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Abstract
Recent Large Language Models (LLMs) have
demonstrated remarkable capabilities in gener-
ating text that closely resembles human writ-
ing across wide range of styles and genres.
However, such capabilities are prone to po-
tential abuse, such as fake news generation,
spam email creation, and misuse in academic
assignments. Hence, it is essential to build au-
tomated approaches capable of distinguishing
between artificially generated text and human-
authored text. In this paper, we propose a sim-
ple yet efficient solution to this problem by en-
sembling predictions from multiple constituent
LLMs. Compared to previous state-of-the-art
approaches, which are perplexity-based or uses
ensembles with a number of LLMs, our con-
densed ensembling approach uses only two con-
stituent LLMs to achieve comparable perfor-
mance. Experiments conducted on four bench-
mark datasets for generative text classification
show performance improvements in the range
of 0.5 to 100% compared to previous state-of-
the-art approaches. We also study the influence
that the training data from individual LLMs
have on model performance. We found that
substituting commercially-restrictive Genera-
tive Pre-trained Transformer (GPT) data with
data generated from other open language mod-
els such as Falcon, Large Language Model
Meta AI (LLaMA2), and Mosaic Pretrained
Transformers (MPT) is a feasible alternative
when developing generative text detectors. Fur-
thermore, to demonstrate zero-shot generaliza-
tion, we experimented with an English essays
dataset, and results suggest that our ensembling
approach can handle new data effectively.

1 Introduction

The domain of Natural Language Generation
(NLG) is witnessing a remarkable transforma-
tion with the emergence of Large Language Mod-
els (LLMs) such as Generative Pre-trained Trans-
former (GPT-4) (OpenAI, 2023), Large Language
Model Meta AI (LLaMA-2) (Touvron et al., 2023),

Pathways Language Model (PaLM) (Chowdhery
et al., 2022), Bard1, and Text-to-Text Transfer
Transformer (T5) (Raffel et al., 2020). LLMs,
characterized by their large parameter size, have
shown state-of-the-art capabilities in generating
text that closely mirrors the verbosity and style
of human language. They have shown excep-
tional performance across a wide range of applica-
tions, such as story generation (Fan et al., 2018),
Artificial Intelligence (AI)-assisted writing (Hut-
son, 2021), medical question answering (Kung
et al., 2023), conversational response generation
(Mousavi et al., 2023), radiology report generation
(Mallio et al., 2023), and code auto-completion
(Tang et al., 2023). Moreover, their capacity to gen-
eralize across tasks without the need for explicit
training (referred to as zero-shot learning) or con-
ditioning on only a few examples (referred to as
few-shot learning) have substantially reduced the
need for extensive, task-specific training efforts.
These capabilities have significantly lowered the
barrier of integrating LLMs into various language
generation applications.

With the ability to generate coherent human-like
text, the LLMs can also be misused for unethical
purposes, such as fake news generation (Uchendu
et al., 2021), phishing or spamming (Weiss, 2019),
and fabrication of product reviews (Gambetti and
Han, 2023). It has become increasingly crucial for
both humans and automated systems to be able to
detect and distinguish AI-generated text, particu-
larly when this text is employed for disseminating
misinformation or propaganda (Weidinger et al.,
2021). To address these challenges, automatic de-
tection of AI-generated text has recently become
an active area of research.

Diverse modeling strategies, ranging from
simple statistical techniques to cutting-edge
Transformer-based architectures, have been investi-
gated to develop solutions capable of distinguishing

1https://bard.google.com/
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AI-generated text from those written by humans.
Gehrmann et al. (2019) proposed straightforward
statistical methods for identifying model-generated
text that could be integrated into a visual tool to
aid in their detection process. The authors assumed
that AI systems produce text from a limited set of
language patterns for which they have a high level
of confidence. Wu et al. (2023) and Yang et al.
(2023) explored entropy, n-gram frequency, and
perplexity to distinguish between human-authored
and AI-generated texts. Advanced deep-learning
frameworks, such as Transformer-based models
have also been explored to improve the precision
and reliability of AI-generated text detection tech-
niques. DetectGPT (Mitchell et al., 2023) focused
on generating minor perturbations of a text pas-
sage using a generic pre-trained T5 model. It then
compared the log probability of both the original
text and the perturbed versions to determine if the
text is authored by a human or generated by AI.
Liu et al. (2022) proposed a Coherence-based Con-
trastive learning (CoCo) model where the input
text is represented as a coherence graph to cap-
ture its entity consistency. Robustly optimized
Bidirectional Encoder Representations from Trans-
formers (BERT) approach (RoBERTa) embeddings
are extracted and concatenated with sentence level
graphical representations. In order to improve the
model’s performance, it is trained using a combi-
nation of contrastive loss and cross-entropy loss.
Most recently, Abburi et al. (2023a,b) proposed
an ensemble modeling approach for detecting AI-
generated text where the probabilities from various
constituent pre-trained LLMs are concatenated and
passed as a feature vector to machine learning clas-
sifiers. The ensemble modeling approach resulted
in improved predictions compared to what any in-
dividual classifier could achieve independently.

Although the primary purpose of AI-generated
text detectors is to mitigate risks associated with
harmful AI-generated content, erroneously classify-
ing genuine, human-authored work as AI-generated
can, conversely, lead to significant harm. Recently,
there has been growing apprehension regarding
the accuracy and reliability of these generative
AI text detectors (Liang et al., 2023; Sadasivan
et al., 2023; He et al., 2023). Liang et al. (2023)
highlighted potential bias observed with several
GPT detectors. The authors showed that a majority
of existing detectors incorrectly classified English
writing samples from non-native English speakers

as AI-generated. Surprisingly, altering language
created by non-native speakers with prompts like
"Enhance it to sound more like that of a native
speaker" resulted in a significant drop in misclassi-
fication. This highlights that a majority of detectors
prioritize low perplexity as a primary criterion for
identifying text as AI-generated. Since the poten-
tial bias in detectors is tied to perplexity scores,
the authors propose a more robust and equitable re-
design of these detectors. In addition, they propose
thorough evaluation of these detectors that takes
other important metrics such as bias and fairness
into consideration.

In this paper, we extend the work of Abburi et al.
(2023a,b) by proposing an architecture that is sim-
pler in design, while maintaining model perfor-
mance. We validate the effectiveness of our model
by benchmarking it on various publicly available
datasets, including the Automated Text Identifi-
cation (AuTexTification) (Sarvazyan et al., 2023)
dataset. We also study how inclusion of data gener-
ated by various LLMs in the training corpus affects
the model performance and generalizability. In or-
der to examine if our approach suffers from similar
drawbacks and biases as other perplexity-based ap-
proaches, we evaluate the zero-shot performance of
our trained model on the aforementioned English
essays dataset (Liang et al., 2023) and report the
corresponding results.

In summary, our key contributions in this paper
are: 1) we propose a simpler non-perplexity based
AI-text detector model that extends prior work 2)
we demonstrate the robustness of our approach
across multiple benchmark datasets, including the
one that examines potential biases in model pre-
dictions, 3) we analyze the influence that training
data from individual LLMs have on model perfor-
mance and 4) we find that excluding GPT data from
training sets improves the accuracy of detecting
human-authored samples.

2 Datasets

In this section, we provide a brief description of
various publicly available benchmark datasets for
AI-generated text detection. We also describe a
number of datasets that we crafted and used in
our experiments (henceforth referred to as curated
datasets). Table 1 shows the number of human-
authored (Human) and AI-generated (AI) samples
available for train and test splits of each dataset.
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Dataset Train Test
Human AI Human AI

Benchmark
datasets

AuText 17,046 16,799 10,642 11,190
AA 213 1,706 853 6,822
TB 5,964 10,6240 1,915 35,442
AP 82 78 18 12
GPT-OD 250,000 250,000 5,000 5,000
EWEssays – – 394 352

Curated
datasets

D1 17,046 8,263 10,642 11,190
D2 17,046 16,799 10,642 11,190
D3 17,046 16,799 10,642 11,190

Table 1: Dataset statistics

2.1 Publicly available benchmark datasets
For the first set of experiments, which demonstrate
the robustness of our approach, we use multiple
benchmark datasets described below.

2.1.1 AuTexTification (AuText):
The AuText dataset (Sarvazyan et al., 2023) con-
sists of human-authored and AI-generated texts
from five domains, where three domains (legal,
wiki, tweets) are represented in the training corpus,
and two different domains (reviews, news) are rep-
resented in the testing corpus. The generated text
is created using six LLMs of varying parameter
sizes ranging from 2B to 175B. Three of them are
BigScience Large Open-science Open-access Mul-
tilingual Language Model (BLOOM) models and
the other three are GPT variants: (i). bloom-1b7
(A), (ii). bloom-3b (B), (iii). bloom-7b1 (C), (iv).
babbage (D), (v). curie (E), and (vi). text-davinci-
003 (F).

2.1.2 Author Attribution (AA):
The AA dataset (Uchendu et al., 2020) consists of
nine categories: human and eight LLMs generated
texts. Political news articles from CNN, New York
Times, and Washington Post represent the human-
authored text. The titles of these news articles writ-
ten by human journalists are used as the prompts
to generate the AI-generated text from eight LLMs
such as Conditional Transformer Language Model
(CTRL), Cross-Lingual Language Model (XLM),
eXtreme Multi-Label Multi-Task Learning with a
Language Model (XLNet), GPT, GPT2, Grover,
Meta’s Fair, and Plug and Play Language Model
(PPLM).

2.1.3 Turing Bench (TB):
The TB dataset (Uchendu et al., 2021) is created
by gathering around 10k news articles written by
journalists in various media channels. The title of

each article is used as a prompt to generate the text
from 19 LLMs, such as GPT, GPT2, GPT3, PPLM,
Transformer-XL, XLM, XLNet, and various ver-
sions of these models. After preprocessing, the
dataset comprises 168,612 articles with around 8k
samples in each LLM category, including human-
authored.

2.1.4 Academic Publications (AP):
The AP dataset (Liyanage et al., 2022) is composed
of 100 papers selected from ArXiv in computa-
tion and language domain and labeled as human-
authored. GPT-2 is used to generate the 100 equiv-
alent research papers and labeled as AI-generated.
From both human-authored and GPT2-generated
text, the sections such as methodology, results, and
discussion which contain diagrams, tables, equa-
tions are ignored.

2.1.5 Gpt-2-Output-Dataset (GPT-OD):
The GPT-OD (Radford et al., 2019) dataset con-
tains data from WebText test set as well as samples
generated by four GPT-2 variants (with parame-
ters 117M, 345M, 762M, and 1542M) trained on
the WebText training set. More details about the
dataset can be obtained here 2. In this study, we
consider 255k samples from the WebText test set
as human-authored and 255k samples generated
using the GPT-2 XL-1542M model (temperature 1,
no truncation) as AI-generated samples.

2.1.6 Essays from native and non-native
English writers:

This dataset is primarily comprised of essays au-
thored by native and non-native English speakers
Liang et al. (2023). US 8-th grade student es-
says represent essays authored by native English
speakers, while Test of English as a Foreign Lan-
guage (TOEFL) essays obtained from a Chinese

2https://github.com/openai/gpt-2-output-dataset
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educational forum represent essays authored by
non-native English speakers. ChatGPT 3.5 with
simple prompts was used on the aforementioned
essays, as well as Stanford CS224n final project
abstracts and US Common App college admission
essays, to generate artificial essays. We refer to
this dataset as EWEssays hereafter. In this paper,
we evaluate the performance of our model on this
dataset using a zero-shot approach, utilizing the
complete dataset for inference.

Model Train Test
human-authored 17046 10642
bloom-1b7 (A) 2,750 1,704
bloom-3b (B) 2,705 1,782
bloom-7b1 (C) 2,808 1,831
babbage (D) 2,834 1,960
curie (E) 2,843 1,958
text-davinci-003 (F) 2,859 1,955

Table 2: AuText dataset statistics

2.2 Curated training datasets

We created a number of curated datasets motivated
by the following factors: 1) demonstrate the in-
fluence of training data from individual LLMs on
model performance, 2) explore whether model per-
formance is affected in out-of-domain testing, i.e.,
the model is tested on a dataset generated by a
LLM that is not used in training data creation, and
3) specifically, analyze whether a model trained
without GPT data can achieve similar performance
to a model trained using GPT data, which is sub-
ject to specific restrictions regarding commercial
usage. While we focus primarily on the AuText
dataset to derive these curated datasets, our analysis
is broadly applicable to other datasets mentioned
in Section 2.1.

The distribution of train and test splits for both
human-authored and AI-generated data in the Au-
Text dataset are shown in Table 2. Around half
of the AI-generated data is produced by BLOOM-
based models (Scao et al., 2022), while the rest
are generated by GPT-based models. Given the
restrictions on commercial usage of data gener-
ated by GPT-based models3, we wanted to explore
whether replacing GPT data with data from other
recent open LLMs (LLaMA24, Falcon5, and MPT

3https://openai.com/policies/terms-of-use
4https://huggingface.co/meta-llama/Llama-2-13b-chat
5https://huggingface.co/tiiuae/falcon-40b

6) is a feasible alternative for training generative
text detectors. We selected LLaMA2, because it
outperformed other open LLMs on various exter-
nal benchmarks, including reading comprehension,
reasoning, coding, and knowledge tests (Touvron
et al., 2023). The LLaMA2 chat models have ad-
ditionally been trained on over 1 million human
annotations compared to its previous version. Prior
to LLaMA2, Falcon and MPT were outperforming
other open LLMs on the open LLM leaderboard7.

Using the three selected open LLMs, we created
the following variants of the AuText dataset:
1. In the first variant (D1), we removed all GPT-
based data (categories D, E, and F in Table 2) from
the AuText training data.
2. In the second variant (D2), we replaced the train-
ing data from the GPT-based models (categories D,
E, and F) with that from LLaMA2-13b-chat model.
The prompts we used with the LLaMA2-13b-chat
model were the same ones used by the developers
of the AuText dataset.
3. In the third variant (D3), we substituted training
data from categories D, E, and F (Table 2) with
data generated from Falcon-40b-chat, MPT-30b-
instruct, and LLaMA2-13b-chat, respectively. As
before, we used the same prompts as those used by
the developers of the AuText dataset.

In the D1 dataset, the number of training samples
are reduced from 33845 to 25309 as we removed
GPT-based data. In the D2 and D3 datasets, the
number of samples in training data is same as the
AuText training samples since we just replaced the
GPT samples with the same number of samples
generated using open LLMs. In all these curated
training datasets, text from human-authored and
BLOOM-based models (categories A-C in Table 2)
remain unchanged. No changes were made to the
test datasets from AuText.

3 Approach

We used an ensemble modeling approach similar to
the one proposed by (Abburi et al., 2023a,b), where
each input is passed through five pre-trained mod-
els, namely: 1. Decoding-enhanced BERT with
disentangled attention (DeBERTa) large8 (He et al.,
2021), 2. cross-lingual language model RoBERTa
(XLM-RoBERTa) with Cross-lingual Natural Lan-

6https://huggingface.co/mosaicml/mpt-30b-instruct
7https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard
8https://huggingface.co/microsoft/deberta-large
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Dataset Baseline model Acc Fmacro Pre Rec
AA RoBERTa-base (Uchendu et al., 2020) 0.970 0.923 0.932 0.914
TB RoBERTa-large-MNLI (Uchendu et al., 2021) 0.997 0.985 0.976 0.995
AP DistilBERT (Liyanage et al., 2022) 0.250 0.242 0.242 0.242
GPT-OD COCO (Liu et al., 2022) 0.943 0.941 – –

Table 3: Performance on various benchmark datasets with state-of-the-art models.

Dataset Acc Fmacro Pre Rec
E SE E SE E SE E SE

AA
0.994 0.990 0.986 0.975 0.993 0.988 0.979 0.962)
(+2.5%) (+2.1%) (+6.8%) (+5.6%) (+6.5%) (+6.0%) (+7.1%) (+5.2%)

TB
0.998 0.998 0.990 0.989 0.997 0.993 0.983 0.986
(+0.1%) (+0.1%) (+0.5%) (+0.4%) (+2.2%) (+1.7%) (-1.2%) (-0.9%)

AP
0.500 0.475 0.479 0.475 0.484 0.475 0.485 0.475
(+100.0%) (+90.0%) (+97.9%) (+96.3%) (+100.0%) (+96.3%) (+100.4%) (+96.3%)

GPT-OD
0.990 0.983 0.989 0.983 0.990 0.983 0.990 0.983
(+5.0%) (+4.2%) (+5.1%) (+4.4%) – – – –

Table 4: Performance of Ensemble (E) and Short Ensemble (SE) models on four datasets. Numbers in the parenthesis
indicate percentage changes compared to baselines.

guage Inference (XNLI)9, 3. RoBERTa large10

(Liu et al., 2019), 4. RoBERTa base OpenAI de-
tector11 (Solaiman et al., 2019), and 5. XLM-
RoBERTa NLI13 (Reimers and Gurevych, 2019).
In the training phase, these models are fine-tuned
using the training data for each dataset shown in
Table 1 (except EWEssays). For inference and
testing, each model independently generates clas-
sification probabilities. In order to maximize the
advantage of each model, each of these probabil-
ities are concatenated to create a feature vector
and passed as an input to train a voting classifier
(Logistic Regression (LR), Random Forest (RF),
Gaussian Naive Bayes (NB), Support Vector ma-
chines (SVM) (Mahabub, 2020)) to produce final
predictions. Hereafter, we refer to this architecture
as Ensemble.

In addition to experimenting with ensembling
five models proposed by (Abburi et al., 2023a,b) ,
we also conducted experiments with various com-
binations of these models using the same architec-
ture. We observed that an ensemble of only the
RoBERTa base OpenAI detector and the XLM-
RoBERTa NLI model, along with the voting clas-
sifier, delivers performance comparable to the En-
semble architecture. Henceforth, we refer to this

9https://huggingface.co/vicgalle/xlm-roberta-large-xnli-
anli

10https://huggingface.co/roberta-large
11A finetuned sequence classifier based on RoBERTa-base

(125 million parameters)12 and RoBERTa-large (356 million
parameters)

13https://huggingface.co/sentence-transformers/xlm-r-
100langs-bert-base-nli-stsb-mean-tokens

architecture as Short Ensemble. For both architec-
tures, the experimental setup and hyperparameter
choices are similar to Abburi et al. (2023b).

4 Experiments

In this section, we present an evaluation of our AI-
generated text detection experiments. Results are
presented for multiple models on both benchmark
and curated datasets. Results from a zero-shot eval-
uation on the EWEssays dataset is also presented.
Traditional classification metrics, namely, accuracy
(Acc), macro F1 score (Fmacro), precision (Prec),
and recall (Rec) are reported for each of the exper-
iments.

4.1 Performance of proposed architectures
across various benchmark datasets

As baselines, we use four Transformer-based ar-
chitectures, which, to our knowledge, are the cur-
rent state-of-the-art models on the corresponding
benchmark datasets: 1. AA dataset: RoBERTa-
base (Uchendu et al., 2020), 2. TB dataset:
RoBERTa-large-MNLI (Uchendu et al., 2021), 3.
AP dataset: DistilBERT (Liyanage et al., 2022),
and 4. GPT-OD dataset: COCO (Liu et al., 2022).
RoBERTa-large-MNLI is a RoBERTa-large model
fine-tuned on the Multi-Genre Natural Language
Inference (MNLI) corpus. The DistilBERT model
uses knowledge distillation during the pre-training
phase. Both RoBERTa and DistilBERT were fine-
tuned for this experiment. COCO is a coherence-
based contrastive learning model that detects AI-
generated texts in low-resource settings.
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Table 3 shows the results of baseline models on
four publicly available benchmark datasets. The
results from the Ensemble and Short Ensemble
models on the same four benchmark datasets are
shown in Table 4. The results show both the
Ensemble and Short Ensemble architectures per-
form well when compared to the other architec-
tures across datasets. In both ensemble architec-
tures the RoBERTa base OpenAI detector model
shows stronger performance compared to other
constituent models. When compared to the state-
of-the-art, we find that our models deliver perfor-
mance improvements in the range of 0.5-97.9%
for Fmacro, across the benchmark datasets. The
highest improvement is on the AP dataset (97.9%),
followed by the AA dataset (6.8%). Notably, the
results from the Short Ensemble model closely ap-
proximate those from the Ensemble architecture.
This indicates that an ensemble of just two mod-
els, as seen in the Short Ensemble architecture is
adequate to achieve state-of-the-art performance.
Importantly, this approach significantly simplifies
the model’s complexity compared to the larger en-
semble model. As a result, we choose the Short
Ensemble architecture for presenting the remaining
results in the paper.

4.2 Analysis of model performance on curated
training datasets

Each of the curated training datasets (D1, D2 and
D3) are variants of the AuText dataset, and com-
prises data from different combinations of LLMs.
Table 5 illustrates the influence these different
datasets have on model performance compared to
the unmodified AuText training data. The Short
Ensemble architecture is trained on each of the cu-
rated datasets independently and evaluated on the
AuText test set. Based on the results from D1, D2,
and D3, it is evident that, despite the absence of
text generated by GPT models in the training data,
the Short Ensemble model is able to effectively
detect GPT-generated text. In D1, by simply re-
moving the GPT text from the training data the
Fmac score improved to 0.769 from its baseline
Fmac 0.732. The model performance is further im-
proved with a Fmac score of 0.774 when GPT text
is replaced with LLaMA2 data. An interesting ob-
servation we made regarding the D3 dataset (which
uses Falcon, MPT, and LLaMA2 data) is that, even
though the model demonstrated improved perfor-
mance compared to AuText, it did not outperform

the results achieved by exclusively utilizing text
from LLaMA2. Across these metrics, the Short
Ensemble model, fine-tuned on D2 dataset with
LLaMA2 data, outperformed those trained on the
AuText data and other variants.

Dataset Acc Fmacro Pre Rec
AuText 0.750 0.732 0.822 0.744
D1 0.775 0.769 0.796 0.771
D2 0.784 0.774 0.828 0.779
D3 0.760 0.747 0.812 0.755

Table 5: Result on AuText test data with Short Ensemble
model trained on four different training sets.
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Figure 1: Performance of Short Ensemble model on
AuText and our curated datasets.

Figure 1 presents the distribution of samples
within human-authored and AI-generated classes,
along with the number of correct predictions across
the four datasets. The results indicate that the
model trained on the AuText data correctly pre-
dicts the highest number of AI-generated samples,
followed by D2, D3, and D1, with only minor
differences between them. In the case of human-
authored class predictions, D1 showed higher per-
formance followed by D2, D3 and AuText. Interest-
ingly, the model not trained using GPT-generated
text, i.e., D1, performed better in detecting human-
authored text. We note, however, further investiga-
tion is required to understand why certain combi-
nations of LLM training data underperform others.

Overall, the three motivating factors behind the
creation of these curated datasets (outlined in Sec-
tion 2.2) were addressed with these experiments.
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Our experiments demonstrate that using recent
open LLMs over commercially-restrictive GPT-
based data is a feasible alternative in developing
generative text detectors.

Dataset Acc Fmacro Pre Rec
AuText 0.684 0.683 0.694 0.689
D1 0.693 0.690 0.693 0.689
D2 0.655 0.639 0.720 0.670
D3 0.633 0.601 0.744 0.651

Table 6: Zero-shot results on EWEssays dataset with
Short Ensemble approach.
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Figure 2: Performance of AI-generated text detection
tools along with Short Ensemble (D1) model on EWEs-
says dataset (TOEFL and US 8th grade essays cate-
gories)

4.3 Zero-shot generalization
To assess the robustness and generalizability of our
Short Ensemble model, we tested the models out-
lined in Table 5 on the EWEssays dataset in a zero-
shot setting. The results are shown in Table 6. We
find that D1 outperforms other models achieving
Fmac score of 0.69. Furthermore, we performed
an analysis to assess the precision of our model in
detecting two distinct human-authored classes: US
8-th grade essays, and TOEFL essays, similar to Li
et al. (2023). Figure 2 depicts the performance
of various generative text detectors along with
Short Ensemble (D1). Along with GPTZero14 and
ZeroGPT15, our Short Ensemble model with D1

14https://gptzero.me/
15https://www.zerogpt.com/

dataset also classified all the US 8-th grade essays
correctly as human-authored, whereas it misclas-
sified 57.14% of TOEFL essays as AI-generated,
achieving overall accuracy of 42.86%. The per-
formance of our model in the zero-shot setting is
not as promising, and highlights the need for fur-
ther improvements in terms of bias and fairness
evaluation. Nevertheless, we note that our model
outperformed Originality.ai, Sapling.ai, Quil.org,
and OpenAI text detectors as shown in Figure 2.

5 Conclusion

In this research, we proposed a simple yet effective
Short Ensemble model for distinguishing between
AI-generated and human written text. We investi-
gated the robustness of our proposed model across
various benchmark datasets and observed that our
model performs better compared to several state-
of-the-art baselines. In addition, we crafted a set of
datasets using open LLMs and examined their im-
pact on model performance. Our study shows that
fine-tuning models with text generated from open
LLMs performs comparable or better when com-
pared to models fine-tuned on GPT-generated text.
Furthermore, we investigated the zero-shot general-
ization capabilities of our model on the EWEssays
dataset. We observed that our model outperformed
several text detection tools in correctly classifying
English essays authored by non-native English writ-
ers. However, it is important to note that our model
with the highest accuracy on EWEssays achieved a
score of 42.8%, emphasizing the need for ongoing
efforts to enhance both generalization and robust-
ness in our approach. We also acknowledge that
our approach should further be evaluated on de-
tecting text generated from more advanced LLMs
(LLMs with more than 175B parameters such as
GPT-4 (OpenAI, 2023)).
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