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Abstract
Language models achieve remarkable results
on a variety of tasks, yet still struggle with
compositional generalisation benchmarks. The
majority of these benchmarks evaluate perfor-
mance in English only, leaving us with the
question of whether these results generalise
to other languages. As an initial step to an-
swering this question, we introduce mSCAN,
a multilingual adaptation of the SCAN dataset.
It was produced by a rule-based translation, de-
veloped in cooperation with native speakers.
We then showcase this novel dataset on some
in-context learning experiments, with the mul-
tilingual large language model BLOOM as well
as gpt3.5-turbo.

1 Introduction

Humans learn quickly by easily recombining previ-
ously known concepts in unseen settings. Several
benchmarks have been designed to empirically in-
vestigate whether neural networks are equipped
with similar abilities (Lake and Baroni, 2018; Key-
sers et al., 2020; Hupkes et al., 2020; Kim and
Linzen, 2020). Such benchmarks are composed of
tasks in which the training data and the test data
have different and carefully chosen distributions.
Recent work used these benchmarks to evaluate pre-
trained large language models (LLMs) and showed
that despite their remarkable success on many other
tasks they still struggle with compositional gener-
alisation (Qiu et al., 2022).

The majority of the research on compositional
generalisation has focussed on English data and
models — but do compositional generalisation abil-
ities differ across languages? Indeed, it has been
argued that the performance of a model in English
is not a guarantee that it will work “equally or even
reasonably well” in other languages (Bender, 2011).
On top of that, compositional generalisation itself
is not guaranteed to work uniformly across human
languages (Bittner, 1995).

Furthermore, the exploration of cross- and mul-
tilingual compositional generalisation could ben-
efit the expansion of language technology to low-
resource languages and settings (Chaabouni et al.,
2021), as a potential approach to overcome the
need for huge amounts of data that neural models
require.

With ever-increased scale, some large language
models have shown great performance on down-
stream tasks while only conditioned on a few exam-
ples, and without updating their parameters. This is
known as in-context learning, a paradigm in which
some very large models such as GPT-3 and PaLM
have been shown to manifest reasoning abilities
when prompted in specific ways, including in mul-
tilingual settings (Shi et al., 2022). Despite these
promising perspectives, it does not currently stand
as an alternative to fine-tuning. Some recent re-
search has sought to investigate compositional gen-
eralisation within the in-context learning paradigm,
showing it gets outperformed by smaller fine-tuned
models.

As a means to further the study of compositional
generalisation in multiple languages, we introduce
mSCAN (multilingual SCAN), an adaptation of
the SCAN benchmark into French, Hindi, Man-
darin Chinese and Russian. We also provide for
each language both the original SCAN benchmark
splits (add_jump, add_turn_left, length) as
well as the Maximum Compound Divergence splits
(Keysers et al., 2020).

We also present preliminary experimental results
using mSCAN in an in-context learning paradigm
on BLOOM and gpt3.5-turbo.

Following the GenBench taxonomy (Hupkes
et al., 2023), the primary motivation for this work
can be characterised as intrinsic given its primary
function to provide a means to evaluate composi-
tional generalisation in multilingual settings. Simi-
larly to the original SCAN benchmark, the source
of the distribution shift is fully generated and its
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Figure 1: GenBench evaluation card

type is covariate. Moreover, the in-context set-up
of our experiments places the shift locus between
the pre-train and test stages though we note that the
data can also be used in a fine-tuning setup in the
future.

2 Background

Pre-trained multilingual models seek to address the
challenge of low-resource languages, by leverag-
ing the pre-training and the hope that high-resource
languages will help lower-resource ones. Large-
scale multilingual language models have achieved
impressive performance across typologically dis-
tinct languages (Ruder et al., 2021). Yet, the
cross and within-language performance of down-
stream tasks on such models remain correlated to
their amount of language-specific pertaining data
(Lauscher et al., 2020).

However, if scaling up the amount of pre-
training data might improve cross-lingual gen-
eralisation, it might come at a price when it
comes to compositional generalisation. Kim et
al. (2022) have questioned the reported benefits of
pre-training on compositional generalisation bench-
marks and have observed a case of inverse scaling,
where the performance degradation on COGS ac-
tually increases with the amount of pre-training
data.

In a further study on the impact of model
scale on compositional generalisation, Qiu et al.
(2022) compared fine-tuning, prompt-tuning and
in-context learning on multiple compositional gen-
eralisation datasets and observed that for in-context

learning, the performance is correlated with model
size. However, it is worse than for fine-tuned,
smaller models. Datasets they used included COGS
and the Compositional Freebase Question dataset
or CFQ (Keysers et al., 2020), which consists of
questions and answers in natural language, as well
as accompanying SPARQL queries against a knowl-
edge base. (Qiu et al., 2022)

Hosseini et al. (2022) evaluated four model fam-
ilies for in-context learning on multiple semantic
parsing benchmarks. Despite their observation that
the larger models tend to do better, they report that
the in-context learning performance on SCAN and
CFQ is very small for the models tested.

MCWQ (Cui et al., 2022), a multilingual vari-
ant of CFQ, is the first adaptation into multiple
languages of a compositional generalisation bench-
mark. It was created with the use of neural ma-
chine translation. Wang and Hershocovich (2023)
have shown that using neural machine translation to
translate already existing benchmarks entails “crit-
ical semantic distortion”, and favour a rule-based
translation of the MCWQ dataset.

The MSGM benchmark (Shi et al., 2022) in-
vestigates the mathematical reasoning abilities of
LLMs in multilingual settings, by providing data
in ten different languages. Even though the decom-
position of SCAN commands closely resembles
that of arithmetic operations, the MSGM differs
in that it does not specifically target the capacity
of the model to map forms to a representation of
meaning. As such, there has not yet been any in-
vestigation specifically targeting the compositional
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generalisation abilities of multilingual models in
an in-context setting.

3 The mSCAN dataset

Our goal was to adapt the Simplified version of
the CommAi Navigation dataset or SCAN (Lake
and Baroni, 2018) to languages that belong to ty-
pologically diverse families and typically are repre-
sented in varying proportions in the training data
of multilingual models. The languages selected
also have different language scripts: Latin, Cyrillic
and Devanagari. The original SCAN consists of
a set of navigation commands in English such as
“jump left”, and their corresponding sequence of
actions, such as LTURN JUMP. It is a synthetic
dataset: the natural language commands are gener-
ated by a phrase-structure grammar, and the actions
are produced by applying a semantic interpretation
function. As such, it is akin to a semantic parsing
task.

3.1 Generation methodology: a grammar
based-transduction

Following (Wang and Hershcovich, 2023), we
translate SCAN in a rule-based manner.

The method we used consists of a set of English
grammar rules, their accompanying transduction
rules and word mappings.

We used the context-free grammar shown in Fig-
ure 2, which is exactly equivalent to the one from
(Lake and Baroni, 2018), only differing in nota-
tion. We also used the interpretation function as
provided in their work. The SCAN grammar does
not have recursion and generates an unambiguous
and finite set of 20910 natural language commands
to action sequence pairs.

Native speakers of French, Mandarin Chinese,
Russian and Hindi were asked to provide the corre-
sponding interpretation function in their language.
We consequently manually built the transduction
functions, which were applied to the English parse
trees. The resulting parse trees were then formed
into our translated commands by word mappings.

For instance, for French translations, we first
parsed the English text using the original SCAN
grammar, given in Figure 2, to produce an English
parse tree. This parse tree can be transduced into
a French parse tree using the transduction rules
given in Figure 3. These transduction rules tell us
that, for instance, S AND S and S AFTER S should
be translated word-for-word, and the translation

of “and” is “et”, and “after” is “après”. They also
tell us that French distinguishes between “turn left”
(translated as “tourner à gauche”) and “turn around
left“ (translated as “tourner autour par la gauche”).

C -> S AND S | S AFTER S | S
S -> V TIMES | V
V -> ACTION VECTOR DIR

| TURN VECTOR DIR
| D | ACTION

D -> ACTION DIR | TURN DIR

ACTION -> 'walk' | 'look'
| 'run' | 'jump'

TURN -> 'turn'
VECTOR -> 'around ' | 'opposite '
DIR -> 'left' | 'right '
TIMES -> 'twice ' | 'thrice '
AFTER -> 'after '
AND -> 'and'

Figure 2: English SCAN grammar

Upon the completion of generation, a sample
was manually checked by the native speakers for
meaning preservation.

3.2 Splits

We do not introduce a novel way to split our dataset
and rather choose to directly reproduce already
existing splits on mSCAN.

3.2.1 SCAN splits
The original SCAN dataset contains multiple types
of splits, each aimed to test distinct levels of com-
positional ability: the “simple” split is a random
subset of the data, and the “length” one targets
commands with corresponding action sequences
that are longer than any example seen during train-
ing, and finally, the “primitive” split, which tests
whether a primitive only encountered in isolation
during training can be used adequately novel com-
binations at test time.

3.2.2 Maximum Compound Divergence Splits
The MCD splits were introduced by (Keysers et al.,
2020) with their distribution-based composition-
ality assessment (DBCA). It consists of a method
to measure whether a dataset has been split ad-
equately to test for compositional generalisation,
as well as a method to construct such splits. The
main principles of the DBCA are that (1) all the
atoms or primitive elements existing in the test set
should also be present in the training set, and in
a distribution as similar as possible, and (2) that
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# Non -terminals
[S AND S] -> [S] [AND] [S]
[S AFTER S] -> [S] [AFTER] [S]
...
[ACTION VECTOR DIR] -> [ACTION] [VECTOR]

[DIR]
[ACTION LEFT] -> [ACTION] 'a gauche '
[ACTION RIGHT] -> [ACTION] 'a droite '
...

# Terminals
'and' -> 'et'
'after ' -> 'apres '
'turn' -> 'tourner '
'right ' -> 'par la droite '
'left' -> 'par la gauche '
...

Figure 3: English to French transduction rules

the distribution of compounds (ways of composing
the atoms) should be as different as possible be-
tween the training and the test set. Intuitively, this
method seeks to ensure that what is measured is
how the atoms are composed into new compounds
and that the compositions are challenging enough
so that the model cannot rely on anything else than
its capacity to generalise compositionally.

(Keysers et al., 2020) applied MCD to SCAN,
and we replicate these splits exactly in mSCAN:
each line of the respective test, train and evalua-
tion sets in mSCAN is a direct translation of the
corresponding line in the English-language MCD
SCAN split.

We make mSCAN_fra, mSCAN_hin, mSCAN_rus
and mSCAN_cmn and their accompanying splits,
available as a public dataset available on the Hug-
ging Face platform1.

4 Experiment

4.1 Models

The BigScience Large Open-Science Open-access
Multilingual Language Model or BLOOM, (Work-
shop et al., 2023) is a Transformer-based language
model with 176 billion parameters. As an autore-
gressive LLM, it is trained to generate text from
a prompt. It was trained on 46 languages and 13
programming languages.

We also ran a small experiment on the OpenAI
model gpt3.5-turbo, accessed via the OpenAI
REST API, between 2023/10/23 and 2023/10/26.

4.2 Prompt design

Our approach focussed on the selection methodol-
ogy of the in-context examples. Our goal was to
adapt and mimic the principle underlying the origi-
nal SCAN benchmark. That is, to test for composi-
tional generalisation, the context examples should
not contain the combinations of the test case.

1https://huggingface.co/datasets/CLMBR/mSCAN

We therefore randomly select the in-context ex-
amples from the training sets of our splits and the
test case from the corresponding test sets. For
example, a certain number of examples is sam-
pled from the French add_jump training set, and
its corresponding test case comes from the French
add_jump test set. This example is cut out to only
include the natural language commands and the
start of the output sequence token (“OUT:”), there-
fore prompting the model to generate the adequate
sequence of instructions as the output.

An EOS token was added at the end of each
example and provided to the model as a stopping
criterion parameter.

An example of a prompt is provided in Figure 4.

<s>IN: jump right thrice and turn
opposite left OUT: I_TURN_RIGHT
I_JUMP I_TURN_RIGHT I_JUMP
I_TURN_RIGHT I_JUMP I_TURN_LEFT
I_TURN_LEFT </s

<s>IN: walk after walk opposite left OUT
: I_TURN_LEFT I_TURN_LEFT I_WALK
I_WALK </s>

...

<s>IN: turn around left twice and look
around left thrice OUT:

Figure 4: Example of a prompt in English

4.3 Set-up

Due to the context-size restrictions of the BLOOM
model, we set the number of context examples to 8.
In the original add_primitive SCAN splits, the
primitive is over-represented in the training set by
10%. We imitate this in our set-up by manually
adding the primitive to the context examples once,
and by having removed the primitive from our train
set, which ensures that the sampled remaining 7
in-context examples do not contain it. Therefore,
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the full prompt consists of 8 examples, of which
one contains the primitive and 7 do not, and a test
case that includes the primitive. We use greedy
decoding for generation to provide a baseline.

5 Results

5.1 BLOOM

Because BLOOM was not trained with an end-of-
sequence token, we truncated generated outputs
to their expected length. Despite this adjustment,
our results get zero exact match accuracies, that is,
none of the full output sequences was equal to the
correct answer. This is consistent with the results
observed by Hosseini et al. (2022).

For a finer-grained measure of model perfor-
mance than exact match accuracy, we measured
the minimum edit distance between the truncated
outputs and the target strings.

Table 1 shows the average minimum edit dis-
tance compared to the expected output length
on 100 runs on the simple, MCD1, length and
add_jump splits for each language. There is no
result for add_jump on Hindi and Russian due to
the encoding being larger than the maximum sup-
ported size for these experiments.

It is important to emphasise that there was no
exact match, both for the original version of SCAN
as well as for our mSCAN multilingual variants,
meaning that the model has a 0% accuracy. We can
observe however that there is a similar amount of
error across languages.

As expected, the simple split achieves the best
results, and Russian did not achieve a similar perfor-
mance as the other languages, which are officially
part of the BLOOM training corpus. Surprisingly,
there is little difference between English and Hindi,
while the model seems to do slightly better on Man-
darin and French.

Despite Russian not being an official language
part of the training data of BLOOM, we ran the exper-
iments on our mSCAN_rus and we included it with
the others.

5.2 GPT 3.5

Unlike with BLOOM, we obtained a few exact se-
quence matches with gpt-3.5-turbo but they are
few, with less than 10% per language over the five
languages including English. In this experiment
again, Mandarin seems to achieve slightly better re-
sults. From these observations, it also appears that

the model has the most difficulty with the length
split.

The average edit distance results are better than
those with BLOOM but display a similar pattern, with
the model seeming to struggle the most on the
length split and Mandarin achieving slightly bet-
ter results. As expected, the model seems to be
more successful with Russian than BLOOM.

6 Discussion

6.1 Pre-training data contamination

In the in-context set-up, the data from the pre-
training corpus cannot be controlled. This means
that there is a possibility that the compositional
generalisation training set or the whole dataset it-
self could have been used. Given that BLOOM spec-
ifies the content of its training corpus, we are at
least guaranteed that it has not learned the English
SCAN dataset or that there was some test contami-
nation. As we introduce mSCAN with this paper,
it could not have been a part of the training data.

However, there is no guarantee the original
SCAN has not been seen during the pre-training
of the ChatGPT model. Given that we are not able
to check the pre-training data, the data distribution
shift is only assumed in this case.

6.2 In context-examples selection

It is acknowledged that prompting variations such
as the format or order of prompts can have an influ-
ence on the in-context learning performance. Our
context example selection methodology is rudimen-
tary. A recent study found that the selection of
in-context examples affects compositional gener-
alisation performance, by showing that randomly
selecting in-context leads to an accuracy gap com-
pared to fine-tuned models (An et al., 2023). They
argue that a careful selection of the in-context ex-
amples will “fully reveal the potential of in-context
learning”. They define three requirements for in-
context examples: structural similarity, diversity
and complexity. They show that this helps compo-
sitional generalisation. In the case of SCAN, the
structural similarity factor is not as relevant, given
the basic nature of the grammar (there are no com-
plex structures such as in COGS). The diversity
and complexity factors are not controlled in our
experiment, given that we sample from the train
set without looking at the number of distinct primi-
tives included. For this reason, our set-up does not
follow the principle that the primitives in the test
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Model, language \ split simple (13.55) mcd1 (18.03) length (30.04) add_jump (14.58)

BLOOM

cmn 5.04 8.28 13.82 7.16
eng 9.32 11.65 19.15 10.53
fra 7.69 11.85 16.26 7.95
hin 8.63 11.10 18.72
rus 12.04 15.60 27.21

gpt-3.5-turbo

cmn 4.52 7.95 14.83 5.81
eng 5.51 8.75 16.32 6.65
fra 5.63 9.39 17.00 7.26
hin 6.47 10.17 17.50 8.17
rus 5.67 9.51 17.70 7.26

Table 1: Average edit distance for each language and split, on BLOOM and gpt-3.5-turbo. The numbers reported in
the column headings correspond to the average expected output length. Note that BLOOM produced 0 exact matches.

Language \ split simple mcd1 length add_jump

cmn 10 6 0 6
eng 7 7 0 1
fra 4 4 0 1
hin 0 0 1 2
rus 3 0 0 4

Table 2: Number of exact matches over 100 queries of gpt-3.5-turbo

case should be covered by the in-context examples.
Instead, we expect the model to be able to infer the
mapping to SCAN instructions from context as the
instructions closely match their natural language
counterparts (e.g., walk is mapped to I_WALK).

Other research uses a least-to-most prompting
strategy: prompts consist of instructions telling
explicitly the model to decompose the task into
subproblems and showing it how to solve them
sequentially (Zhou et al., 2023). The number of
in-context examples in our experiment was con-
strained by the context size of the model in the
BLOOM experiment. To work around this, the
least-to-most method uses intermediate representa-
tions in the form of Python expressions, mapping
for example “look twice” to “LOOK*2” instead
of “LOOK LOOK”. The authors show that the
model is able to expand from the Python expres-
sion with high accuracy, but further investigation
of the potential consequences of these intermediate
representations could be pursued.

6.3 Compositional Generalisation and
different languages

We observed that there was no large variation be-
tween how the different languages performed in

our in-context setup, except for Mandarin Chinese,
which has slightly better results. Given the limited
scope of our experiments, this observation should
be confirmed by further investigation. If these re-
sults hold then, they would be in contrast with
previous findings, where in some NLP tasks, gener-
ative models (including BLOOM) perform better on
higher-resource languages and languages that are
in the Latin script (Ahuja et al., 2023).

6.4 Possibilities for future work

In addition to investigating different strategies for
in-context example selection and systematically
conducting the experiments on a larger scale than
what this work presents, future work could involve
adapting more realistic natural language tasks to
multiple languages. Indeed, the subset of natu-
ral language covered by SCAN is small and its
interpretation is more akin to arithmetic expres-
sions than naturally occurring language. As such,
it does not make it possible to evaluate for more so-
phisticated linguistic abstraction (Kim and Linzen,
2020). Adapting COGS to other languages would
be an extensive process, requiring the construction
of language-specific grammars.

It would also be worth doing experiments with

148



fine-tuning on multilingual models such as mBART
(Liu et al., 2020) or mT5 (Xue et al., 2021).

A systematic study of the interactions between
(a) the size of language-specific pretraining data,
and (b) both compositional and cross-lingual gen-
eralisation, would be an important contribution.

7 Conclusion

The majority of the research on compositional gen-
eralisation is focussed on English, leaving open
the question as to whether its findings can gener-
alise across languages. As an initial step towards
this exploration, we introduce mSCAN, a multi-
lingual adaptation of the SCAN dataset, produced
using rule-based translation, with rules developed
in cooperation with native speakers. We then show-
case this novel dataset on some in-context learning
experiments, with the multilingual large language
model BLOOM.

Limitations

Due to the synthetic nature of the SCAN dataset,
the translations in other languages do not aim to
capture naturalness or fluency.

This dataset was created with the aim of ex-
panding compositional generalisation evaluation
to multiple languages. We evaluate BLOOM, a model
carefully designed for multilingualism, trained
on a meticulously curated corpus. Despite these
two points, more typologically diverse and low-
resource languages are absent from our dataset and
our evaluation.

Finally, the scale of the experiments reported in
this paper was limited by different factors, includ-
ing the cost and time of inference, and the max-
imum context size of 1000 tokens of BLOOM. As
such, larger-scale experiments would be needed to
form a basis for comparison with other benchmark
results.
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