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Abstract

In Natural Language Processing (NLP), the Elo
rating system, well-established for ranking dy-
namic competitors in games like chess, has
seen increasing adoption for evaluating Large
Language Models (LLMs) through “A vs B”
paired comparisons. However, while popular,
the system’s suitability for assessing entities
with constant skill levels, such as LLMs, re-
mains relatively unexplored. Our study investi-
gates the sensitivity and reproducibility of Elo
scores for LLMs, integrating both synthetic and
human feedback. We show that Elo ratings
for LLMs stabilize with 100 or more compari-
son permutations (Nperms ≥ 100). A lower K-
factor is preferable for closely matched models,
whereas a higher K-factor better distinguishes
models with clear performance differences. We
also report that transitivity (A > B and B > C
implies A > C) does not consistently hold,
particularly when models demonstrate similar
performance. Our empirical findings provide
guidelines for more reliable LLM evaluation.

1 Introduction

In the rapidly evolving field of Natural Language
Processing (NLP), the task of accurately and re-
liably evaluating LLMs has become increasingly
challenging (Liang et al., 2022; Chang et al., 2023;
Srivastava et al., 2023; Kaddour et al., 2023; Poz-
zobon et al., 2023). Human feedback has emerged
as an indispensable tool in this performance assess-
ment process, serving as a qualitative metric that
captures nuances that automated scoring mecha-
nisms often fail to address (Askell et al., 2021; Bai
et al., 2022a,b; Srivastava et al., 2023; Ding et al.,
2023; Dettmers et al., 2023).

These human-centered evaluations, highly valu-
able to the overall progress of the NLP field, typ-
ically adopt an “A vs B” comparative setup, turn-
ing evaluations into a zero-sum game between lan-
guage models.

This paired feedback structure (Zhao et al., 2023)
naturally lends itself to the Elo rating system (Elo,
1978), originally designed for ranking chess players
for better matchmaking.

Variants such as Glicko (Glickman, 1995, 1999,
2012) and TrueSkill™ (Herbrich et al., 2006; Minka
et al., 2018) have incorporated more complex sta-
tistical methods into the original Elo framework,
to address some of the limitations of the Elo sys-
tem, particularly in the context of games with more
than two players or teams, or games with more
complex outcomes than just win or loss. There
is ongoing research into the efficacy of these sys-
tems in diverse and dynamic environments, and
new methods continue to be developed (Dehpanah
et al., 2021; Bertrand et al., 2023).

Despite these limitations, the core principles of
Elo have proven to be incredibly resilient and adapt-
able. As a result, the Elo system has found di-
verse applications, from predicting sports events
outcomes (Binder and Findlay, 2009; Hvattum and
Arntzen, 2010; Leitner et al., 2010; Wise, 2021),
and facilitating matchmaking in massively mul-
tiplayer online games like StarCraft II and Dota
(Ebtekar and Liu, 2021; Reid; Liquipedia; ESL),
to its recent use in the evaluation of LLMs (Askell
et al., 2021; Bai et al., 2022a,b; Srivastava et al.,
2023; Ding et al., 2023; Dettmers et al., 2023; Wu
et al., 2023; Lin and Chen, 2023).

However, its application to LLM evaluations
landscape has been insufficiently studied. Unlike
dynamic competitors that evolve, LLMs have static
capabilities and operate in a time-agnostic context.
In this setting, not only are LLM evaluations un-
constrained by tournament timelines or predefined
match sequences, but the ordering of matches can
also significantly influence the final Elo scores and,
consequently, models rankings. This oversight is
especially concerning, given the direct impact of
Elo system rankings on both research directions
and real-world applications in NLP.
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This study aims to close this research gap
by scrutinizing both the reliability and limita-
tions of the Elo rating system when applied to
LLMs. Through theoretical and empirical anal-
yses grounded in collected human feedback data,
our contributions provide a comprehensive under-
standing of when and how to reliably employ the
Elo system for LLM evaluation, thus offering valu-
able guidelines for researchers and practitioners in
the NLP field.

We find that Elo ratings are far from stable, and
are highly sensitive to permutation of ordering and
hyperparameter choice. Desirable properties such
as transitivity are not always guaranteed, and can
be unreliable unless there is comprehensive human
feedback data for all unique pairwise comparisons
among models in the feedback pool. The sensi-
tivity of Elo ratings becomes more pronounced
when dealing with models that exhibit similar per-
formance levels. We illustrate the best practices for
mitigating these sensitivities by offering guidelines
for hyperparameter selection and matchmaking sce-
narios.

2 Elo Algorithm Explained

We provide the mathematical formulation of the
Elo algorithm, contextualized to the setting of LLM
evaluation. In this formulation, let M be a set of
models and each model i ∈ M is assigned an
initial numerical rating Ri.

Expected Score Computation. For a given
paired match-up between two models A and B
(A,B ∈ M), each with respective ratings RA and
RB , the expected scores EA and EB are computed
as:

EA =
1

1 + 10(RB−RA)/400
(1a)

EB =
1

1 + 10(RA−RB)/400
(1b)

In this context, the factor of 400 (Elo, 1978) pre-
cisely adjusts the sensitivity of the expected score
to differences in ratings. A 400-point advantage
in ratings translates to a 10 : 1 odds in favor of
the higher-rated model, providing an interpretable
metric for performance comparison. For evenly
matched models (RA = RB), both EA and EB

equate to 0.5, reflecting a 50 : 50 win probability
for both models.

Rating Update Mechanism. Following each
match, the Elo ratings are updated based on the
observed outcome. The rating adjustment is dic-
tated by the equation:

R′
A = RA +K(SA − EA) (2)

Here, SA represents the actual score achieved by
model A, which can take on either the value 0 or 1.
The K-factor serves as a variable hyperparameter
to adapt the rate of change in rating to different
scenarios.

Given the costly and time-consuming nature of
human evaluations, studying the Elo system’s be-
havior under various scenarios becomes challeng-
ing. To circumvent these limitations, we turn to syn-
thetic data generation through Bernoulli processes
to simulate various scenarios of human feedback.
In the following section, we rigorously evaluate
the Elo rating system’s robustness and reliability
using synthetic data, ensuring it upholds desirable
properties like transitivity when rating LLMs.

3 Synthetic Human Feedback

This time-agnostic and independent setup of
LLM evaluations resembles a Bernoulli pro-
cess(Bernoulli, 1713), a sequence of independent
experiments, each with two possible outcomes; one
model outperforming the other. We use this syn-
thetic setting where we can control characteristics
of the distribution to evaluate different desirable
properties of a rating system. In this controlled
setting where we can precisely control the data dis-
tribution, we ask whether the Elo score respects
transitivity and quantify the degree of sensitiv-
ity to ordering of models and hyperparameter
choices like the K-factor.

3.1 The Bernoulli Analogy
Pairwise comparisons in LLM evaluation draw
parallels with the foundational principles of the
Bernoulli experiment in probability theory. This
section delves into the similarity between human
feedback-based evaluations and the Bernoulli ex-
periment’s principles.

Preliminaries. A Bernoulli trial is a random ex-
periment with exactly two possible outcomes, “suc-
cess” or “failure”. These outcomes adhere to the
condition:

P (A) + P (Ac) = 1 (3)
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Figure 1: Impact of win probabilities and permutation sampling on Elo ratings: Comparing Model A and Model
B across three different win probabilities (Prob(A beats B) = {0.6, 0.55, 0.51}) with two levels of permutation
sampling (Nperms = 1 and Nperms = 100). The top row displays the observed win rates, the middle row illustrates
Elo ratings with a single permutation, and the bottom row shows the mean and standard error of the mean (SEM) of
Elo ratings across 100 permutations.

Here, the random variable X denotes the outcome,
where X = 1 implies success, and X = 0 signifies
failure. The probabilities are:

P (X = 1) = p, P (X = 0) = 1− p (4)

with 0 ≤ p ≤ 1, the “success” probability.

Mapping to Human Feedback. When compar-
ing two models, A and B, across N pairwise eval-
uations, the setup aligns with a Bernoulli process.
This process comprises a sequence of independent
and identically distributed (i.i.d) Bernoulli trials.

To frame this analogy, we designate a win
probability, P (Awin), to model A. Leveraging a
Bernoulli random variable, X , as a means to sim-
ulate synthetic human feedback, we proceed as
follows:

1. A sample is drawn from X using P (Awin).

2. If X = 1, feedback suggests a preference for
model A.

3. Otherwise, model B is favored.

Extending to Multiple Players. Given a finite
set of models, M, with n distinct models, their
pairwise comparisons can be formulated as:

(
n

2

)
=

n!

2!(n− 2)!
(5)

This formula yields
(
n
2

)
unique pairs (A,B) where

A,B ∈ M and A ̸= B. For each of these pairs, a
Bernoulli process, comprising multiple Bernoulli
experiments, is conducted to discern which model
performs better over a sequence of trials.

3.2 Synthetic Data Generation
Building upon the Bernoulli process analogy, when
conducting multiple independent evaluations be-
tween two models, the distribution of the number
of times one model is preferred over the other natu-
rally follows a binomial distribution. For N pair-
wise comparisons, the relation is:

P (k;N, p) =

(
N

k

)
pk(1− p)N−k (6)
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Figure 2: Variation of Model A’s average Elo score with
increasing number of permutations (Nperms) for different
probabilities of Model A winning (Prob(A beats B)).
Error bars indicate standard errors of the mean.

where P (k;N, p) is the probability of one model
being preferred k times out of N evaluations. p
is the success probability and

(
N
k

)
is the binomial

coefficient, representing the number of ways to
choose k successes from N trials.

4 How Robust Are Elo Scores?

This section defines rigorous stress tests designed
to investigate the robustness and overall reliabil-
ity of the Elo rating system in evaluating LLMs.
We focus on critical desirable properties of a rank-
ing mechanism – that it should 1) be insensitive
to match-up ordering, 2) not be overly sensitive
to hyperparameters like K-factor 3) preserve prop-
erties of transitivity. Subsequently, we provide
empirically-grounded guidelines for safe and inter-
pretable application of Elo ratings.

4.1 Impact of Ordering on Elo Ratings

Problem Statement. Unlike chess or time-bound
sports where match sequences are structured, in
LLM evaluations all matches can occur indepen-
dently and in parallel, amplifying the sequence’s
influence on final models ranking. This inherent
variability prompts us to investigate the extent to
which match-up ordering affects the robustness of
Elo ratings.

Experimental Setup. To quantify the effect of
match-up ordering on Elo ratings, we generate a
baseline sequence of Ngames = 1000 match out-
comes between models A and B, reflecting the
scale typical of LLM evaluations via human feed-
back. We hold Ngames constant for the entirety of
our study to maintain consistency. From this base-

line, we derive Nperms distinct permutations, each
involving a complete reshuffling of the original
match outcomes to simulate various chronological
orders in which the games might unfold. Crucially,
we are not generating new match outcomes for each
permutation; rather, we are reordering the existing
data to explore the potential impact of different
match-up sequences. For each reordered sequence,
we update the Elo ratings RA and RA according to
equation 2, resetting both ratings to an initial value
of 1400 at the start of each permutation. Following
this, we compute the average Elo ratings per match
across all Nperms permutations, ensuring a robust
analysis that takes into account the full range of
possible match-up orders.

We compare ratings’ behavior for a set of se-
lected winning probabilities Prob(A beats B) =
{0.51, 0.55, 0.6}, inspecting a spectrum of real-
world scenarios. Nperm is varied from a minimum
of 1 to a maximum of 10k, providing a robust
sample size for statistical analysis (see Figure 2).
Subsequently, we compute the average Elo ratings
per match across all permutations. These aver-
ages, R̄A and R̄B . particularly for Nperms = 1 and
Nperm = 100, are visualized to offer insights into
the stability of the ratings, as shown in Figure 1.

Key Findings. Our analysis underscores the in-
terplay between winning probability P (Awin) and
the number of different orderings Nperm on the
stability of Elo ratings after each update. For
P (Awin) ≥ 0.6, Elo ratings demonstrate high sta-
bility; additional results for P (Awin) = 0.65 and
beyond are available in Appendix B. On the other
hand, for P (Awin) ≈ 0.5, ratings exhibit signifi-
cant instability for a single sequence. As depicted
in Figure 1, when both models have a win prob-
abilities are around 0.5, Elo ratings frequently in-
tertwine, making it challenging to discern a clear
performance difference between the two. The in-
stability plateaus as Nperms exceeds 100, resulting
in stabilized Elo ratings that align closely with
the preset winning probabilities. For instance, at
P (Awin) = 0.55, the average Elo rating for Model
A, R̄A, consistently exceeds that for Model B, R̄B ,
when averaged across multiple permutations, re-
flecting an accurate performance-based ranking of
these models.

These observations validate our concerns high-
lighted earlier, emphasizing the critical role of
Nperms for a reliable interpretation of Elo ratings in
LLM evaluations. In Elo-based evaluations, the se-
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(a) Elo Scores for a Single Sequence (b) Elo Scores Averaged Over 100 Permutations

Figure 3: Final Elo scores difference (SA − SB) as a function of K-factor and Nperms. Positive values reflect the
expected ranking where Model A is superior to Model B, while negative values indicate a discrepancy, falsely

suggesting that Model B has a higher Elo score than Model A. We compare between a single sequence of outcomes
and averages over Nperms = 100 unique permutations.

quence of which models are compared is not a mere
procedural detail; it can significantly influence the
final Elo scores.

4.2 The K-factor Dependency

Problem Statement. The K-factor in the Elo
rating system serves as a crucial hyperparameter
scaling constant for rating update and is a key deter-
minant in the rate of convergence to a “true” rating
of skill level. While conventional applications like
chess use standard K-factor values (16 for experi-
enced players and 32 for novices), these may not
be directly applicable in the context of evaluating
LLMs due to the unique characteristics and require-
ments of this domain.

Experimental Setup. We extend our previous
approach by conducting tests across a range of
winning probabilities and multiple K-factor values
(1, 8, 16, 32, 64). We compute and compare the
average Elo scores S̄A and S̄B for Ngames = 1000
and Nperms = {1, 100}. The differences between
these final averages for Model A and Model B are
summarized in Figure 3 to assess the stability and
expected ranking between the two models.

Key Findings. As shown in Figure 3, notable
instability is observed in model rankings based
on the final Elo scores when we consider a single
sequence of paired comparisons (i.e., Nperms = 1),
especially for winning probabilities nearing 0.5.
This instability is markedly exacerbated at higher
K-factors. In contrast, the picture changes when

coupling higher K-factors with raising the number
of permutations to at least 100.

Higher K-factors, in this multi-permutation sce-
nario, speed up the differentiation between models’
Elo scores, enabling faster convergence to their
true skill levels. This yields much more stable
and reliable model rankings. It is noteworthy that
this faster convergence is observed to be more reli-
able for higher winning probabilities, which corre-
sponds to skewed win rates in a real-wold scenario.

4.3 Transitive Properties of Elo Scores
Problem Statement. A desirable property of any
rating system is transitivity. The Elo rating system
is often assumed to possess transitive properties –
here we evaluate if that is actually the case. Transi-
tivity in this context means that if player A beats
player B, and player B beats player C, then player
A is expected to beat player C. Prior work has al-
ready demonstrated limitations of Elo in maintain-
ing transitivity, especially in non-transitive cyclic
games such as rock-paper-scissors and StarCraft II

(Bertrand et al., 2023; Vadori and Savani, 2023).
While Elo’s design inherently assumes transitivity,
our synthetic data, which are derived from realis-
tic scenarios, uncovers certain circumstances that
violate this assumption. Such anomalies can subse-
quently affect the final ranking of language models
and their relative performance assessments.

Experimental Setup. The transitivity property
of the Elo scores is defined as:

A > B and B > C =⇒ A > C (7)
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Table 1: Investigation of Elo score reliability in capturing true model hierarchies across varying configurations.
Scenarios explore the transitive relationship A > B and B > C =⇒ A > C. The star (*) indicates cases where
the Elo score fails to accurately reflect the expected hierarchy of models. Symbols: ≈ represents models with
similar performance; ≫ indicates that a model significantly outperforms the other one.

Scenario Model
Models Ranking per Configuration

N = 1,K = 1 N = 100,K = 1 N = 1,K = 16 N = 100,K = 16

K

A ≫ B
B ≫ C

A 1539.43 1528.50 ± 0.35 1650.93 1584.78 ± 3.09
B 1390.47 1410.33 ± 0.54 1381.17 1406.48 ± 3.23
C 1270.10 1261.17 ± 0.33 1167.90 1208.74 ± 2.71

R

A ≫ B
B ≈ C

A 1502.09 1495.92 ± 0.36 1509.08 1526.04 ± 3.03
B 1337.48 1342.70* ± 0.53 1379.00 1340.83 ± 2.83
C 1360.42 1361.38* ± 0.38 1311.92 1333.13 ± 2.68

B

A ≈ B
B ≫ C

A 1437.97 1433.84* ± 0.41 1440.31 1460.22 ± 2.90
B 1455.10 1453.84* ± 0.61 1481.04 1452.87 ± 3.25
C 1306.93 1312.32 ± 0.34 1278.65 1286.91 ± 2.72

N

A ≈ B
B ≈ C

A 1426.33 1419.73 ± 0.36 1407.44 1432.26 ± 2.93
B 1390.47 1393.29 ± 0.59 1386.17 1392.75 ± 3.04
C 1383.20 1386.99 ± 0.41 1406.39 1374.99 ± 3.12

To test the transitivity property, we design four
distinct scenarios:

K A beats B and B beats C both with high win
probabilities (Pwin = 0.75).

R A beats B with a high win probability (Pwin =
0.75), B beats C with a win probability close
to 0.5 (Pwin = 0.51).

B A beats B with a win probability close to 0.5
(Pwin = 0.51), B beats C with a high win
probability (Pwin = 0.75).

N A beats B with a win probability of 0.54, B
beats C with a win probability of 0.51.

In each of these scenarios, we simulate matches
for paired comparisons A vs. B and B vs. C
and then rearrange these matches in an arbitrary
order to form our baseline sequence. This approach
mimics how Elo ratings are computed for online
leaderboards in the evaluation of large language
models (Wu et al., 2023; Lin and Chen, 2023). We
then analyze whether Elo scores maintain the ex-
pected model hierarchies.

Key Findings. The results of all 4 scenarios are
consolidated in table 1. These outcomes validate
that the transitivity assumed by the Elo rating sys-
tem can be vulnerable, especially when win rates
hover around ≈ 50%. Once again, we observe
that varying the number of permutations (n = 1
vs Nperms = 100) and the K-factor plays a critical

role in stability. For Nperms = 100 and K = 1,
we notice discrepancies in the models’ rankings.
This can be contrasted with K = 16, where rank-
ings were much more consistent and reliable. The
slower updates from K = 1 suggest that this set-
ting is possibly too conservative to capture the tran-
sitive relations quickly, hence leading to inconsis-
tencies.

5 Validation on Real-World Human
Feedback

Building on the insights gained from our synthetic
data experiments, we extend our validation efforts
to include real-world human feedback. Our objec-
tive is two-fold: first, to ascertain how the demon-
strated properties established using synthetic data
generalize to real human annotations; and second,
to evaluate the Elo rating system’s utility for assess-
ing large language models (LLMs) under practical
conditions.

Table 2: Win rates per evaluated model across conducted
paired comparison experiments.

Experiment Win Rate
Flan-t5-xxl 0.79
Dolly-v2-12b 0.21
Flan-t5-xxl 0.64
Flan-t5-xl 0.36
Dolly-v2-7b 0.51
Dolly-v2-12b 0.49
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(a) Experiment: Flan-t5-xxl vs. Flan-t5-xl
Recorded Win rates: 0.64 vs 0.36

(b) Experiment: Dolly-v2-7b vs. Dolly-v2-12b
Recorded Win rates: 0.51 vs 0.49

Figure 4: Final Elo scores difference (SA − SB) as a function of K-factor and Nperms. In this comparison, Model A
corresponds to Flan-t5-xxl and Model B corresponds to Flan-t5-xl. Positive values reflect the expected ranking

where Model A is superior to Model B, while negative values indicate a discrepancy, falsely suggesting that Model
B has a higher Elo score than Model A.

(a) Flan-t5-xxl vs. Flan-t5-xl and Flan-t5-xxl vs.
Dolly-v2-12b

Recorded Win rates: 0.64 vs 0.36 and 0.79 vs 0.21

(b) Dolly-v2-7b vs. Dolly-v2-12b and Flan-t5-xxl vs.
Dolly-v2-12b

Recorded Win rates: 0.51 vs 0.49 and 0.79 vs 0.21

Figure 5: Final Elo scores (SA, SB and SC ) for three different models at multiple configurations of
Nperms = {1, 100} and K-factor = {1, 8, 16, 32}. When the surfaces representing individual model scores

intersect, it signifies that the relative ranking of the models is sensitive to these configurations. The order of models
overlaps represent these models ranking based on their Elo scores.

Experimental Setup. Our study leverages hu-
man feedback data previously collected to explore
data prioritization in language model evaluations.
For details about our pool of prompts and mod-
els, completion generation, and annotation collec-
tion process, we refer the reader to the experi-
mental setup section of our previous work (Boub-

dir et al., 2023). We focus on models from the
well-established Dolly (Conover et al., 2023) and
Flan (Chung et al., 2022) families, ensuring rele-
vance to the broader NLP community. The evalu-
ation dataset consists of 400 prompts, with 100
randomly chosen from the SODA (Kim et al.,
2022) dataset and 100 from each of the COMMON-
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SENSEQA (Talmor et al., 2019), COMMONGEN

(Lin et al., 2020), and ADVERSARIALQA (Bartolo
et al., 2020) subsets, all of which are part of the
Public Pool of Prompts (P3) dataset (Sanh et al.,
2021). This ensures a diverse set of evaluation sce-
narios for a comprehensive assessment of the mod-
els’ capabilities. Consistent with our synthetic data
methodology, tie outcomes have been excluded
from this analysis to focus specifically on the im-
plications for the robustness of Elo scores.

In line with our previous analyses, we continue
to explore the influence of variations in Nperms =
{1, 100} and the K-factor (ranging from 1 to 36)
on the robustness and reliability of Elo scores. The
win rates for each model, derived from human eval-
uations, are summarized in Table 2. Our real-world
experiments yield two distinct types of scenarios:
i) one in which a model decisively outperforms the
other, such as the Flan-t5-xxl vs. Flan-t5-xl pairing;
and ii) another one with two models nearly evenly
matched, as in the Dolly-v2-7b vs. Dolly-v2-12b
case.

Key Findings. Our analysis of real-world human
feedback data reveals that the stability of Elo rat-
ings is influenced by the disparities in win rates
and the choice of hyperparameters K-factor and
Nperms. In situations where win rates show a sig-
nificant discrepancy, such as in our Flan family
experiment, Elo ratings remain notably consistent
across different K-factors and Nperms configura-
tions (see Figure 7). On the other hand, in cases
like the Dolly family experiment where win rates
are closely matched, the Elo rating system exhibits
higher volatility at Nperms = 1 but gains stability
at Nperms = 100 at relatively small K-factors (see
Figure 4b).

Regarding the conservation of transitivity, our
findings indicate that this property is not univer-
sally maintained in real-world human evaluations,
as observed in synthetic data in section 4. The rela-
tive rankings of models that perform similarly are
sensitive to the choice of hyperparameters K-factor
and Nperms. Consequently, one should exercise cau-
tion in drawing conclusions from the Elo scores
when comprehensive paired comparison data, as
dictated by the combination formula 5, is not avail-
able. Our observations are in line with the trends
seen in our synthetic data experiments.

6 Empirical Guidelines for Robust
Elo-based Evaluation

We consolidate the following best practices for a re-
liable and robust Elo-based evaluation of language
models:

• Stability of Scores: Running multiple permu-
tations and averaging the Elo scores, prefer-
ably with Nperm ≥ 100, generally yields sta-
ble and reliable outcomes.

• Fine-Tuning the K-factor: A smaller K-
factor may reduce significant rating fluctua-
tions when models have closely matched win
rates.

• Rapid Convergence for Clear Winners: A
larger K-factor can expedite the convergence
of Elo ratings to the “true” performance lev-
els when there is a distinct performance gap
between models.

• Transitivity is not guaranteed: (A beats B
and B beats C implies A > C) does not al-
ways hold in Elo scores, particularly when
some of the pairwise comparisons yield
closely matched win rates.

These guidelines serve as empirically-grounded
recommendations to improve the robustness and
interpretability of Elo-based evaluations for LLMs.
Following these best practices will help in yielding
more reliable conclusions on models’ performance
via human judgment.

7 Conclusion

This paper provides a comprehensive study on the
reliability of the Elo rating system for evaluating
LLMs using human feedback. We identify var-
ious factors that influence the robustness of Elo
ratings and offer guidelines for their effective ap-
plication in real-world scenarios. While our find-
ings lay down an essential framework, they are by
no means exhaustive. Future work could extend
the present study by considering tie outcomes and
adopting multi-category Bernoulli synthetic data
to more closely simulate the varied landscape of
human feedback. Such extensions could provide
additional insights into the convergence properties
of the Elo rating system in the fast-evolving land-
scape of language models.
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A Extension to Multiple Outcomes

For scenarios where outcomes can extend beyond wins and losses, such as a tie possibility, the multinomial
distribution becomes relevant. For outcomes win, loss, and tie, the distribution is given by:

P (nwin, nloss, ntie;N, pwin, ploss, ptie)

=
N !

nwin!nloss!ntie!
pnwin

win p
nloss
loss p

ntie
tie (8)

Sampling from the appropriate distribution is fundamental to simulating synthetic human feedback: the
binomial distribution for binary feedback and the multinomial for multi-category feedback.

B Impact of Ordering on Elo Ratings: Skewed Win Rates

We summarize our findings on the impact of match sequences on Elo ratings for winning probabilities
Prob(A beats B) ≥ 0.65.

Figure 6: Impact of win probabilities and permutation sampling on Elo ratings: Comparing Model A and Model
B across three different win probabilities (Prob(A beats B) = 0.9, 0.8, 0.7, 0.65) with two levels of permutation
sampling (Nperms = 1 and Nperms = 100). The top row displays the observed win rates, the middle row illustrates
Elo ratings with a single permutation, and the bottom row shows the mean and standard error of the mean (SEM) of
Elo ratings across 100 permutations.
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C Experiment Flan-t5-xxl vs. Dolly-v2-12b Results

Figure 7: Experiment: Flan-t5-xxl vs. Dolly-v2-12b
Recorded Win rates: 0.79 vs 0.21
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