely used.
It contains 20,148 examples from Twitter and Gab.
Posts from the combined collection were filtered
based on a lexicon of hate keywords and phrases
by Davidson et al. (2017); Mathew et al. (2019);
Ousidhoum et al. (2019). The selected posts were
then manually annotated. HateXplain examples are
labelled as either hateful (31%), offensive (29%)
or normal (40%), as proposed by Davidson et al.
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Figure 2: Overview of the proposed splitting method.

(2017). Offensive speech differs from hate speech
in that it uses offensive terms without directing
them against any person or group in particular. All
offensive and hate examples are annotated with the
community that they target. These communities
include, among others, Africans, Jewish People,
Homosexuals and Women, and we use them for
further analysis of our data splits in Section 6.

4 Methodology

Our proposed splitting strategy, for which we intro-
duce two variants, is detailed in Section 4.1. We
evaluate our splits through comparisons to a ran-
dom splitting baseline and on external test sets. We
discuss the corresponding experimental setups in
Section 4.2.

4.1 Constructing Data Splits

The construction of the data splits involves three
steps, that are depicted in Fig. 2. In step 1, the
method extracts the latent representations of inputs
from a language model that was finetuned on the
task using one of the hate speech datasets men-
tioned above. In step 2, the data is clustered based
on these representations and clusters are assigned
to either the train or the test set. In step 3, language
models are then trained and evaluated on this new
split. In addition to the obtained test set, the lan-
guage models are also evaluated on independent
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test data, that was set aside for this purpose.’

The key idea behind the approach is that lan-
guage models implicitly capture salient features
of the input in their hidden representations, where
inputs with similar properties are close together
(Thompson and Mimno, 2020; Grootendorst, 2022).
Assigning clusters to the train and test set thus ac-
complishes separation based on latent features, and
by finetuning we ensure that the clusters separate
examples based on rask-specific features.

Obtaining Hidden Representations We fine-
tune a language model for the given task, using the
independent test data as validation set to optimise
hyperparameters. We then obtain latent representa-
tions for each input example, leveraging the repre-
sentation of the [CLS] token after the final layer as
a representation of the input, as is commonly done
(e.g. May et al., 2019; Qiao et al., 2019).

Since for high-dimensional data, distance met-
rics fail to accurately capture the concept of prox-
imity (Beyer et al., 1999; Aggarwal et al., 2001)
and tend to overly rely on individual dimensions
(Timkey and van Schijndel, 2021) we conduct ex-
periments with low-dimensional representations
and full-dimensional ones. To this end, we either
project the full representations into dg;-dimensional
spaces using UMAP post-training (Mclnnes et al.,
2020), or obtain dp-dimensional representations
by introducing a bottleneck in the model between
the last hidden layer and the classification layer.
The bottleneck is a linear layer that compresses
the hidden representations, forcing the model to
encode the most salient latent features into a low-
dimensional space before classifying the examples.

Clustering and Splitting the Data Each repre-
sentation from step 1 gives the position of an input
example in the latent space. The examples are clus-
tered in this space using the k-means algorithm
(Lloyd, 1982).

Hyperparameters of the k-means clustering can
be found in Table 3. After clustering, each cluster
is assigned to either the train or the test set, keeping
two constraints: A fixed test data size (we choose
10%) and train and test set need to have equal class
distributions. Without equal class distributions, it
would be unclear whether changes in performance
are due to the increased difficulty of the test set, or
the changes in label imbalance. A partition of the

Note that the split thus only includes 90% of the data.

Setting aside the 10% is for quality control of the models and
could be omitted when future work applies our method.

dataset that fulfils these constraints will be referred
to as target in this work.

To reach the target test set, two algorithms,
SUBSET-SUM-SPLIT and CLOSEST-SPLIT, are de-
signed to decide how to split the clusters. Both
algorithms lead to an under-representation of parts
of the latent space in the model’s training set, but
whilst SUBSET-SUM-SPLIT might under-represent
smaller, potentially distant pockets of the latent
space, CLOSEST-SPLIT under-represents a single
connected region. The algorithms are explained in
detail below.

Method 1: SUBSET-SUM-SPLIT The con-
straints on the class and test ratios explained above,
and the additional constraint of keeping whole clus-
ters together can be described by the Subset Sum
Problem (Kellerer et al., 2004). In this setting, the
Subset Sum Problem can be modified to a multidi-
mensional Subset Sum Problem: The multidimen-
sional target consists of the number of desired test
examples for each class in the dataset. The task
is then to select a subset of the clusters, such that
the number of examples for each class sums up
to the desired target. To improve the chances of
reaching the desired target, the Subset Sum Prob-
lem is solved for £k = 3 to kK = 50 clusters and
the solution closest to the desired target using the
smallest & is taken as the test set. If the closest solu-
tion does not match the exact target sum, examples
from another randomly selected cluster are used to
complete the test set. Note that the clusters in the
test set do not necessarily lie close to each other in
the latent space, as this is not a constraint for this
algorithm.

Method 2: CLOSEST-SPLIT In contrast to the
SUBSET-SUM-SPLIT, the CLOSEST-SPLIT aims to
put as much distance as possible between the train
and test clusters. This leads to an even bigger under-
representation of parts of the latent space in the
training set. Once the clusters have been computed,
their centroids are calculated. The cluster that lies
farthest away from all the other clusters is identified
and added to the test set. If the size of the farthest
cluster exceeds the target test set size, the next
farthest cluster is taken instead. Cosine similarity
between cluster centroids is used as the distance
measure. Then nearest neighbour clustering with
the cluster centroids is performed, as long as the
size of the test set does not exceed the target size.
When this nearest-neighbour clustering is finished,
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individual examples that are closest to one of the
test set centroids are added to the test set until the
target size is reached. As for the SUBSET-SUM-
SPLIT, the algorithm is performed for £k = 3 to
k = 50 clusters. k is selected such that the number
of individual examples added is minimised.

4.2 Evaluating Splits’ Difficulty

Models We use four transformer language mod-
els to obtain and evaluate the data splits: BERT-
Base(-Cased) (Devlin et al., 2019), its smaller vari-
ant BERT-Medium (Turc et al., 2019; Bhargava
et al., 2021), HateBERT (Caselli et al., 2021), a
BERT-Base-Uncased model that was further pre-
trained on abusive Reddit data using the MLM
objective, and RoBERTa-Base (Liu et al., 2019).
From these models, we extract the full hidden rep-
resentations, hidden representations via a bottle-
neck, for dp € {10, 50,200}, and hidden repre-
sentations post-processed using UMAP, for di; €
{10, 50, 200}.

Model Evaluation Having obtained data splits
based on four language models and hidden dimen-
sions with different sizes, the first way of evalu-
ating models is by finetuning the language mod-
els on their respective SUBSET-SUM-SPLIT and
CLOSEST-SPLIT. The hyperparameters used for
finetuning are listed in Table 4, Appendix B, and we
estimate di; and dp by varying their values for the
Reddit dataset. We compare the results obtained
with the proposed data splits to a baseline split,
which takes the same examples but splits them ran-
domly while maintaining class proportions. Ran-
dom splits are generated using three different seeds,
and the proposed data splits are obtained with three
different clustering seeds. For each data split in-
volved, the models are trained with three seeds that
determine the classifier’s initialisation and the pre-
sentation order of the data. The results are averaged
accordingly.

The evaluation metrics are accuracy and F1-
scores. For the Reddit dataset, the F1-score is the
score of the hate class, whereas for HateXplain, the
F1-score is macro-averaged over the three classes.

To better understand the robustness of the results,
we perform an additional set of experiments on the
most challenging data splits observed, to answer
the following questions:

1. Is split difficulty driven by the input or by task-
specific latent features? For the Reddit data, we
split the dataset based on task-agnostic hidden

model Reddit Hate F1 HateXplain Macro F1
BERT-base 81.96 £ 0.5 66.0 £ 0.36
BERT-medium  81.58 £ 0.66 60.18 + 0.42
HateBert 82.34 £ 0.59 66.25 £ 0.35
RoBERTa 82.15 £ 0.61 64.1 £09

Table 1: Results for the Reddit and HateXplain dataset
on random splits using 90% of the data. Random splits
are generated using three different seeds and models
are trained with three initialisation seeds. Mean and
standard errors are reported.

representations obtained from pretrained models
to analyse whether task-specific representations
(i.e. representations finetuned on the task) are
needed to create challenging data splits.

2. Do models trained on new splits perform on
par with conventional models on independent
data? Using HateXplain, we test the finetuned
models on the independent test data that was set
aside earlier to ensure that the newly obtained
train data is still informative enough for test data
sampled according to the original distribution.

3. Is the difficulty of the data splits model-
independent? We also examine whether a split
obtained by the hidden representations of a spe-
cific model is also challenging for other models
using HateXplain data.

5 Results

We now turn to evaluating models’ performance on
our newly proposed splits.

5.1 Performance on Challenging Splits

We compare the performance of models trained on
a random split to models trained on the CLOSEST-
SPLIT and SUBSET-SUM-SPLIT. The random split
performances are presented in Table 1. For the bi-
nary Reddit dataset, performance on random splits
is high for all four models with F1-scores for the
hate class of around 82%. The performance on
the three-way HateXplain dataset is comparably
lower, with macro F1-scores of around 65%. For
both datasets, these results are on par with (or sur-
pass) baselines from prior work, upon which we
elaborate in Appendix D.1.3

Hyperparameter Estimation For both splits, we
conduct a hyperparameter estimation to select dy;

*Note that these results are obtained with 90% of the data
as explained in Section 4.2. The reader is referred to Table 5
and Table 6 for accuracy results, results on 100% of the data
and results on the standard split.
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Figure 3: Performance of models trained on the SUBSET-SUM-SPLIT and CLOSEST-SPLIT . The errorbars show
the standard error between cluster seeds. Horizontal lines indicate performance for models trained and tested on a

random split.

and dp using the Reddit dataset, for which the re-
sults are shown in Fig. 9, Appendix D.2. Across
the board, all values considered challenge the mod-
els more than the random split, but full dimensions,
dy = 50 and dp = 50 lead to a large decrease with
relatively small variance between cluster seeds.

In addition to varying the dimensionalities, we
consider using the models’ pretrained represen-
tations (without further finetuning) to examine
whether the latent features must be task-specific
to challenge our models. Task-specific represen-
tations are, indeed, vital, as is shown in Fig. 8,
Appendix D.2.

New Data Splits Reveal Catastrophic Failure
Both SUBSET-SUM-SPLIT and CLOSEST-SPLIT
lead to an under-representation of parts of the latent
space in the model’s training set and we hypothe-
sised that this leads to a challenging data split. In-
deed, the empirical results show significant perfor-
mance drops when training models on these splits
in comparison to random splits.

Fig. 3a shows the performance drops for the
Reddit dataset. For the SUBSET-SUM-SPLIT, F1-
scores for the hate class drop significantly for all
four models, but with a high variation between
different cluster seeds. For the CLOSEST-SPLIT,
test set performance drops even further and more
consistently without much variation between clus-
ter seeds: F1-scores for the hate class are mostly
between 0 and 25%.

*These results are not specific to the examination of F1-
scores; the same tendencies can be observed when looking at
the accuracy (Appendix D.3).

Fig. 3b displays performances for HateXplain,
which similarly shows a drop in performance
for SUBSET-SUM-SPLIT and CLOSEST-SPLIT.
CLOSEST-SPLIT leads to F1-scores that are on par
with or below random guessing, resulting from
drops of around 36%.

Overall, the CLOSEST-SPLIT is more challeng-
ing than the SUBSET-SUM-SPLIT. Moreover, the
bottleneck-based splits generally lead to the most
stable results, i.e., the variance between different
cluster seeds is the lowest. In some cases perfor-
mance drops below the random guessing baseline;
this happens when a model fails to predict some
class completely, defaulting instead to one of the
other classes. In summary, the new splits lead to
drastic performance drops for both datasets and
across all four models.

5.2 Independent Test Set Performance

We now take the most challenging split observed
(CLOSEST-SPLIT with dg = 50) and further anal-
yse the behaviour of models trained on this split for
the HateXplain dataset, which is the most widely
used dataset as well as the most challenging one.
From the results in Section 5.1 it is clear that
CLOSEST-SPLIT reveals weaknesses in these mod-
els, since the models struggle to generalise to the
split’s test data. The question remains whether
the test set obtained by the new splitting meth-
ods is harder or whether the new splitting method
leads to very simple or perhaps even incomplete
training sets, thereby preventing the models from
learning the task. To this end, we evaluate the
models trained on the training data obtained from
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a CLOSEST-SPLIT on the 10% independent test
data that was set aside earlier (Section 4.1). The
results show that models achieve similar perfor-
mance on the independent test data as the models
trained and tested on random data, strengthening
the hypothesis that CLOSEST-SPLIT training data
is informative enough to learn the task. Results for
these experiments are reported in Fig. 4.5

5.3 Cross-Model Generalisation

The previous results have shown that CLOSEST-
SPLIT leads to challenging test sets. To show the
robustness of these splits, we also examine whether
these test sets are generally difficult or only for
the model used to develop the split—i.e. we exam-
ine cross-model generalisation. The results of the
cross-model evaluations can be seen in Fig. 5. They
show that data splits developed using one model are
indeed also challenging for other models, although
the personalised splits are slightly more challeng-
ing. These results do not only strengthen the ro-
bustness of the challenging data split, but have also
practical implications: The data-splitting pipeline
only needs to be carried out with one model and
multiple models can be assessed and compared
with the same split.

5The validation accuracy for the models trained on
CLOSEST-SPLIT is for most splits around 5 points higher
than the accuracy on the validation set of the random data
split—i.e. the models perform normally during training as
suggested by the validation data.
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Figure 5: Fl-scores for HateXplain on a CLOSEST-
SPLIT (dg = 50). Comparison of models trained on
the data split obtained with their respective hidden rep-
resentations (diagonal) and on data splits obtained from
representations of other models.

6 Analysis

The performance of models deteriorates heavily
when using the proposed splits. This section analy-
ses the generated splits; first examining the surface-
level properties of the resulting train and test sets,
and then taking a closer look at two specific splits
by visualising the datapoints in the train and test
sets. Additionally, an analysis of the topics in the
train and test sets can be found in Appendix E.2.

6.1 Correlation Analysis: Relating Splits’
Features to Performance Drop

For the most challenging split variant, CLOSEST-
SPLIT, we investigate the correlation of perfor-
mance drops compared to the random splits (includ-
ing three random splits with O drop) and surface-
level properties of the data split. The properties’ im-
plementation is explained in detail in Appendix E.1.
We firstly consider fask-agnostic features: 1) the
unigram overlap between the train and test set, 2)
the input length in the test set and 3) the number of
rare words in the test set.

Secondly, fask-specific properties are computed:
1) The number of under-represented hate keywords
from the lists used by the dataset’s creators (see Sec-
tion 3), 2) the number of under-represented target
communities retrieved from the HateXplain anno-
tations, and 3) a quantification of the distributional
shift of data sources (Twitter and Gab are present
in HateXplain) in the train and test set using the
Kullback-Leibler Divergence of token distributions
(Kullback and Leibler, 1951).

Table 2 presents the results of this analysis. For
the Reddit Dataset, the only significant correla-
tion (bold) is the number of under-represented key-
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Figure 6: Hidden representations for tertiary classification using the CLOSEST-SPLIT for the HateXplain dataset.

Feature Reddit HateXplain

unigram overlap 0.24 -0.51*
task-agnostic  sentence length 0.12 0.26

# Rare words 0.13 0.44*

# under-represented keywords  0.47*%  0.32*
task-specific  # under-represented targets — 0.21

KL-Div. data source — 0.05

Table 2: Pearson correlation between data split prop-
erties and models’ F1-score drops in comparison to
random splits. Correlations with a p-value < 0.05 are
marked with *. Some analysis methods are dataset-
specific and cannot be computed for both datasets.

word categories in the training data. Task-agnostic
features do not correlate with the decreased per-
formance of models on the CLOSEST-SPLIT for
the Reddit data. In contrast, for the HateXplain
dataset, task-agnostic features do play a role: The
biggest (negative) correlation can be observed for
the unigram overlap (bold): The higher the uni-
gram overlap between train and test set, the closer
the performance is to the random split F1-score.
Another smaller correlation exists concerning the
number of rare words in the test set: The more
rare words, the more challenging the split. Simi-
lar to the Reddit dataset, a significant, albeit weak,
correlation exists between the decreased perfor-
mance and the number of keyword categories that
are under-represented in training data.

Taken together, these results suggest that the
properties associated with performance drops differ
from dataset to dataset. This implies that CLOSEST-
SPLIT cannot easily be replicated based on task-
specific or task-agnostic features. Using latent rep-
resentations instead helps uncover weaknesses in
models that are otherwise not easily identified.

6.2 YVisualisation of Hidden Representations

We now take a closer look at two specific data splits
for the HateXplain dataset by visualising their hid-
den representations. For this analysis, we select the
CLOSEST-SPLITS obtained with representations
with dg = 50 for BERT and RoBERTa, which are
more commonly used than HateBERT or BERT-
medium. We make these splits available via the
GenBench Collaborative Benchmarking Task.

The CLOSEST-SPLIT assigns clusters of hidden
representations that are spatially close to the test
set. While the clustering is conducted on high-
dimensional representations, a 2-dimensional pro-
jection by UMAP (Mclnnes et al., 2020) can give
an intuition about why these data splits are chal-
lenging. Fig. 6a shows RoBERTa’s representations
for the HateXplain dataset. A decision boundary
can be observed, with mostly offensive examples on
the left, noHate examples in the middle and hate ex-
amples on the right. Based on this illustration, the
CLOSEST-SPLIT picks a pocket of (mixed) exam-
ples between the noHate (dark blue) and hate (dark
green) regions to be the test set. This is mirrored in
the F1-scores of the different classes. The hate test
examples lie closest to the corresponding region,
and the F1-score is the highest at 47.0. Similarly,
for the noHate class, the F1-score is relatively high
at 38.28. The offensive class, with test examples
farther away, only has an F1-score of 11.88. The
same phenomenon can be observed for a BERT-
based CLOSEST-SPLIT (Fig. 6b). This suggests
that the model overfits its decision boundaries to
train set-specific features and, therefore, fails to
predict the correct classes in the test set. Develop-
ing models using CLOSEST-SPLIT in addition to
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random splits might thus lead to models that are
more robust to such overfitting.

7 Conclusion

Hate speech detection systems are prone to overfit-
ting to specific targets of hate speech and specific
keywords in the input, complicating the detection
of more implicit hatred and harming the generalis-
ability to unseen demographics. Yet, in addition to
those known and interpretable vulnerabilities, sys-
tems may have less obvious weaknesses. The data
splitting method we developed aims to highlight
those. Our splitting method is based on the cluster-
ing of internal representations of finetuned models,
thus making the splits task- and dataset-specific.
We proposed two variants (SUBSET-SUM-SPLIT
and CLOSEST-SPLIT) that differ in how they assign
clusters to the train and test set.

The latter variant, in particular, led to consistent
catastrophic drops in test set performance, when
compared to a random split. Moreover, while each
split was developed using the hidden representa-
tions from a specific model, we identified that this
result generalises when developing the split using
one model, and evaluating it using another. The
analyses of the resulting data splits showed that
the properties of the train and test sets differ from
dataset to dataset. Since no property clearly corre-
lates with decreased model performance for both
datasets, CLOSEST-SPLIT cannot be easily repli-
cated based on data splits’ surface-level properties,
and using latent representations is crucial to reveal
the weaknesses we observed in the models.

We encourage future work to consider evalua-
tions using the CLOSEST-SPLITS we release for
HateXplain, in order to develop more robust sys-
tems, but also emphasise that even though our re-
sults were specific to hate speech detection, the
methodology can be more widely applied. To chal-
lenge models beyond i.i.d. evaluation, we do not
need costly data annotations. Instead, we can start
by relying on systems’ latent features to simulate
train-test distribution shifts.

8 Limitations

We identify three main limitations of our work:

1. The scope of our work: the splitting method-
ology we developed can be applied to a wide
range of tasks, but we only experimented with
hate speech detection. Future work is required

to confirm the method’s wider applicability.
Moreover, even though we aim to use the chal-
lenging split to improve generalisation, we
have not yet made efforts in this direction.

2. Generality of conclusions: We experimented
with a limited set of model architectures, all
of which resemble one another in terms of
their structure and the (pre-)training data used.
Different models or training techniques could
lead to less challenging splits, or splits with
significantly different properties. At the same
time, we did demonstrate that the split’s diffi-
culty is not model-specific (see Section 5.3),
and observed that under variation of random
seeds CLOSEST-SPLIT consistently leads to
performance drops across four models and
two datasets.

3. Naturalness of the experimental setup: we
created an artificially partitioned data split and
have no guarantee that the generalisation chal-
lenges that language models encounter when
deployed in real-world scenarios resemble our
splits. However, given that our approach sim-
ulated a worst-case scenario, demonstrated by
catastrophic failure in performance, we are
hopeful that models that are more robust to
our train-test shift are also more robust to real-
world variations in test data.

9 Ethics Statement

By its very nature, hate speech detection involves
working closely with hurtful and offensive con-
tent. This can be difficult for researchers. However,
considering the severe consequences when hate
speech models fail on unseen data and people are
confronted with harmful content, it is all the more
important to improve the generalisation ability of
models and protect others.

While our work intends to contribute to gener-
alisation evaluation in a positive way, we do not
recommend using our data splits as representative
of generalisation behaviour ‘in the wild’, but recom-
mend them for academic research instead. While
standard and random splits often overestimate real-
world performance, our splits are likely to underes-
timate it, and can in this way reveal real weaknesses.
Our splits are designed to improve academic re-
search on the robustness of language models and
contribute to improving the generalisation ability
for NLP tasks.
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A GenBench Eval Card

Motivation
Practical Cognitive Intrinsic Fairness
g
Generalisation type
Compo— Structural Cross  Cross Cross. Robust-
sitional Task Language Domain  ness
O
Shift type
Covariate Label Full Assumed
(]
Shift source
Naturally Fartitioned Generated shift Fully
occuring natural generated
0
Shift locus
Train—test Finetune  Pretrain—train Pretrain—test
train—test
0

Our work proposes a data split that evaluates
the generalisation ability of hate speech detection
models. Our motivation is an intrinsic one, we
aim to understand better what kind of data is most
challenging for hate speech detection models.

We focus on testing the robustness of such mod-
els, especially when it comes to out-of-distribution
(0.0.d.) generalisation. However, it is not straight-
forward to define and detect 0.0.d. data (Aroraet al.,
2021). Moreover, data properties that might seem
challenging for humans (Varis and Bojar, 2021;
Ebrahimi et al., 2018) might not be equally chal-
lenging for models or rely on costly annotations
(Arango et al., 2019; Nejadgholi and Kiritchenko,
2020; Bourgeade et al., 2023).

Therefore, we create a train test split by only
relying on a model’s hidden representations. This
partitioned natural splitting method yields a co-
variate shift, since we re-split existing data sets.
The resulting train test splits indeed challenge hate
speech detection models in a finetune train-test
locus.

B Clustering

Our proposed data split creates a train-test split by
assigning whole clusters of latent representations
to either the train or the test set. We use k-means
clustering (Lloyd, 1982) to perform the clustering.
The used hyperparamters can be found below.

Parameter Value

n clusters 3-50

n initializations with different centroids 10

max. iterations for a run 300
random state 42,62, 82
algorithm LLoyd

Table 3: K-Means hyperparameters

C Language Models

We use four transformer language models to ob-
tain and evaluate the data splits: BERT-Base(-
Cased) (Devlin et al., 2019), its smaller variant
BERT-Medium (Turc et al., 2019; Bhargava et al.,
2021), HateBERT (Caselli et al., 2021), a BERT-
Base-Uncased model that was further pretrained
on abusive Reddit data using the MLM objective,
and RoBERTa-Base (Liu et al., 2019). The hyper-
paramters for finetuning can be found below. They
are generally adopted from the finetuned models
from Caselli et al. (2021), but due to computational
restrictions, the models had to be trained with re-
duced batch sizes. To compensate for this, models
were trained with more epochs with the option of
early stopping.

Hyperparameter Value

batch size 4 (biggest possible)
after 5 epochs

10 (20 for the larger RoOBERTa models)

early stopping
maximum epochs

optimizer AdamW

learning rate 2e-5

adam epsilon le-8

scheduling linear schedule with warmup
warm up steps 0

random seeds 42,55, 83

max. sequence length 512

Table 4: Hyperparameters for finetuning the language
models are adopted from the finetuned models from
Caselli et al. (2021).
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D Detailed Results

The following section presents detailed results in-
cluding baselines, hyperparameter selections and
further results.

D.1 Baselines

We compare the performance of models trained
on our proposed data splits (CLOSEST-SPLIT and
SUBSET-SUM-SPLIT) to a random split. We obtain
random splits not only from 100% of the data but
also from 90% of the data. This is necessary to
compare the random split to the CLOSEST-SPLIT
and SUBSET-SUM-SPLIT, as these use only 90%
of the data. The random split performances are
presented below.

model valid acc. test acc. hate f1
SVM* - - 75.7
RNN* - - 71.5
BERT-base (100%) 94.6 +0.21 91.55 +0.13 82.24 + 0.34
BERT-base (90%) 91.69 +0.07 91.25 +0.11 81.96 £+ 0.5
BERT-med. (100%) 94.3 £0.23 91.63 +£0.2 82.27 +0.45
BERT-med. (90%) 91.84 +0.07 91.2 £0.15 81.58 + 0.66

HateBert (100%)  94.12 £ 0.06 91.87 £0.16 82.72 = 0.38
HateBert (90%) 92.02 £0.07 91.51 £0.13 82.34 £ 0.59
RoBERTa (100%) 944 £0.12 91.67+0.2 82.5+0.49
RoBERTa (90%) 91.8£0.09 9137 £0.16 82.15+0.61

Table 5: Results for the Reddit dataset on random splits
using 100% and 90% of the data. Random splits are gen-
erated using three different seeds and models are trained
with three initialisation seeds; mean and standard errors
are reported. Results marked with * are taken from Qian
etal. (2019).

model valid acc test acc Macro f1

67.4

split

stand. BERT-base * - 69.0

BERT-base  67.45 £ 0.36 68.38 £0.35 66.06 £ 0.44
stand. BERT-med. 6393 +1.2 64.58 £0.99 62.32 £ 1.45
HateBert 68.12+£0.16 68.0 +£0.37 65.97 £ 0.36
RoBERTa 67.32£03 67.83+0.42 6598 £0.26
BERT-base  67.66 £0.31 68.25 £0.28 66.0 = 0.36
rand. BERT-med. 62.46 £0.49 62.85 £0.42 60.18 & 0.42
HateBert 67.91 £0.32 68.51 £0.28 66.25 £ 0.35
RoBERTa  66.45 £ 0.51 66.4£0.56 64.1 +0.9

Table 6: Results for the HateXplain dataset on the stan-
dard (stand.) split and on random (rand.) splits using
90% of the data. Random splits are generated using
three different seeds and models are trained with three
initialisation seeds; mean and standard errors are re-
ported. Results marked with * are taken from Mathew
et al. (2020).

D.2 Hyperparameter Selection for Proposed

Split

We analyse the effects of two hyperparameters.
First, we analyse whether task-specific, finetuned
representations are needed for challenging data
splits or whether task-agnostic, pretrained repre-
sentations also lead to difficult splits. The results
can be found in Fig. 7 and Fig. 8. The second hy-
perparameter we analyse is the dimensionality of
the representations, as displayed in Fig. 9.
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Figure 7: Performance of language models trained on
the pretrained SUBSET-SUM-SPLIT and pretrained
CLOSEST-SPLIT of the Reddit data. The errorbars show
the standard error between cluster seeds.
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Figure 8: Performance of language models trained on
the pretrained SUBSET-SUM-SPLIT and pretrained
closest split of the Reddit data. The errorbars show
the standard error between cluster seeds.
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(b) CLOSEST-SPLIT

Figure 9: Performance of language models trained on the SUBSET-SUM-SPLIT and CLOSEST-SPLIT of the Reddit
dataset. Random split performance, indicated by the solid horizontal lines, is used as a baseline. The error bars
show the standard error between cluster seeds.

D.3 Subset-Sum and Closest Split The HateXplain accuracy can be found in Fig. 11.
For both datasets, models fail to predict some class
completely, defaulting instead to one of the other
classes. Note that HateXplain is a balanced dataset,
while Reddit is highly unbalanced (75% noHate).

SUBSET-SUM-SPLIT and CLOSEST-SPLIT both
lead to a decreased performance. The performance
on the Reddit dataset in terms of accuracy can be
found below in Fig. 10.

70
100 -
! 60 1 %
¢ " } P ! $ i ¢
801 ...n...Q .............. % ......... gt [ + + ¢
50 1 %
e é * + ¢
> 60 e
o 3
O S 404
S 4
< 1 I B .
301
204
201
04 BERT HateBert BERT-Medium RoBERTa
BERT HateBert BERT-Medium RoBERTa
¢ Umap50 —— Rand. Split *  Subset-Sum Split
¢ Umap50 —— Rand. Split #  Subset-Sum Split m  Bottlen. 50 ---- Rand. Guess Closest Split
= Bottlen. 50 ---- Rand. Guess Closest Split e  Full Dims.
e  Full Dims.

Figure 11: Performance of language models trained on
the SUBSET-SUM-SPLIT and CLOSEST-SPLIT of the
HateXplain data. The errorbars show the standard error
between cluster seeds.

Figure 10: Performance of language models trained
on the SUBSET-SUM-SPLIT and CLOSEST-SPLIT of
the Reddit data. The errorbars show the standard error
between cluster seeds.
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E Analysis

E.1 Data split properties

This section presents a detailed description of the
features used for the analysis in Section 6. The
following task-agnostic features are included in the
analysis:

Unigram Overlap Following the word overlap
algorithm in Elangovan et al. (2021), the word over-
lap o; for a given test example test; is the word
overlap with the most similar training example
traing. The word overlap of the whole test set
is then the average over the word overlap of the
test examples o;. For this computation, examples
are represented as a vector with unigram counts
(ignoring stopwords), and similarity is computed
as the cosine similarity.

Sentence Length in the Test Set We use the
average length of input examples in the test set in
terms of characters.

Number of Rare Words in the Test Set Rare
words are defined following the definition of God-
bole and Jia (2022): Rare words are words that are
not common (i.e. occur at most once per million
words) and are not misspelled (i.e. appear in the
word list of common words®). For word frequency
statistics, Godbole and Jia (2022) rely on Brysbaert
and New (2009). We use the word frequencies
more recently collected by Speer (2022) instead.

Moreover, we compare the dropped performance
on the proposed data splits to the following task-
specific features:

Number of under-represented keywords in the
train set The Reddit and HateXplain dataset have
been created by filtering posts based on hate key-
words by simply string-matching the posts with the
keywords. These keywords can be understood as
hate speech categories. We calculate the number of
hate speech categories that are under-represented
in the train set, i.e. have less than 50% of their
occurrences in the train set. Keywords that occur
in less than 3% of the data set are excluded.

Number of under-represented targets in the
train set This method aims to analyse the dif-
ferent targets of hate speech. For the HateXplain
dataset, these targets are annotated as explained

6https ://github.com/dwyl/english-words

in Section 3. We calculate the number of under-
represented targets in the train set using the same
concept as for the under-represented keywords.

Difference of the data source distribution in the
train and test set As described in Section 3, the
HateXplain dataset consists of two data sources,
Gab (46%) and Twitter (54%). We calculate the
distributional shift between the data source distribu-
tion in the train and test set. The Kullback-Leibler
Divergence (Kullback and Leibler, 1951) is calcu-
lated for the two data sources in the dataset and then
the average is taken over both classes, weighted by
the occurrence of the class in the dataset. Since
there is no upper bound for the KL Divergence, it
is scaled to be between 0 and 1 by the function

fl@)=1-¢". (1)
E.2 Topic analysis

Set Class Topics ROBERTa
Hate nigger, kike, white, jews
Train Offens. retarded, bitch, white, ghetto
noHate white, people, women, raped
Hate jews, faggot, muslim, white
Test  Offens. faggot, jews, nigger, white
noHate white, jews, people, retarded

Table 7: Top 4 topics for different classes in the Hat-
eXplain dataset. The topics are obtained from train and
test sets of the Closest Split with latent representations
from RoBERTA.

We extract topics for each class in the train and test
sets using c-TF-IDF (Grootendorst, 2022).

As an example, Table 7 summarises the topics
with the highest c-TF-IDF scores. There seems to
be a tendency for the offensive and noHate classes
to have different topics in the train and test sets,
while the hate class is more consistent across the
split. A manual analysis of cluster topics for all
cluster splits did not lead to conclusive results: Top-
ics are not clearly separated across all classes be-
tween the train and test sets. Many of the topics
found by c-TF-IDF seem to coincide with the tar-
gets that were annotated, and used for the analysis
in the previous section. No strong correlation be-
tween targets and performance was observed then,
which strengthens the result that different targets
in the train and test sets are not the reason for the
decreased performance.
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