
Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP, pages 65–75
December 6, 2023 ©2023 Association for Computational Linguistics

Understanding Code Semantics: An Evaluation of Transformer Models in
Summarization

Debanjan Mondal∗ Abhilasha Lodha∗ Ankita Sahoo∗ Beena Kumari∗
University of Massachusetts Amherst

{debanjanmond,alodha,asahoo,beenakumari}@umass.edu

Abstract

This paper delves into the intricacies of code
summarization using advanced transformer-
based language models. Through empirical
studies, we evaluate the efficacy of code sum-
marization by altering function and variable
names to explore whether models truly under-
stand code semantics or merely rely on textual
cues. We have also introduced adversaries like
dead code and commented code across three
programming languages (Python, Javascript,
and Java) to further scrutinize the model’s un-
derstanding. Ultimately, our research aims to
offer valuable insights into the inner workings
of transformer-based LMs, enhancing their abil-
ity to understand code and contributing to more
efficient software development practices and
maintenance workflows.

1 Introduction

Code summarization is a task that involves generat-
ing coherent and semantically relevant summaries
that effectively describe the intended function of
the software. In the dynamic realm of software de-
velopment and maintenance, an adept grasp of pro-
gram functionalities is of paramount importance.
In this context, the integration of natural language
summaries derived from source code emerges as a
potent instrument, streamlining developers’ efforts
and augmenting program comprehension.

While current state-of-the-art code summariza-
tion models are developed and evaluated on clean
and curated datasets, the real-world coding envi-
ronment is far from standardized. Developers often
deviate from standard coding practices, leading to
inconsistent naming conventions. Additionally, ac-
tual codebases often feature commented sections,
serving as legacy code or reserved for future use
cases. Our research aims to simulate these real-
world scenarios and assess whether models truly

*Equal contribution.

comprehend the inherent code semantics, rather
than merely relying on textual cues.

The prevailing approaches to code summariza-
tion typically employ an encoder-decoder frame-
work, encompassing the conversion of code into
a hidden space and its subsequent transformation
into natural language. For instance, CodeT5 (Wang
et al., 2021), a unified pretrained encoder-decoder
Transformer model, leverages the semantics en-
coded in identifiers. In this research, we investgate
the effectiveness of these models by tweaking the
function and variable names in the existing code
summarization datasets. Furthermore, we intro-
duce additional challenges, such as commented
code and dead code, to elevate the complexity of
data samples and scrutinize the models’ summa-
rization processes. Dead code refers to unreach-
able code segments, devoid of functional impor-
tance, which language interpreters (e.g., Python
and Javascript) ignore. We seek to evaluate whether
models effectively disregard such code segments.
All our experiments are reproducible and we will
release our code and data upon publication.

The driving motivation behind this research lies
in enhancing code comprehension and reducing
the efforts entailed in software development and
maintenance. By unraveling how Language Mod-
els comprehend code, we aim to contribute insights
that pave the way for more effective software de-
velopment practices. Our study, through experi-
mentation and analysis, strives to provide valuable
directions for improving the capabilities of Lan-
guage Models in understanding and summarizing
code, despite the challenges posed by real-world
coding scenarios.*

2 Related Work

Automated code summarization is a useful tool
for software developers and has been an active re-

*Our code is publicly available at: Github

65

https://github.com/Demon702/robust_code_summary


serach field for quite some time. Recently large
language models have shown significant improve-
ments in natural language tasks. Inspired by this,
several pretrained language models have been de-
veloped for the programming language tasks. The
encoder-decoder models have been found to be
more successful in Programming Language (PL)
tasks, whereas fully decoder models perform sig-
nificantly better in Natural Language (NL) domain.

Models like CodeBERT (Feng et al., 2020),
PLBART (Ahmad et al., 2021), GraphCodeBERT
(Guo et al., 2021), CodeT5 (Wang et al., 2021),
CoTexT (Phan et al., 2021) have shown impressive
performances in the CodeXGLUE (Lu et al., 2021)
benchmark. Unlike natural language, it’s neces-
sary to capture the rich code semantics in the pro-
gramming language. Most Programming Language
Models (PLMs) in this domain are pretrained on a
large corpus of NL-PL pair in several programming
languages with a masked token prediction objective.
To capture the code semantics, various models have
used different approaches. For example, CodeT5
uses an additional masked identifier prediction and
GraphCodeBERT incorporates the data flow ex-
tracted from the code. These PLMs have shown
impressive results in downstream tasks like code
summarization. Ahmed and Devanbu (2022a) ex-
plored the code summarization in project-specific
domain. Sun et al. (2022) used an extractive and
abstractive framework from source code summa-
rization. Ahmed and Devanbu (2022b) showed that
multilingual training can amply performance for
low resource languages in different downstream
tasks including code summarization. (Chen et al.,
2022) provided further insights for low resource
languages like Ruby.

As indicated by Guo et al. (2021) in GraphCode-
BERT, indicators play a key role in code summa-
rization. However, it’s more desirable that our
model relies more on code semantics and syntax
rather than method names and identifiers. Devel-
opers follow their own naming conventions which
can affect the model performance. In a closely re-
lated work, Sontakke et al. (2022) have shown that
Semantic Preserving Transformations like remov-
ing code comments, replacing function names and
local variable names to generic names significantly
affects the BLEU score of the models like PLBART.
We want to extend this exploration to other mod-
els like CodeT5, CodeBERT etc. We also aim to
increase the scope of semantic preserving transfor-

mations by including dead code and commented
code to check the model’s understanding of the
code.

3 Dataset

There are several different code summarization
datasets available. But we prefered CodeXGLUE
(Lu et al., 2021) over others for these reasons -

• CodeXGLUE has been meticulously de-
duplicated, as demonstrated in (Shi et al.,
2022). This ensures that any duplication
within the dataset does not artificially inflate
performance metrics.

• CodeXGLUE offers a wide range of six lan-
guages. This allowed us to conduct exper-
iments and compare results across different
programming languages.

We can categorize the six languages available in
CodeXGLUE into three groups based on the size
of their combined datasets (including train, valida-
tion, and test sets). Please note that the following
information pertains to the combined dataset size:

• In the High Resource category, both Python
and PHP have approximately 300,000 code-
summary pairs each.

• In the Mid Resource category, Java and Go
consist of around 180,000 code-summary
pairs.

• In the Low Resource category, Javascript com-
prises 65,000 pairs, while Ruby only has
27,000 code-summary pairs.

To analyze the impact of data transformation across
resource categories, we selected one language from
each category. Therefore, for our experiments, we
utilized the languages Python, Java, and Javascript.
The detailed statistics about train, validation and
test splits is presented in Table 1.

3.1 Data Transformation
We will focus on code transformations that will pre-
serve the code functionality. In the programming
paradigm, this is known as obfuscation. In this
study, we focused on 3 kinds of transformations.
These are visually explained in Figure 1:

• Renaming Identifiers: Although the soft-
ware development industry emphasizes the im-
portance of meaningful and descriptive names

66



for functions and variables, developers often
use random function and variable names. To
replicate such scenario, we replaced function
and variable names with generic but unique
names. However while doing so, we had to
keep in mind that the control flow of the over-
all program should not be affected. We lever-
aged the Abstract Syntax Tree (AST) of the
source code to identify and edit identifiers.
Implementation details and interesting corner
cases vary across programming languages and
will be discussed subsequently.

• Commented Code: It is very common in
software engineering to encounter commented
codes inside a function. These may be legacy
codes which are not used anymore, or code
snippets that might be used in future. To sim-
ulate such situation, we added commented
codes. For each source code, we randomly
sampled a function within the same data split,
created commented version of it and added it
after a function definition. Finding a suitable
place to add comments is tricky and some-
times it can potentially change the program
functionality. For our experiments, we add
the comments starting from the next line after
function definition.

• Dead Code: Adding code after return state-
ments is another transformation that we ex-
plored in our experiments. Python and
Javascript interpreters ignore anything added
after return statements, and we wanted to
check if the models have developed the ability
to do so. Since Java compiler throws error
if we add anything after return, we excluded
Java from this study.

Code transformation implementation details
about specific programming languages have been
presented in A.2.

4 Models and Evaluation

4.1 Models

In this study we ran our experiments on 2 models:

• CodeT5: Upon examining the leaderboard of
CodeXGLUE2, and comparing metrics from
various research papers, we discovered that

2https://microsoft.github.io/CodeXGLUE/

Languages Transformation Train Data Validation Data Test Data

Python

Original 251820 13914 14918
Renamed Identifiers 251820 13914 14918
Commented Code 251820 13914 14918
Dead Code 251820 13914 14918

Javascript

Original 58025 3885 3291
Renamed Identifiers 38254 2730 2157
Commented Code 38254 2730 2157
Dead Code 21897 1548 1213

Java Original 164923 5183 10955
Renamed Identifiers 164888 5182 10953
Commented Code 164923 5183 10955

Table 1: Dataset Size Information for different splits.

CodeT5 (Wang et al., 2021) achieves state-
of-the-art results for the code summarization
task on this benchmark. Due to limitations in
the size of our available GPUs, we opted to
utilize the CodeT5 small3 (60M parameters)
and base4 (223M parameters) models, while
excluding the CodeT5 Large model (770M
parameters) from our analysis. It is worth
noting that CodeT5 incorporates an identifier
aware denoising objective during its pretrain-
ing, making it more inclined to utilize textual
cues from identifiers. We wanted to evaluate
its robustness in our experiments.

• CodeBERT: For comparison across differ-
ent architectures, we chose the CodeBERT
(Feng et al., 2020) (173M parameters) model.
Unlike CodeT5, CodeBERT is an encoder
only model which is pretrained on the Code-
SearchNet (Husain et al., 2020) dataset. For
sequence-to-sequence generation problems
like code summarization, the authors pro-
vide an Encoder-Decoder framework where
they initialize the encoder with the pretrained
CodeBERT, but they randomly initialize the
decoder with a transformer model. Note that
the decoder weights are not trained during the
pretraining phase. For our experiments we use
the CodeBERT Base5 model.

The finetuning code utilized for our project
was obtained from the public GitHub repository
of CodeT5.6 The CodeT5 authors also included
the finetuning code for CodeBERT. We reused
the finetuned checkpoint of CodeT5 base that

3https://huggingface.co/Salesforce/
codet5-small

4https://huggingface.co/Salesforce/
codet5-base

5https://huggingface.co/microsoft/
codebert-base

6https://github.com/salesforce/CodeT5

67

https://microsoft.github.io/CodeXGLUE/
https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base
https://github.com/salesforce/CodeT5


Figure 1: Examples of different kind of transformations discussed in Section 3.1.

was available. As for CodeT5 small and Code-
BERT, we performed the finetuning process on
clean CodeXGLUE data, using the hyperparam-
eters specified in the repository. The finetuned
checkpoints on clean data for every model and ev-
ery language serve as our baseline. Note that, the
BLEU scores (Papineni et al., 2002) of our fine-
tuned checkpoints on the clean CodeXGLUE test
data has slight discrepancies with the BLEU scores
reported in the original papers. However, the dif-
ference was not more than one decimal point. This
may be attributed to the difference between GPU
architectures. We report the scores mentioned in
the original papers as the train clean - test clean
scores.

5 Experiments

For all our experiments, we use the NVIDIA Tesla
M40 GPUs. While finetuning for all types of data
(Clean, Corrupted and Combined), we used the
clean data finetuning hyperparameters that were
available in the CodeT5 repository. However, for
CodeT5 Base model, we had to reduce the batch
size from 48 to 16 to fit in our GPU. All other
hyperparameters remain the same. With this setup,

we perform the following experiments.

• Identifier Corruption: We conducted indi-
vidual finetuning of the models using clean,
corrupted, and combined train data (clean +
corrupted). Subsequently, we evaluated these
three types of models on both clean and cor-
rupted test data. We used CodeBERT, CodeT5
Small and CodeT5 Base models for this ex-
periment.

• Commented Code Corruption: For this cor-
ruption type, we performed separate finetun-
ing of the model using clean data and com-
mented code corrupted data. Finally, we eval-
uated these two types of models on both clean
data and commented code corrupted data. We
only evaluated the CodeT5 Small and CodeT5
base models in this particular setup.

• Dead Code Corruption: Similar to the pre-
vious corruption type, we carried out separate
finetuning of the model using clean data and
dead code corrupted data. Subsequently, we
evaluated these two types of models on both
clean data and dead code corrupted data. Once

68



again, we only evaluated the CodeT5 Small
and CodeT5 base models in this setup.

5.1 Evaluation

Evaluation metrics are crucial for assessing the
effectiveness of a code summarization model. In
our study, we utilized both automatic and human
evaluations.

1. BLEU (Papineni et al., 2002): It is a
precision-based metric that measures the over-
lap between the words (and/or n-grams) in
the machine-generated summaries and the
human reference summaries. We calcu-
lated smoothed BLEU-4 (considering upto
4-grams) scores for each of the generated sum-
maries and then averaged across all the sum-
maries. We used the same evaluation script as
CodeT5 which in turn reused the original eval-
uation script provided in the CodeXGLUE (Lu
et al., 2021) benchmark. The BLEU scores ob-
tained from different experiments for Python,
Java, and JavaScript are presented in Table 2,
3, and 4.

2. Human Evaluation: Additionally, we per-
formed a manual evaluation by annotating
200 random samples for both Python and
JavaScript. Further details of the human eval-
uation process are discussed in the Section
7.

6 Discussion

Our experiments try to answer the following essen-
tial questions on models’ understandability.

6.1 Research Question 1: Does a model
trained on clean data perform well on the
identifier corrupted data?

For all languages and models, the performance of
a model trained on clean data tends to diminish
when faced with corrupted test data, as compared
to its performance on clean test data. The drop
in performance for all models and languages is at
least 4 points in terms of BLEU score. This phe-
nomenon may be attributed to the model’s reliance
on textual hints found within function and variable
names during training, rather than grasping the true
essence of the code’s functionality and achieving
generalization. The comparison is visually shown
in Figure 2.

Figure 2: Comparing performance on clean and cor-
rupted test data for models trained on clean data.

6.2 Research Question 2: Does the model
trained on identifier corrupted data perform
well on clean data?

A surprising observation arises when examining the
performance of the model trained only on corrupted
data. It demonstrates a commendable level of pro-
ficiency not only on corrupted test data (which is
expected) but also on clean test data. This is visu-
ally explained in Figure 3. For all languages and
models, the performance on clean test data between
the model trained on clean data and corrupted data
is less than 1 point in terms of BLEU score, except
for CodeBERT in javascript. We hypothesize that
when we train on the corrupted data, the model
is forced to understand the code functionality in a
generalized manner, thereby enabling it to perform
well even in the clean dataset.

Figure 3: Comparing performance on clean test data
and for models trained on clean data and corrupted data.

69



Train Data Test Data Python Javascript Java

CodeT5 Small CodeBERT CodeT5 Base CodeT5 Small CodeBERT CodeT5 Base CodeT5 Small CodeBERT CodeT5 Base

Clean Clean 19.96 19.06 20.01 15.32 14.90 16.16 20.02 17.65 20.31
Corrupted 12.92 13.03 12.81 9.51 7.34 9.04 15.06 13.42 14.05

Corrupted Clean 19.28 17.75 19.64 14.55 11.30 15.41 19.05 17.16 19.50
Corrupted 16.21 15.52 16.50 12.68 10.76 13.13 17.27 16.20 17.36

Combined Clean 19.73 18.93 20.05 15.27 13.01 15.83 19.82 18.01 19.70
Corrupted 16.17 15.76 16.51 12.46 11.29 12.86 17.14 16.19 17.44

Table 2: Smooth BLEU-4 scores for different train-test combinations for clean and identifier corrupted data.
When models are trained using clean data, their performance deteriorates when tested on identifier corrupted data.
However, when models are trained on a combination of both clean and corrupted data, they demonstrate satisfactory
performance on both types of test data - clean and corrupted.

Train Data Test Data Python Javascript

CodeT5 Small CodeT5 Base CodeT5 Small CodeT5 Base

Clean Clean 19.96 20.01 15.32 16.16
Dead Code 18.55 19.83 15.20 15.52

Dead Code Clean 19.74 18.66 14.69 15.32
Dead Code 18.92 19.19 15.62 16.70

Table 3: Smooth BLEU-4 scores for different language
and train-test combinations for dead code corruption.

6.3 Research Question 3: How is the
performance of the model trained on the
combined data?

Our combined dataset contained both clean data
and identifier corrupted data. The model trained
on a combined dataset exhibits impressive perfor-
mance not only on clean data but also on identifier
corrupted data. Its performance on the clean test
data is very similar to and sometimes even sur-
passes the performance of the model only trained
on the clean data. Similar observations are seen for
the corrupted test data. Notably, this pattern is con-
sistent across all the models and languages. This
shows that if we curate our dataset correctly, the
model can generalize across clean and corrupted
datasets. The BLEU score performance compar-
isons are visually explained in Figures 4 and 5.

6.4 Research Question 4: What is the effect of
commented code perturbations on the
model’s capabilities?

We observe that the model trained on a dataset con-
sisting of commented code showcases comparable
and impressive performance on both clean code
data and commented code data. However, a model
trained exclusively on clean data displays satisfac-
tory performance on the clean test set, albeit experi-
encing a notable decline in performance when eval-
uated on the commented code test set (presented
in Figure 6). A potential explanation is that the ab-
sence of comments in the clean code training data

Figure 4: Comparing performance on clean test data for
models trained on clean data and combined data.

Figure 5: Comparing performance on corrupted test
data for models trained on corrupted data and combined
data.

prevents the model from learning the syntax associ-
ated with comments. However, when the model is
trained on code that includes comments, it captures
the code syntax information despite the comments
not directly influencing the code’s functionality.

70



Train Data Test Data Python Javascript Java

CodeT5 Small CodeT5 Base CodeT5 Small CodeT5 Base CodeT5 Small CodeT5 Base

Clean Clean 19.96 20.01 15.32 16.16 20.02 20.31
Commented 16.15 16.26 14.61 14.21 15.06 18.83

Commented Clean 19.07 17.90 15.00 15.07 19.77 20.23
Commented 18.32 18.75 15.90 15.73 19.57 20.17

Table 4: Smooth BLEU-4 scores for different language and train-test combinations for commented code corruption.

Figure 6: Comparing performance on clean and com-
mented test data for models trained on clean data.

6.5 Research Question 5: What is the effect of
dead code perturbations on the model’s
capabilities?

Upon analysis, we determine that a model trained
on a dataset that includes non-functional dead code
demonstrates impressive and similar performance
when applied to both clean code and the aforemen-
tioned dead code. We make the same observation
for a model trained on clean data and evaluated on
both clean and non-functional code test datasets.
We thus conclude that the addition of dead code
doesn’t have any significant impact on the gener-
ated summaries.

7 Human Evaluation

In order to gain deeper insights into specific errors,
a manual evaluation was conducted on a randomly
selected subset of 200 examples from the identi-
fier corrupted dataset. The evaluation compared
the performance of two CodeT5 Base models: the
model trained on the combined dataset (including
identifier corrupted codes) and the baseline model
trained on clean data. The evaluation involved ana-
lyzing code, gold truth, baseline model summaries,
and combined data trained model summaries. We

prepare one such set for both Python and Javascript
(Refer Table 5). To avoid human bias, the annota-
tors were given the summaries in a random order
without any access to the information about which
model generated them.

Language Clean Data Model Combined Data Model Ties Total

Python 21 143 36 200
Javascript 15 148 37 200

Table 5: Statistics of the aggregated manual evaluation
data determining which model’s summary was better.

The evaluation process included two individuals
independently annotating the same set of data and
marking the annotations as Prediction 1, Prediction
2, or Tie (both models). The chosen option implies
that the selected annotation is more closely aligned
with the gold truth and code. The inter-annotator
agreement can be observed in the Table 6.

In cases where there was a disagreement between
the annotators, Ties were resolved using the follow-
ing strategies:

• If one annotation was marked as a Tie and
the other was marked as Prediction 1 or Pre-
diction 2, we considered the Prediction 1 or
Prediction 2 annotation as the final annotation
in the aggregated dataset.

• If one annotation was marked as Prediction
1 and the other as Prediction 2, the two an-
notators engaged in a discussion to reach a
consensus for the final annotation for the sum-
maries.

The observations revealed that the summaries
generated by the model trained on the combined
data were more relevant to the code and closer
to the desired outcome (gold truth) compared to
the baseline model. There were several notable is-
sues with the summaries generated by the baseline
model, which are discussed in the Figure 7.

The computed BLEU scores for the two models,
where one was trained on clean data and the other
on combined data, are as follows: For Python, the

71



bleu scores on the identifier corrupted dataset are
12.92 and 16.17, while for Javascript, the scores
are 9.04 and 12.86, respectively. These scores align
with the manual evaluation results, indicating that
the model trained on combined data outperforms
the model trained solely on clean data in code sum-
marization.

8 Conclusion

By studying advanced code summarization mod-
els, we discover how making changes that preserve
the meaning of the code affects the quality of the
summaries they generate. Additionally, we pro-
vide evidence that if we train the large language
models like CodeT5 properly, making changes that
disrupt the meaning of function and variable names
have little impact on the resulting summaries. Our
observations remain consistent across three dis-
tinct programming languages: Java, Python, and
JavaScript. These findings raise important concerns
about how well these models truly understand code,
highlighting the need for better training methods
and carefully curated datasets that improve their
understanding. We propose using different types
of code transformations, such as introducing re-
named identifiers, adding comments, or dead code,
as ways to enhance the training of these models.
Furthermore, there is an exciting opportunity to
apply these findings to different programming lan-
guages, so that we can learn more about their gen-
eral applicability.

Limitations

While this study presents valuable insights into
code summarization using CodeBERT and CodeT5,
certain limitations merit consideration.

Firstly, the experimentation focused exclusively
on CodeBERT and CodeT5 due to practical GPU
restrictions. While Large Language Model (LLMs)
based approaches hold immense potential, their ex-
clusion from the evaluation due to GPU limitations
might restrict the generalizability of findings.

Secondly, the reliance on BLEU evaluation met-
rics, although widely used, introduces its own limi-
tations(Roy et al., 2021). BLEU captures the word-
level overlap between generated and reference sum-
maries, but it may not holistically reflect the quality
of the summary in all cases. The intricate seman-
tics and contextual intricacies present in code may
not be fully captured by BLEU scores alone.

Moreover, while human evaluation was con-
ducted on a subset of 200 samples, the compre-
hensiveness of this assessment could have been
further extended. A more expansive human eval-
uation, covering a broader array of code samples,
could provide a richer understanding of the models’
actual performance.

In future studies, overcoming these limitations
could involve wider experimentation across a spec-
trum of Language Models, a more robust human
evaluation, and exploring alternative evaluation
metrics that better align with the complex nature of
code summarization.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Toufique Ahmed and Premkumar Devanbu. 2022a.
Learning code summarization from a small and local
dataset.

Toufique Ahmed and Premkumar Devanbu. 2022b. Mul-
tilingual training for software engineering. In Pro-
ceedings of the 44th International Conference on
Software Engineering, ICSE ’22, page 1443–1455,
New York, NY, USA. Association for Computing
Machinery.

Fuxiang Chen, Fatemeh Fard, David Lo, and Timofey
Bryksin. 2022. On the transferability of pre-trained
language models for low-resource programming lan-
guages.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin Clement, Dawn Drain, Neel
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.
2021. Graphcode{bert}: Pre-training code represen-
tations with data flow. In International Conference
on Learning Representations.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2020. Code-
searchnet challenge: Evaluating the state of semantic
code search.

72

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
http://arxiv.org/abs/2206.00804
http://arxiv.org/abs/2206.00804
https://doi.org/10.1145/3510003.3510049
https://doi.org/10.1145/3510003.3510049
http://arxiv.org/abs/2204.09653
http://arxiv.org/abs/2204.09653
http://arxiv.org/abs/2204.09653
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436


Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James
Anibal, Alec Peltekian, and Yanfang Ye. 2021. Co-
text: Multi-task learning with code-text transformer.

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova.
2021. Reassessing automatic evaluation metrics for
code summarization tasks.

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi
Han, Hongyu Zhang, Dongmei Zhang, and Hongbin
Sun. 2022. On the evaluation of neural code sum-
marization. In Proceedings of the 44th International
Conference on Software Engineering. ACM.

Ankita Nandkishor Sontakke, Manasi Patwardhan,
Lovekesh Vig, Raveendra Kumar Medicherla, Ravin-
dra Naik, and Gautam Shroff. 2022. Code summa-
rization: Do transformers really understand code? In
Deep Learning for Code Workshop.

Weisong Sun, Chunrong Fang, Yuchen Chen, Quan-
jun Zhang, Guanhong Tao, Tingxu Han, Yifei Ge,
Yudu You, and Bin Luo. 2022. An extractive-and-
abstractive framework for source code summariza-
tion.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

A Appendix

A.1 Additional information on human
annotation

Language Raw Agreement Cohen’s Kappa

Python 74.5% 0.62
Javascript 82.0% 0.73

Table 6: Inter-annotator Agreement Statistics.

A.2 Data Transformation Procedure

A.2.1 Python
• Renaming Identifiers: We use Python’s ast

package to parse the code and create AST.
Then we transform the ast using NodeTrans-
former7 class. Finally the modified ast is un-
parsed and saved to the output file.

• Commented Code: Commented code is
added after the function definition by ran-
domly selecting a function code snippet from
the same data split and adding comment sym-
bols (#) before each line of the selected code
snippet.

• Dead Code: The code in this section adds
extra code snippets after return statements in
Python source code. The extra code snippet is
taken from the function body of a randomly
selected function in the same data split. It uses
the libcst8 library to identify the location of
the return statement.

A.2.2 Javascript
• Renaming Identifiers: To achieve this, the

esprima9 library was employed to obtain the
AST structure. Some codes are excluded from
our dataset because the library fails to obtain
the AST for those specific codes. The AST
was traversed using Depth-First Search (DFS)
to extract node details of Identifiers related
to variables and functions. Subsequently, the
estraverse10 library was utilized to traverse

7https://docs.python.org/3/library/ast.html#
ast.NodeTransformer

8https://libcst.readthedocs.io/en/latest/
9https://www.npmjs.com/package/esprima

10https://www.npmjs.com/package/@types/
estraverse

73

https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2105.08645
http://arxiv.org/abs/2105.08645
https://doi.org/10.1145/3468264.3468588
https://doi.org/10.1145/3468264.3468588
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.1145/3510003.3510060
https://openreview.net/forum?id=rI5ll2_-1Zc
https://openreview.net/forum?id=rI5ll2_-1Zc
http://arxiv.org/abs/2206.07245
http://arxiv.org/abs/2206.07245
http://arxiv.org/abs/2206.07245
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://docs.python.org/3/library/ast.html##ast.NodeTransformer
https://docs.python.org/3/library/ast.html##ast.NodeTransformer
https://libcst.readthedocs.io/en/latest/
https://www.npmjs.com/package/esprima
https://www.npmjs.com/package/@types/estraverse
https://www.npmjs.com/package/@types/estraverse


Figure 7: Examples of different summaries generated by the models in manual evaluation.

the AST and rename each identified node ac-
cordingly. Finally, the modified code was gen-
erated using escodegen11 and saved as the out-
put.

• Commented Code: The commented code

11https://www.npmjs.com/package/escodegen

is inserted following the function signature.
This is performed after getting the AST and
using the AST to identify the end of function
signature. The code used for commenting is
chosen randomly from a collection of code
snippets found in another JSON object, with
comment symbols (//) added to each line.

74

https://www.npmjs.com/package/escodegen


• Dead Code: Similar to commented code ex-
ample, a function body code is randomly se-
lected from a collection of code snippets in the
same data split. This code is then appended to
the original code after the return statement.

A.2.3 Java
• Renaming Identifiers: To modify the func-

tion names, and variable names, AST was
generated for each code input samples us-
ing JavaParser12 package. The AST was
traversed to extract the function and variable
name nodes, which was then modified to gen-
eralized names. It is taken care of to replace
the occurrence of same variable and function
names with the modified name throughout the
code sample using a hash map.

• Commented Code: For adding commented
code, we searched for the first opening curly
braces "{" and the commented code was in-
serted within /* ... */ and added after the
aforementioned curly braces. The commented
code snippets were randomly sampled from
the same data split of Java code samples.

• Dead Code: Addition of codes after return
statement in Java throws compile error, there-
fore dead code was not added to Java code
samples.

12https://javaparser.org/

75

https://javaparser.org/

