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Abstract

The success of neural language models (LMs)
on many technological tasks has brought about
their potential relevance as scientific theories
of language despite some clear differences be-
tween LM training and child language acqui-
sition. In this paper we argue that some of
the most prominent benchmarks for evaluat-
ing the syntactic capacities of LMs may not be
sufficiently rigorous. In particular, we show
that the template-based benchmarks lack the
structural diversity commonly found in the the-
oretical and psychological studies of language.
When trained on small-scale data modeling
child language acquisition, the LMs can be
readily matched by simple baseline models. We
advocate for the use of the readily available,
carefully curated datasets that have been eval-
uated for gradient acceptability by large pools
of native speakers and are designed to probe
the structural basis of grammar specifically. On
one such dataset, the LI-Adger dataset, LMs
evaluate sentences in a way inconsistent with
human language users. We conclude with sug-
gestions for better connecting LMs with the
empirical study of child language acquisition.

1 Introduction

The growth of neural language models (LMs) for
NLP over the past decade has been followed by a
growth in research on the potential of these mod-
els to provide insights into the cognitive aspects of
human language acquisition, representation, and
processing (Linzen and Baroni, 2021). Good, even
human-like, performance on NLP tasks does not
necessarily imply that LMs solve these in human-
like ways, so computational linguists have designed
a wide variety of experimental paradigms to probe
specific properties of the models’ linguistic knowl-
edge (Linzen et al., 2016a; Chowdhury and Zam-
parelli, 2018; Gulordava et al., 2018; Wilcox et al.,
2018; McCoy et al., 2020; Hu et al., 2020; Warstadt
et al., 2020; Papadimitriou et al., 2021; Huebner
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LI-Adger Dataset: LM accuracy as compared to human ME judgements.
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Figure 1: LM performance on the LI-Adger dataset.
Human performance is marked by the vertical line.
Baby=BabyBERTa, CHI=AO-CHILDES, News=AO-
NEWSELA, Wiki=Wikipedia-1.

et al., 2021) These range from ways of classify-
ing or extracting structures from internal represen-
tations (e.g., Hewitt and Manning, 2019; Tenney
et al., 2019; Tucker et al., 2021; Papadimitriou
et al., 2021), to building tasks inspired by psy-
cholinguistic processing studies and classic accept-
ability rating task that theoretical linguists use to
infer grammatical knowledge (e.g., Linzen et al.,
2016a; Warstadt et al., 2020; Huebner et al., 2021;
Sinclair et al., 2022).

Of these approaches, acceptability rating may
be the most popular. Large acceptability rating
data sets focusing on syntax, semantics, and mor-
phology, such as BLiMP (Warstadt et al., 2020),
SyntaxGym (Gauthier et al., 2020), and CoLA
(Warstadt et al., 2019) lend themselves to bench-
marking, and these sit alongside myriad smaller
scale studies focused on specific lingusitic phenom-
ena (e.g., Linzen et al., 2016b; Marvin and Linzen,
2018; Wilcox et al., 2018). Results have been im-
pressive for the most part. It appears, from the
logic of these studies, that many state-of-the-art
neural models are capable of inducing human-like
grammatical knowledge on unannotated data—like
children during language acquisition.
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1.1 Implications for Language Acquisition?

Neural model training differs from human language
acquisition in key ways, perhaps most obviously,
in that most models are trained on orders of magni-
tude more input (in plain text form) than humans
receive (in spoken or signed form)— BERT was
trained on about 3.3B forms, and Chinchilla on
1.4T, while an English-learning child only receives
about 10M word per year, for a total vocabulary
measured in the hundreds at age three (Fenson et al.,
1994; Bornstein et al., 2004).

Recent studies have begun to address this. Can
we build models that learn from input on the scale
of language acquisition? Would these models then
inform our understanding of human language acqui-
sition? Warstadt and Bowman (2022) favor this per-
spective. They argue that a computational model
that performs well on behavioral probing bench-
marks when trained on ablated input, that is at least
as limited as a human learner’s input, is evidence
that the model is a good proxy for human linguistic
knowledge. Huebner et al. (2021) showed that a
specially tuned model trained on only SM tokens
of child-directed speech (CDS) performs well on a
purpose-designed data set. And in 2023, an aptly-
named shared task, the CoNLL/CMCL BabyLM
Challenge,' is asking participants to train on only
100M words (about the input of an adolescent) be-
fore testing on acceptability benchmarks.

1.2 Goals of the Paper

A push towards extracting performance on smaller
training data is a welcome change for the field. In
addition to its possible cognitive implications, the
drive will also benefit efficient NLP and NLP for
low-resource languages. However, while we look
forward to the impending engineering advances, we
also urge caution in the approaches used to draw
scientific conclusions about the nature of neural
models’ linguistic knowledge. In particular, we
take issue with Warstadt and Bowman (2022)’s
assertion that “positive results from model learners
are more meaningful than negative results.”

Their reasoning follows that of an existence
proof. If a model that strictly lacks any advan-
tages over humans nevertheless succeeds at a task
that requires human-like linguistic knowledge, then
it is proof that there exists at least one model with
human-like linguistic knowledge. A failure only
tells us that this model failed for some reason that

"https://babylm.github.io/
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may or may not be relevant to the question at hand.

However, this line of reasoning requires faith
in the evaluation. If there are any potentially un-
recognized non-human-like ways to succeed at the
task, or if the task does not truly reflect acquisition,
or the task does not actually test a relevant struc-
tural property of language, then a positive result
becomes inconclusive at best. Unexpected short-
cuts emerging from unforeseen biases in evaluation
abound across NLP (Chao et al., 2018; McCoy
et al., 2019; Wang et al., 2022), so this is a realistic
concern. Even the underlying reasoning that “if a
(neural) model X behaves like cognitive system Y,
then it is equivalent to Y’ may be fraught (Guest
and Martin, 2023).

In this paper,” we evaluate LMs as models of lan-
guage acquisition on two benchmarking data sets:
the widely used Benchmark of Linguistic Minimal
Pairs (BLiMP; Warstadt et al., 2020), which also
forms part of the evaluation for the BabyLM Chal-
lenge, and Zorro (Huebner et al., 2021), a data set
inspired by BLiMP with restricted vocabulary for
acquisition-inspired models trained only on CDS.

Section 2 reviews the nature of linguistic knowl-
edge and child language acquisition. In Section 3,
we introduce the BLIMP and Zorro benchmarks
and subject them to baseline tests by simple non-
human-like models. These establish several weak-
nesses in the organization and content of both
benchmarks. In Section 4, we evaluate neural mod-
els on a more challenging data set derived directly
from theoretical linguistics papers. We find that
LMs are not necessarily human-like in terms of
within- and across-model variability. Finally, Sec-
tion 5 concludes with a discussion of the logical
problem of behavioral probing. We argue for (a)
benchmarks that better probe the structural knowl-
edge of syntax, (b) tests that reflect the develop-
mental findings of language acquisition, and (c)
more baseline models.

2 Knowledge of Language and its
Acquisition

One of the goals of linguistic theory is to charac-
terize the properties that distinguish grammatical
from ungrammatical sentences in a language. The
empirical study of grammaticality, however, mainly
relies on native speakers’ acceptability judgments,
which interact with other cognitive and perceptual

2Qur evaluation code and data are available at https://
github.com/hjvm/benchmarking_acquisition.git
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systems and generally produce gradient results. For
example, longer and more complex sentences, even
when fully grammatical, are rated as less accept-
able than shorter and simpler sentences. Neverthe-
less, large-scale investigations have established the
structural basis of a categorical grammar (Sprouse
and Hornstein, 2013). For example, syntactic con-
straints that prohibit certain transformational pro-
cesses are shown to have a “super-additive” effect
that go beyond acceptability rating due to sentence
length and other non-structural factors. Further-
more, acceptability judgments collected at scale
are highly consistent with the data reported in the
theoretical literature typically gathered informally
with few consultants (Sprouse and Almeida, 2012;
Sprouse et al., 2013; Sprouse and Almeida, 2017).

The structural basis of language and its unifor-
mity across the linguistic community can be better
appreciated from the perspective of child language
acquisition. Recent years have seen renewed inter-
est in individual differences across child learners
(Kidd et al., 2018), especially with respect to vocab-
ulary acquisition (Frank et al., 2021). It is at least
possible that children differ in their cognitive abili-
ties for language and learning, but it is empirically
obvious that they differ in their experience with
language. Longitudinal records of child language
development have made it possible to track both
children’s vocabulary growth, and the development
of the structural aspects of their grammar. In the
Providence Corpus (Demuth et al., 2006), for exam-
ple, six children were recorded at regular intervals
from age 1 to 3. On average, fewer than 20% of the
first 100 words are shared between any two chil-
dren. The overlap merely rises to about 40% for the
first 1,000, which is the upper limit of a three-year
old’s vocabulary size (Hart and Risley, 1995; Born-
stein et al., 2004). Yet these children’s grammars
are highly uniform even at this stage. Major syntac-
tic categories, word order and argument structure,
and the core morphological rules are firmly estab-
lished before age three (Brown, 1973) on the basis
of at most around 10M words per year (Hart and
Risley, 1995) and a vocabulary size of only a few
hundred types (Fenson et al., 1994), and all chil-
dren produce similar grammatical errors during this
time. Recent decades have also seen a convergence
between the psychological and formal study of lan-
guage development and the quantitative study of
language variation in early childhood. The sociolin-
guist, Bill Labov, remarks that “The end result is
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a high degree of uniformity in both the categorical
and variable aspects of language production, where
individual variation is reduced below the level of
linguistic significance” (2012).

The acquisition of vocabulary and grammar
provide clues for investigating the capacities of
LMs. Vocabulary learning is a matter of rote learn-
ing. This includes not just the arbitrary pairing of
sounds and meanings, but also morphological pro-
cesses (e.g., irregularity) and syntactic structures
(e.g., sub-categorization, collocations, etc.). There
is no escape from experience: more data results in
better learning. But, the structural aspects of the
grammar are different. They require form general-
izations over the vocabularies.

The distinction between rote learning and struc-
tural learning (words vs. rules) is not well reflected
by existing LM benchmarks including those dis-
cussed in this paper. In practice, these benchmarks
are a mixture of tests for both vocabulary learning
and grammar learning. Moreover, they are stochas-
tically generated by templates: as such, a large
number of test sentences are immediately available,
but they lack the structural diversity that has proven
revealing in the theoretical study of grammar.

Furthermore, the sentences are sometimes highly
unnatural and semantically/pragmatically uncon-
trolled, which is precisely the confounding factor
that linguists seek to neutralize when attempting to
uncover the structural basis of language. Warstadt
et al. (2020) are aware that their templates generate
unnatural sentences, presenting the BLiMP sen-
tence ‘Sam ran around some glaciers.’ as an
example. We found similar issues in Zorro, such as
‘the lie on the foot is flat ., the first sen-
tence in Zorro’s across_prepositional_phrase
paradigm (1lie is a noun). The BLiMP authors state
that this is not a problem because it affects both sen-
tences in a pair, but how can we rule out unintended
interactions between the grammatical phenomenon
under evaluation and the semantic implausibility?
Sprouse et al. (2018) find that this semantic im-
plausibility may affect judgments of sentence well-
formedness, even in the Forced Choice (FC) task
used to collect the human baselines in BLiMP.

Indeed, there are already a large amount of care-
fully curated linguistic materials that are not only
structurally diverse but also have minimized lexi-
cal and semantic confounds. Furthermore, these
datasets (e.g., the Adger/LI dataset; Section 4) have
been evaluated for acceptability at an individual



level by a large pool of native speaker subjects and
show very high convergence rates across individu-
als. They will be especially informative if we are
to explore the structural knowledge of LMs.

3 Re-examining the Benchmarks

BLiMP (Warstadt et al., 2020)

Warstadt et al. (2020) introduce the Benchmark
of Linguistic Minimal Pairs (BLiMP)? as a means
of evaluating the linguistic knowledge of neural
language models. BLiMP extends the reasoning
of earlier studies (e.g., Linzen et al., 2016b; Mar-
vin and Linzen, 2018; Wilcox et al., 2018) which
use a minimal pair paradigm to approximate ac-
ceptability judgments. Instead of prompting for a
acceptability judgments on individual sentences, as
is most commonly done for human subjects, they
present an LM with two sentences that only differ
in one structural or lexical property. For a given
minimal pair m,; consisting of an acceptable sen-
tence s;1 and an unacceptable sentence s; o, if an
LM evaluates P(s;1) > P(s;2), then the model
has succeeded on m;. An LM is scored according
to the percentage of all the minimal pairs for which
it identified the acceptable sentence. The minimal
pair approach allows for the direct evaluation of
LMs without training a binary classifier on top of
them as was necessary for previous acceptability
benchmarks (e.g., CoLA; Warstadt et al., 2019).

Minimal pairs need to be carefully constructed to
control for length and lexical frequencies. BLiMP
aims to accomplish this with automatic genera-
tion from templates, but as we discuss, it often
yields sentences with low structural diversity and
implausible semantics. The benchmark corpus
includes data sets for 12 linguistic phenomena,
including ANAPHOR AGREEMENT, ARGUMENT
STRUCTURE, BINDING, CONTROL/RAISING, and
others listed in the Appendix. These are further
divided into 67 paradigms, each containing 1000
sentences pairs, which are meant to test variants
of the phenomena, for example the phenomenon
DETERMINER-NOUN AGR. contains 6 paradigms
for adjacent agreement, agreement with irregular
nouns, and agreement with adjectives intervening.
BLiMP has become a standard NLP benchmark for
this task and will be used as part of the test data for
the upcoming BabyLLM Challenge.

3https://github.com/alexwarstadt/blimp
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Zorro (Huebner et al., 2021)

Huebner et al. (2021) explicitly aim to evalu-
ate the relationship between LMs and the ac-
quisition of grammar. They introduce Baby-
BERTa_AO-CHILDES “an acquisition-friendly ver-
sion of RoBERTa,” trained on English child-
directed/produced speech (CDS) approximating
the total input of a typical English-learning six-
year-old. They train variants on only CDS
from AO-CHILDES (Huebner and Willits, 2021),
a pre-processed version of English CHILDES
(MacWhinney, 1991), as well as variants on larger
datasets from other sources.

Because BabyBERTa_A0-CHILDES (henceforth
BabyBERTa) was trained on much less text than
typical large transformer models are, its vocabulary
is much smaller. To mitigate the impact of out-of-
vocabulary (OOV) items on their tests, the authors
introduce a new grammaticality test suite, Zorro,*
in the style of BLiMP. Sentence pairs are gener-
ated for one paradigm each for 11 of BLiMP’s 12
phenomena, along with two additional phenomena.
However, we show that the Zorro sentences are not
only lexically simpler as intended, but their tem-
plates are also far less complex and even less var-
ied than the sentences in the corresponding BLiMP
phenomena. Full lists of paradigms for each data
set can be found in the Appendix, and the full data
sets themselves are made available by the bench-
marks’ original authors.

3.1 Linear Baselines

As noted earlier, BLIMP and Zorro tests are
stochastically generated with category-based tem-
plates. This way, a large number of examples can
be generated and tested, but the drawback is that all
examples are essentially the same structure. More-
over, many of the structures are simple, falling
considerably below the coverage of modern syn-
tactic analyses. In fact, many examples appear
solvable by strictly linear methods. The observa-
tion that such template-generated examples can be
solved this way is not new to to field. For exam-
ple, Kam et al. (2008) demonstrated that a bigram
model will predict the grammatical sentence from
template-produced pairs featuring auxiliary inver-
sion (a structural phenomenon) as well as neural
models of the time.

To take an example from BLiMP, within its
SUBJECT-VERB AGR phenomenon, four of six

4https://github.com/phueb/Zorro/
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paradigms evaluate string-adjacent subject verb
agreement that could be captured by a bigram
model. The remaining two include intervening
distractor nouns, but in both these and the string-
adjacent paradigms, the target noun is consistently
the first/leftmost noun. A single linear rule, al-
beit a long-distance one, is sufficient to succeed on
this phenomenon. In ANAPHORA AGREEMENT,
none of the sentences has any distractors at all: the
test is solely about whether the anaphor (e.g., him-
self/herself) agrees with the first, and only, noun in
the sentence preceding it. Success on such simple
tests tells us little about the genuine grammatical
capacity of LMs and distorts or dilutes summary
metrics calculated over the benchmark.

We evaluate this problem quantitatively with two
studies of linear rules that do not incorporate struc-
tural knowledge. We find that many, but certainly
not all, paradigms are solvable with non-human-
like linear approaches. These paradigms therefore
do not contribute to the overall goal of evaluat-
ing whether an LM possesses linguistic knowledge.
Additionally, we find that the paradigms of Zorro
tend to be structurally even simpler and less inter-
nally varied than the parallel paradigms of BLiMP.
It is a weaker benchmark even when accounting for
the intended lexical simplicity.

3.1.1 N-Gram Models

The original BLiMP paper reports the accuracy of a
5-gram model trained on the 3.1B token Gigaword
Corpus (Graff et al., 2003) in addition to three neu-
ral LMs and human performance. They find that
the 5-gram model scores above chance (50%) on all
but two phenomena but is outclassed by most of the
neural LMs on most paradigms. Performance for
all LMs can vary widely across paradigms within
one phenomenon. In some cases, there is a clear
split between the 5-gram and neural models, sug-
gesting that the latter capture some structural prop-
erty of the paradigm that the 5-gram model does
not, but in other cases, the 5-gram model performs
well, demonstrating that linear rules can be suffi-
cient for completing those tasks.

Revisiting SUBJECT-VERB AGR. as an illus-
trative example, the Gigaword 5-gram model per-
forms only slightly behind the neural models on
each string-adjacent paradigm but far below chance
in the distractor paradigms. However, the neural
models also perform up to 20.5 points better in the
adjacent paradigms than the distractor paradigms.
The two distractor paradigms demonstrate that the
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neural models have learned a long-distance pattern
(whether that be structural or “agree with the left-
most noun’), but the adjacent paradigms cannot
show this. They, and about half of the BLiMP
paradigms, are uninformative in this way.

We extend this approach to the language acqui-
sition setting by training a 5-gram model only on
AO-CHILDES and evaluating on both BLiMP and
Zorro. We compare these results to BabyBERTa on
these data sets.” To further manage lexical effects
while adding minimal complexity to the model, we
evaluate both a 5-gram word model (5-word), and
a 5-gram model trained only on POS tags (5-tag).
AO-CHILDES was tagged using GPoSTTL, a rule-
based POS tagger with tokenizer and lemmatizer
based on the Brill Tagger (Brill, 1992). This was
used to train sklearn’s CRF POS-tagger, which was
then used to label the benchmark corpora. This
approach was taken to avoid bringing additional
knowledge from a tagger trained on larger corpora
into the benchmark corpora. The downside is that
the tagger is not particularly accurate on the un-
grammatical benchmark sentences, which may hurt
performance for the 5-tag model. In addition to the
5-word and 5-tag models, we evaluate an oracle
which marks a correct prediction if either 5-word
or 5-tag makes a correct prediction. Our use of
POS is motivated from a developmental perspec-
tive. Syntactic categories can be formed purely
distributionally as early as infancy (Mintz, 2003;
Shi and Melangon, 2010; Reeder et al., 2013) and
children almost never make mistakes in their use of
syntactic categories (Valian, 1986). It is thus plau-
sible to assume that the acquisition of grammatical
knowledge builds on a developmentally prior stage
of syntactic category learning.

The results of the 5-gram experiments are sum-
marized in Table 1 and laid out in detail in the
Appendix. We draw three conclusions from these.
First, the 5-gram models perform surprisingly
well relative to the BabyBERTa transformer de-
spite its extremely non-human-like simplicity when
trained on the same AO-CHILDES data. Either 5-
word or 5-tag, trained on the same data as Baby-
BERTa, outperformed BabyBERTa on 11 of 23
Zorro paradigms and 21 of 67 BLiMP paradigms.
BabyBERTa’s performance appears less impres-
sive when presented alongside even this very weak

SRefer to Appendix for full details. We downloaded the
publicly available model checkpoints from the BabyBERTa
GitHub repository and replicated the BLiIMP and Zorro results
hosted on the Zorro GitHub repository
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Zorro BabyBERTa | 5-Word 5-Tag Either Oracle
# Best - 8/23 8/23 11/23 14/23
Avg Acc 78.91% 63.44%  57.59% - 83.43%
BLiMP BabyBERTa | 5-Word 5-Tag Either  Oracle
# Best - 18/67 10/67 23/67 48/67
Avg Acc 60.72% 50.72%  37.93% - 68.32%

Table 1: Performance summaries for 5-grams rela-
tive to BabyBERTa on Zorro and BLiMP. Number of
paradigms in which a 5-gram model outperforms Baby-
BERTa and overall average accuracy across paradigms
are reported. Either = either 5-word or 5-tag outpe-
formed BabyBERTa on the entire paradigm. Oracle =
sentence pairs were marked correct if either 5-word or
5-tag made the correct prediction.

baseline. The AO-CHILDES 5-gram models per-
form more poorly on BLiMP than the Gigaword
5-gram model, but it still achieves high accuracy on
several paradigms scattered across the phenomena.
Second, 5-gram oracle outperforms 5-word, 5-
tag, and BabyBERTa. The 5-gram oracle is not
a fair direct comparison but provides a summary
metric for correlation between 5-word and 5-tag. A
high oracle score relative to the two 5-gram models
indicates that they do not make the same errors.
That is, errors are not necessarily attributable to the
string-local limitations of 5-grams per se but rather
to 5-gram sparsity or errors in tagging. The high
oracle score is another sign that the paradigms of-
ten capture surface properties rather than structural
properties that would stump 5-gram models.
Third, the 5-gram models outperform Baby-
BERTa on proportionately more Zorro paradigms
than BLiMP paradigms. Additionally, the AO-
CHILDES 5-word model achieved 78.91% perfor-
mance on Zorro, while the Gigaword 5-gram model
only reached 60.5% on BLiMP. If Zorro were
merely accounting for the smaller vocabulary in
the AO-CHILDES training data, we should expect
much more similar performance on both of these
measures. Taken together, these suggest that Zorro
is a substantially weaker benchmark that BLiMP,
and it more greatly overestimates the apparent posi-
tive results of the acquisition-inspired BabyBERTa.

3.1.2 Hand-Written Simple Rules

In addition to reporting results on 5-gram mod-
els, we created simple hand-written rules which
demonstrate that the probes are solvable in princi-
ple without reference to linguistic structure. While
we do not claim that such rules are akin to the state
of knowledge in LMs, it is also difficult to com-
pletely rule out this possibility. On the one hand,
it is still unclear how to interpret the representa-
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tion of linguistic knowledge in LMs. On the other,
the vast majority of training data, at least child-
directed for language acquisition, is structurally
simple and can in fact be handled by rule-like pat-
tern matchers. In English CDS, the distribution of
anaphora is exceedingly straightforward: almost all
instances of himself are preceded in the sentence by
the subject pronoun /e and a (male) noun phrase
with no co-referential competitors. For comparison,
Zorro adjunct_island can be solved perfectly by
always selecting the sentence where the third-last
word is the, and many of the paradigms can be
solved by tracking the index of a specific word.
Others can be solved by checking for the presence
of a certain word. For example, the superlative
paradigm can be solved by accepting the sentence
that contains either more or fewer. For both Zorro
and BLiMP, more than one paradigm can often be
solved with the exact same rule. We write simple
linear rules for each Zorro and BLiMP paradigm.
See the Appendix for a full list of rules.

In summary, these rules yielded 93.97%
accuracy on Zorro and solved 14 of 23 Zorro
paradigms with 100% accuracy. Each agreement_
paradigm is solved with at least 96% accuracy,
with the remainder due to two irregular nouns, feet
and children, which do not end in the -s referenced
by these rules. The lowest performance is 52.75%
on anaphor_agreement-pronoun_gender, a
paradigm that requires an LM to ‘know’ the
canonical gender of English names in order to
choose himself or herself. The test sentence
pairs were not quite balanced, so always guessing
himself earns more than 50%.

BLiMP proved more challenging. The rules only
yielded 84.35% accuracy on average and achieved
perfect scores on 14 of 67 rules. The overall high
score of the hand-written simple linear rules sug-
gests that BLiMP suffers from the same issues re-
garding lack of sentence variety that Zorro does,
but the lower accuracy indicates that the problem
is not quite as severe. In principle, we could have
composed more complex rules which achieved per-
fect accuracy on all paradigms, however, these
simpler rules better illustrate our points. The suc-
cess of non-human-like simple linear rules on most
paradigms on both benchmarks further emphasizes
that success on the template-based behavioral task
does not necessarily imply that an LM possesses
linguistic knowledge.



Sentence ID Sentence ME Z-score
32.3.Culicover.7a.g.01  John tried to win. 1.453262
32.3.Culicover.7b.*.01  John tried himself to win. -0.86729
33.2.bowers.7b.g.07 Sarah counted the change accurately. 1.230412
33.2.bowers.7b.*.07 Sarah accurately counted the change. 1.20698
ch8.150.%.01 Melissa seems that is happy. -1.14131
ch8.151.g.01 It seems that Melissa is happy. 1.000644
ch8.152.g2.01 Melissa seems to be happy. 1.196088

Table 2: Top: Two pairwise phenomena from the Linguistic Inquiry (LI) dataset. Bottom: One multi-condition
phenomenon from the Adger dataset. The ME Z-score is the averaged Z-score transformation of the human
Magnitude Estimation judgments for each of the sentences across all the experimental participants.

4 An Alternative: The LI-Adger Dataset

The LI-Adger dataset is a comprehensive collection
of 519 sentence types, 300 collected by Sprouse
et al. (2013) from Linguistic Inquiry (LI) 2001 -
2010,° a major theoretical journal in linguistics,
and 219 collected by Sprouse and Almeida (2012)
from Adger’s (2003) Core Syntax textbook.” Each
sentence type includes eight hand-constructed, se-
mantically plausible sentences, assembled into 150
pairwise (LI) and 105 multi-condition (Adger)
phenomena where each minimal pair is lexically
matched. We provide an example of each in Table
2.

The LI-Adger dataset improves upon the prior
two datasets in three key ways. Firstly, unlike
BLiMP and Zorro, the LI-Adger sentences are con-
trolled for semantic implausibility, which has been
shown to be a strong confounding factor when elic-
iting human judgments (Sprouse et al., 2018). Sec-
ond, the 255 total pairwise and multi-condition
phenomena achieve much more diverse coverage
of syntactic phenomena than the 67 paradigms in
BLiMP, and the 23 paradigms in Zorro. Third, the
human judgments were collected using the Magni-
tude Estimation (ME) task (and Likert Scale (LS) in
the case of the LI sentences) in addition to Forced-
Choice (FC) as in the BLiMP human baselines. We
believe this to be a crucial advantage because the
FC task treats sentence acceptability as functionally
categorical: A sentence is only acceptable or not
relative to its minimal pair counterpart, whereas
tasks such as ME allow us to make comparisons
within and across minimal pairs, thereby treating
sentence acceptability as a gradient measure.

With this dataset, we conduct the following two
tests. First, in line with Vazquez Martinez (2021),

6https://www.jonsprouse.com/data/Lingua2013/
SSA.data.zip

"https://www. jonsprouse.com/data/JoL2012/
SA2012.data.zip
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we sort the LI-Adger dataset into 2391 unique min-
imal pairs. We then collect pseudo log-likelihood
scores for each sentence from several models evalu-
ated by Huebner et al. (2021), and score them using
the same criteria as BLiIMP and Zorro. As a base-
line for the models, we include Log-Likelihood
and Syntactic Log-Odds Ratio (SLOR; Pauls and
Klein, 2012; Lau et al., 2017) scores by a tri-
gram model trained on the British National Corpus
(BNC; 100M words) by Sprouse et al. (2018).

We include the results of this test in Figure 1. We
observe that all models are further from the human
baseline as compared to those in BLiMP (no hu-
man baselines were reported for Zorro). But more
importantly, we observe that the trigram model
scored using SLOR performs on par with the Baby-
BERTa models and approaches the performance of
RoBERTa (Liu et al., 2019) trained on 10M words.
If we were to adopt the “positive results from model
learners are more meaningful than negative results”
argument, then the trigram model is as suitable a
model of language acquisition as BabyBERTa is.

Raw accuracy notwithstanding, we proceed to
conduct a novel test of judgment variability on our
collection of LMs. We take advantage of the struc-
ture of the LI-Adger dataset in the following way:
There are 519 sentence types, and for each type
there are eight sentences that retain the same syn-
tactic structure but vary lexical items at the locus
of the syntactic structure tested (e.g., the head of
a verb phrase from which extraction takes place).
These datasets thus allow us to contrast the consis-
tency of human judgment across and within con-
struction types against that of the LMs.

We z-score the LM judgments to make them
comparable to the human judgments. Then, for
each set of eight sentences, we take the mean and
standard deviation of all the judgments for humans
and each LM. We find that the models are much
more variable in their judgments: The human judg-
ments, on average, vary by 0.288 standard devia-
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Figure 2: Correlation matrices of human judgments and LM output means (top) and standard deviations (bottom)
on each sentence type on the LI-Adger dataset. Baby=BabyBERTa, CHI=AO-CHILDES, News=AO-NEWSELA,

Wiki=Wikipedia-1.

tion (std. dev.) units within a given set of sentences.
On the other hand, the LM that least varies is Baby-
BERTa Wiki, varying by 0.451 std. dev. units
on average. The rest of the models nearly dou-
ble the variability of the human judgments, rang-
ing from 0.518 for ROBERTa-10M-1 to 0.554 for
BERT-large-cased. Variability appears to increase
rather than decrease as training size and perfor-
mance increase. Surprisingly, the trigram model,
when scored using log probabilities, is the closest
in variability to the human judgments at 0.331 std.
dev. units, but also the furthest when scored using
SLOR with a variability of 0.599. Once again we
find that a positive result on one test or another is
not enough to draw positive conclusions.

For further illustration, we correlate the means
and standard deviations of 512 sentence types
across each LM and humans and plot the results
in Figure 2. Both in terms of mean and standard
deviations, we observe generally high correlations
between the various neural LMs, but much lower
correlations between the LMs and humans. This
suggests that whatever the LMs are doing, good or
bad, does not appear to be human. Interestingly, the
BabyBERTa LMs show very high correlations with
the naive trigram log-likelihood scores and very
low with trigram SLOR scores, raising further sus-
picions that these small acquisition-inspired LMs
behave like a very non-human-like model.

5 Discussion

It is widely recognized that children acquire lan-
guage in ways that appear quite different from LM

training. There is a growing realization that the
cognitive relevance of LMs can only be established
in a comparable setting. Bringing down training
size requirements stands not to not only improve
the applicability of such models to the study of
language acquisition but also to efficient NLP on
low-resource languages.

However, in this paper, we observed several
weaknesses in BLIMP and Zorro, two minimal pair
benchmarks for evaluating the linguistic knowledge
of neural language models. We believe that it is
worth critically revisiting the underlying assump-
tion that positive results on such benchmarks are
a demonstration of human-like representations or
human-like language acquisition, especially if an
evaluation can be solved in unintended ways, or
if it does not reflect an adequately broad range of
linguistic structures. It is unlikely that a behav-
ioral probe, such as these large binarized bench-
marks, can fully capture the complexity of linguis-
tic knowledge. To this end, we made a case for also
evaluating with curated benchmarking datasets: the
gradient acceptability judgments from human sub-
jects makes these effective probes for the structural
basis of grammar. Together with a range of tests,
from carefully constructed tests of grammaticality
to probes correlating the internal state of LMs with
their predictions need to complement theoretical,
psycholinguistic, and neurolinguistic studies before
a meaningful cognitive claim about the nature of
neural language models can be made.

We end with some broader discussion about lan-
guage acquisition and the cognitive interpretation
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of computational models. While it is now widely
recognized that children learn language with only
a fraction of the data needed for large LM training,
merely reducing the amount of training data alone —
such as the 100M word threshold in the BabyL.M
Challenge — still falls short of the requirement for
an adequate model of language acquisition. While
it is true that a native speaker’s knowledge of lan-
guage can be established on the basis of approxi-
mately 100 million words, child language research
makes clear that not all aspects of linguistic knowl-
edge are learned at the same time. Some, such as
inflectional morphology, case marking, word or-
der, and major transformations are acquired very
early in all languages studied so far (e.g., Brown,
1973; Slobin, 2022) at an order of magnitude fewer
words of input, while others are learned rather late:
These include derivational morphology (Jarmulow-
icz, 2002), passivization (Pinker et al., 1987), con-
trol and cleft structures (Chomsky, 1969) and the
dative constructions (Gropen et al., 1989) in the
case of English, but these may emerge much earlier
in other languages. This suggests that success-
ful learning in the limit (e.g., 100M word) is not
sufficient. For example, while a neural model of
English past tense (Kirov and Cotterell, 2018) even-
tually learns the "add -ed" rule, it does so with over
3,000 verb lemmas. By contrast, children learn
that rule before or around 3 (Kuczaj, 1977), when
their vocabulary only contains around 300 or so
verbs (Marcus et al., 1992). To serve as cognitive
models of language, it is thus important to com-
pare the training trajectory of LMs as a function of
the training data volume against the developmen-
tal benchmarks of specific linguistic phenomena
which have been amply documented in the empiri-
cal literature on child language.

Limitations

Our study is about the limitations of evaluation, so
it is to be expected that our study has its limits as
well. Most obviously, ours and any study would
benefit from testing and reporting on a wider range
of neural models and a wider range of baselines.
And like most work in this area, our evaluations
were only performed on English. We recommend
the use of the LI-Adger data set. Like any behav-
ioral probe, including the ones which we criticize,
it can be subject to ambiguous interpretation. It has
some substantial advantages, as we discuss in this
paper, but also a couple of additional drawbacks.
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It is smaller than BLiMP or Zorro, and it has not
been annotated by phenomenon. Nevertheless, it
provides additional insights that those benchmarks
do not. As in the paper, we recommend its use in
conjunction with a wide range of other evaluation
methods.
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Appendix

Phenomenon Paradigm BabyBERTa 5-Gram Simple
AO-CHILDES Word Tag Oracle Rule
agreement_subject_verb across_rel_clause 64.85 50.95 46.35 68.95 96.20
in_simple_question 92.35 61.15 90.9 93.9 98.30
in_question_with_aux 90.85 59 80.15 90.9 98.05
across_prep_phrase 72.85 50 50 62.6 98.40
agreement_determiner_noun between_neighbors 91.3 83.05 49.85 88.6 98.60
across_1_adjective 89.85 50.45 50.05 75.05 97.20
filler-gap wh_question_object 98.75 42.8 100 100 100
wh_question_subject 75.7 88.3 76.55 97.1 100
island-effects coord_struct_constr 97.05 43.35 55.6 83.85 100
adjunct_island 56.15 66.1 58.8 83.85 100
quantifiers existential_there 92.9 80.25 38.4 89.55 100
superlative 64.55 45.1 82 96.05 100
npi_licensing only_npi_licensor 74.1 79.4 3.7 79.4 100
matrix_question 65.25 47.5 28.65 58 100
argument_structure swapped_arguments 91 92.15 81.7 98.85 100
transitive 60.05 64.15 32.65 78.6 58.05
dropped_argument 79.9 85.05 83.6 95.75 100
irregular verb 69.65 62.9 93.6 96.35 88.40
anaphor_agreement pronoun_gender 51.75 49.15 1.95 50.95 52.75
ellipsis n_bar 55.3 66.6 63.6 89.9 100
binding principle_a 89.4 459 3.6 47.75 100
case subjective_pronoun 94.7 99.55 97.95 100 100
local_attractor in_question_with_aux 96.65 55.65 95 99.05 100
AVERAGE 78.91% 63.44% 57.59% 83.43% | 93.97%
Fraction > BabyBERTa - 8/23 8/23 14/23 22/23
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Table 3: Word and tag-level 5-gram models trained on AO-CHILDES plus 5-Gram Oracle and Simple Linear Rule
Oracle for Zorro. 5-Gram and Simple Rule scores that are greater than BabyBERTa_AO-CHILDES are bolded



Phenomenon

Paradigm

Rule

agreement_subject_verb

agreement_determiner_noun

filler-gap
island-effects
quantifiers
npi_licensing
argument_structure
irregular
anaphor_agreement
ellipsis

binding

case
local_attractor

across_rel_clause
in_simple_question

in_question_with_aux
across_prep_phrase
between_neighbors

across_1_adjective

wh_question_object
wh_question_subject
coord_struct_constr
adjunct_island
existential_there
superlative
only_npi_licensor
matrix_question
swapped_arguments
transitive
dropped_argument
verb

pronoun_gender
n_bar

principle_a
subjective_pronoun
in_question_with_aux

2nd word ends in s iff 3rd last is in {are, were, do}
Word 2 right of {are, were} ends in s.

Word 2 right of {is, are} does not

4th word ends in s iff 2nd is in {are, were, do}
2nd word ends in s iff 3rd last is in {are, were, do}
If {these, those} in sentence, next word ends in s.
If {this, that} in sentence, next word does not

If {these, those} in sentence, word 2 right ends in s.
If {this, that} in sentence, word 2 right does not
2nd word is the

who does not immediately precede the

4th word is and

3rd last word is the

Contains one of {many, some, no, few, a, an}
Contains one of {more, fewer}

Ist word is only

Contains one of {does, will, should, could, did, wouldo}

Ist word is the

2nd last word does not end in e

Ist word is the

word following had ends in n or no word ends in n
Sentence contains himself

*Sentence where and appears farther right

4th last word ends with ing

Ist word is the

4th word does not end with ’s

Table 4: Simple Linear Rule descriptions for Zorro. Rules that require sentences to be compared are marked with an
asterisk.
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Phenomenon Paradigm BabyBERTa 5-Gram Simple
AO-CHILDES Word Tag Oracle Rule
anaphor_agreement anaphor_gender_agreement 65.6 26.3 8 33.9 73.9
anaphor_number_agreement 73.7 529 5.7 55.5 80.1
argument_structure causative 58.5 55.2 30.7 68.8 85.6
drop_argument 63.2 50.9 529 80.8 77.1
inchoative 50.7 56 37.1 73.8 57.1
intransitive 52.1 48.2 49.6 76.3 73.55
passive_1 50.2 52.1 12.9 56.4 59.5
passive_2 54 48.4 18.1 56.8 59.6
transitive 553 51.6 36.1 67.6 57.85
binding principle_A_case_1 43.6 100 7.1 100 100
principle_A_case_2 99.9 41.5 13 48.3 99.2
principle_A_c_command 58.7 35.7 4.2 38.1 71.35
principle_A_domain_1 96.5 38.4 3.1 40.7 100
principle_A_domain_2 51.4 61.7 2.7 62.8 58.3
principle_A_domain_3 46.8 44.5 29.7 61.1 50.4
principle_A_reconstruction 40.9 32.1 53.9 68 74.1
control_raising existential_there_object_raising 59.1 30.5 234 46.5 67.95
existential_there_subject_raising 51 43.4 17 53.6 77
expletive_it_object_raising 63.3 61.2 48.3 79.6 69.5
tough_vs_raising_1 72.2 59.1 49.6 83.2 87.1
tough_vs_raising_2 344 41.3 18.4 54.1 92.5
determiner_noun_ a_irregular_1 66.6 48.8 374 61.3 68.45
agreement = a a_irregular_2 87.4 74.3 12.3 77.1 73.7
a_with_adjective_1 76.3 48.2 49.7 63.8 95.95
a_with_adj_irregular_1 82.9 49 49.7 56.3 74.45
a_with_adj_irregular_2 67 49.5 18.3 58.2 71.8
a_with_adj_2 80.4 49.8 19.9 59.7 95.6
a_l 722 64.1 48.1 74.5 95.55
a_2 87.4 65.2 11 68.1 96.75
ellipsis ellipsis_n_bar_1 58.7 64.1 63.5 86.4 85.65
ellipsis_n_bar_2 42.8 39.9 70.5 80.9 99.95
filler_gap_dependency wh_questions_object_gap 73 37 82.4 89.2 99.95
wh_questions_subject_gap 79.9 49 814 89.4 99.9
wh_vs_that_no_gap 90.9 77.2 83.8 94.9 99.95
wh_vs_that_no_gap_long_distance 92.1 74.9 87 95.8 99.7
wh_vs_that_with_gap 29.1 22.7 15 33 100
wh_vs_that_with_gap_long_distance 14.9 25.8 12.8 32.8 99.9
irregular_forms irregular_past_participle_adjectives 59.8 99.4 12.2 99.4 100
irregular_past_participle_verbs 59.8 994 12.2 994 100
island_effects adjunct_island 63.8 58.4 55.5 82.5 94.5
(coordinate_structure_ y_complex_left_branch 36.2 11.8 19.6 269 97.05
constraint = vy) y_object_extraction 56.5 41.9 37.1 63.7 86.35
left_branch_island_echo_question 52.4 16.3 30.1 38.7 100
left_branch_island_simple_question 66.6 24.5 30.3 43.8 97.9
sentential_subject_island 46.1 37.3 42.8 62.9 82.65
wh_island 47.1 69 934 97.3 100
npi_licensing matrix_question_npi_licensor_present 56.4 41.1 39.5 65.7 974
npi_present_1 27 56 26.7 69.6 100
npi_present_2 20.3 56.4 25.8 70.5 100
only_npi_licensor_present 71.6 98.4 24 98.5 100
only_npi_scope 72.1 80.4 79.4 97.2 100
sentential_negation_npi_licensor_present 73.8 100 0 100 100
sentential_negation_npi_scope 81.9 40 65.3 79.6 100
quantifiers existential_there_quantifiers_1 93.7 79.1 26.4 87.4 97.3
existential_there_quantifiers_2 35.7 19.6 36 50.6 96.85
superlative_quantifiers_1 49.5 73 89.8 96.4 100
superlative_quantifiers_2 61.2 51.9 0.1 52 100
s-selection animate_subject_passive 45.5 48.4 24 58.4 65.25
animate_subject_trans 59.7 50 57.1 78.2 84.65
subject_verb_agreement distractor_agreement_relational_noun 29 26.2 214 42.1 50.25
distractor_agreement_relative_clause 35.6 28.3 30.4 49.8 55.85
irregular_plural_subject_verb_agreement_1 67.9 334 51.7 62.5 53.2
irregular_plural_subject_verb_agreement_2 66.2 51 51.9 70.7 59.3
regular_plural_subject_verb_agreement_1 68.8 39.9 51.1 72 64.35
regular_plural_subject_verb_agreement_2 60.1 51 55.6 76.9 73.15
AVERAGE 60.72% 50.72%  37.93%  68.32% | 84.35%
Fraction > BabyBERTa - 18/67 10/67 48/67 62/67

Table 5: Word and tag-level 5-gram models trained on AO-CHILDES plus 5-Gram Oracle and Simple Linear Rule
Oracle for BLiMP. 5-Gram and Simple Rule scores that are greater than BabyBERTa_AO-CHILDES are bolded
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Phenomenon

Paradigm

Rule

anaphor_agreement

argument_structure

binding

control_raising
(existential_

there = a)

determiner_noun_
agreement = b

ellipsis

filler_gap_
dependency

irregular_forms

island_effects

(coordinate_structure_
constraint = e)
(left_branch_

island = f)

npi_licensing
(npi_licensor_

present = g)
(npi_scope = h)

quantifiers

s-selection
subject_verb_agreement

(distractor_
agreement = i)
(plural_subject_
verb_agreement = j)

anaphor_gender_agreement
anaphor_number_agreement
causative

transitive

drop_argument

inchoative

intransitive

passive_1

passive_2
principle_A_case_1
principle_A_case_2
principle_A_

c_command
principle_A_domain_1
principle_A_domain_2
principle_A_domain_3
principle_A_reconstruction
a_obj_raising

a_subj

subj_raising
expletive_it_object_raising
tough_vs_raising_1
tough_vs_raising_2
a_irregular_1
b_irregular_2
b_with_adj_irregular_1
b_with_adj_irregular_2
b_with_adjective_1
b_with_adj_2

b_1

b_2

ellipsis_n_bar_1
ellipsis_n_bar_2
wh_questions_object_gap
wh_questions_subject_gap
wh_vs_that_no_gap = ¢
c_long_distance
wh_vs_that_with_gap = d
d_long_distance
irregular_past_

part_adj
irregular_past_part_verbs
adjunct_island
e_complex_left_branch
e_object_extraction
f_echo_question
f_simple_question
sentential_subject_island
wh_island
matrix_question_g
npi_present_1
npi_present_2

only_g

only_h
sentential_negation_g
sentential_negation_h
a_quantifiers_1
a_quantifiers_2
superlative_quantifiers_1
superlative_quantifiers_2
animate_subject_passive
animate_subject_trans
i_relational_noun
i_relative_clause
irregular_j_1

irregular_j_2

regular_j_1
regular_j_2

Does not contain itself

Number of words that end in s is even

Does not contain one of {appear, vanish, exist,
sigh, rust, cheer, clash, fall, fell, waste}

Last word is not one of {70,

with, about, from,

at, through, by, like}

None of {communicat, suffer, compet, shout, laugh,
scream, complain, compromis, grin, chat} in sentence
*Is the shorter of the two sentences

*Is the longer of the two sentences

(Last word ends in s and (1st word is any of pl_det
or the 2nd word is lot)) or 2nd to last word ends in s)
*Is the shorter of the two sentences

*Is the shorter of the two sentences

Does not contain that

4th word does not end in ed nor 't

Does not contain one of verb_set

Contains one of subj_words or {appear, sure,
threaten, look}

Does not contain one of verb_set

Does not contain one of subj_words, nor apt
Contains one of subj_words, or apt

Does not end in that followed by (one of

{people, women, men, children} or a word ending
in ses) nor in {those, these} followed by (a word
ending in is or not with s at all)

Does not end in that followed by a word ending in
a letter other than i followed by s nor in

{those, these} followed by (a word ending in

is or not with s at all)

Last word in num_quant

Last word has already occurred in sentence

Does not contain wh

Does not contain wh

Does not contain wh

Does not contain wh

Contains wh

Contains wh

If 1st word is the, then 2nd word ends in n,
otherwise 2nd word must not end in n

*Is the shorter of the two sentences

Last word is not about and does not end in ing
2nd word is not in mod_aux

2nd to last word is not and

Does not start with Wh

2nd word is not in mod_aux

Ends in ing or ed or with

wh, capitalized or not, occurs twice in sentence
1st word in mod_aux

Does not contain the word ever

Does not contain the word ever

st word is only

1st word is only

Does not contain the word ever

Does not contain the word ever

Does not contain {each, most, all, every} while
also containing {one-ten}

*Is the longer of the two sentences

1st word is not no
Contains one of people_groups

*Is the shorter of the two sentences

*Is the longer of the two sentences

The number of words that ends in s is odd
Contains no word ending in a letter other than i and
followed by s that is followed by a word ending in s
None of {people, women, men, children} is
followed by a word ending in s

*Is the shorter of the two sentences

The number of words that ends in s is odd

Table 6: Linear Rule descriptions for BLiMP. Rules that require sentences to be compared are marked with an
asterisk. Rules sometimes span across multiple rows. If one paradigm name is split across these rows, then the rule
only corresponds to that paradigm. Otherwise the rule corresponds to all the paradigms listed in these rows. All
variables (e.g. verb_set, subj_words) are defined in table 7.
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Name Content

verb_set {ask, press, entic, prod, obligat, convinc, badger, compel, sway, order}
subj_words {certain, soon, likely, unlikely, bound, about}

num_quant {one-ten, many, few, several, more, some, lot, fewer}

mod_aux {had, should, is, was, can, has, will, would, could, do, does, might, were, did}
people_groups | {men, woman, children, teacher, lad, offspring, student, customer, girl, boy}

Table 7: The sets of words represented by the variables used in table 6
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