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Abstract

At the staggering pace with which the capabil-
ities of large language models (LLMs) are in-
creasing, creating future-proof evaluation sets
to assess their understanding becomes more
and more challenging. In this paper, we pro-
pose a novel paradigm for evaluating LLMs
which leverages the idea that correct world un-
derstanding should be consistent across differ-
ent (Fregean) senses of the same meaning. Ac-
cordingly, we measure understanding not in
terms of correctness but by evaluating consis-
tency across multiple senses that are generated
by the model itself. We showcase our approach
by instantiating a test where the different senses
are different languages, hence using multilin-
gual self-consistency as a litmus test for the
model’s understanding and simultaneously ad-
dressing the important topic of multilinguality.
Taking one of the latest versions of ChatGPT
as our object of study, we evaluate multilin-
gual consistency for two different tasks across
three different languages. We show that its
multilingual consistency is still lacking, and
that its task and world understanding are thus
not language-independent. As our approach
does not require any static evaluation corpora
in languages other than English, it can easily
and cheaply be extended to different languages
and tasks and could become an integral part of
future benchmarking efforts.

1 Introduction

The staggering pace at which the capabilities of
large language models (LLMs) have increased in
the recent past comes with many questions related
to what kind of progress we are making on the road
towards true machine intelligence and human-level
understanding. To assess such progress, practition-
ers often rely on benchmarks that measure natural
language understanding (e.g. Williams et al., 2018;
Nie et al., 2020), commonsense reasoning (e.g. Sap
et al., 2019; Bisk et al., 2020), or probe for factual
knowledge (e.g. Hendrycks et al., 2021), among

other things. The extent to which such bench-
marks can be used to assess whether LLMs “under-
stand” language is widely debated (e.g. Mitchell
and Krakauer, 2023; Raji et al., 2021). Often men-
tioned concerns in this context are that LLMs may
learn specific lexical patterns rather than general
principles (e.g. Ray Choudhury et al., 2022) and,
relatedly, that benchmark scores may confuse com-
petence in form with competence in meaning (e.g.
Heineman, 2023). In support of these concerns,
LLMs have been found to bypass certain tasks by
relying on memorised information from the train-
ing data (McKenna et al., 2023). More recently, the
enormous amount of data that models are trained
on and the fact that this data is often not publically
accessible have further increased the difficulty of
assessing whether benchmarks really quantify what
they are meant to quantify. A benchmark always
makes assumptions about what a model has seen in
its training phase, and, given the rapid changes on
that front, it is difficult to design challenging bench-
marks that remain informative past training rounds
of new models. In addition, novel evaluation data
may leak into the training data of newly trained
models1 – which even the most future-proofed
benchmarks may not withstand.

In this paper, we propose a novel approach to
evaluate models’ task or world understanding that
aims to create some separation between form and
meaning in benchmarking and simultaneously mit-
igates the challenging evaluation-contamination
loop. Our method is based on the idea that language
is used to describe or act in the world (Wittgenstein,
1953) and that this world functions as an anchor
for diverse linguistic forms. Having a genuine un-
derstanding of the world thus implies consistency
among different linguistic expressions that pertain
to the same entities within the world. To give an

1E.g. portions of the BIG-Bench data (Srivastava et al.,
2022) were inadvertently added to the GPT4 training corpus
(OpenAI, 2023, footnote 5).
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Figure 1: Illustration of the basic mechanism of our paradigm: We use the model to generate other senses of
the original input. The model’s answers on the original input and the alternative sense are used to evaluate its
consistency. In this example, the model is presented with the task of paraphrase detection in English (sentences
taken from PAWS-X) and generates another sense by translating from English to German.

example, if you ask a colleague who is fluent in
both French and English if a particular statement
is true, you expect their answer to be invariant to
the language (French or English) in which you
ask this question. We leverage this intuition to in-
vestigate whether models have a consistent world
model across different senses (in the case above:
languages) and, consequently, a consistent under-
standing of the tasks that they are asked to execute.
Loosely inspired by Frege (1892), we take differ-
ent senses to be different modes of presentation or
notational variants. Crucially, rather than generat-
ing different senses ourselves, we ask the model to
create different versions of the same question. This
ensures that potential inconsistencies are really due
to model-internal inconsistencies rather than mis-
interpretations of the question. Additionally, the
method is protected from data contamination: as
the different senses are regenerated for every eval-
uation, they cannot leak into new training data.
Lastly, it can cheaply and easily be applied to al-
ready available benchmarks and therefore reduces
the burden on data generation.

Our approach can be applied to a number of dif-
ferent senses. Here, we showcase it focusing on the
multilingual case described in the example above,
by asking whether models are consistent across
different languages (see Figure 1). In essence, we
are thus using multilingual self-consistency as a
litmus test for their understanding, simultaneously
addressing the important topic of multilinguality.
Taking one of the latest SOTA versions of Chat-
GPT2 as our object of study, we evaluate multilin-
gual understanding for two different tasks (para-
phrase detection and natural language inference)

2https://openai.com/blog/chatgpt

across three different languages (Chinese, German
and English). It turns out that the model is incon-
sistent across all languages and tasks, despite being
able to perform the tasks reasonably well in English
and generating high-quality translations. Taken to-
gether, our analyses provide strong evidence that
the model’s task understanding is modulated by the
representational form of the task.

In sum, we make the following contributions:

i) We introduce multisense consistency as a
novel, cheap, and data-contamination-proof
evaluation paradigm for LLMs;

ii) We showcase this paradigm by implementing
a specific version that utilises multilinguality
to create different senses;

iii) Using this implementation, we evaluate Chat-
GPT to illustrate that multilingual consistency
of SOTA LLMs is still lacking;

iv) With a range of ablation experiments (see Fig-
ure 2), we demonstrate that the observed in-
consistencies in fact arise from a language-
dependent task understanding (rather than an
inability to translate or perform the task).

With our work, we hope to not only present an
interesting set of empirical results on multilingual
consistency but also propose a novel, easily appli-
cable method to generate many more challenging
evaluation tests. Our framework targets models
that can follow instructions to generate alterna-
tive senses and are able to generate these senses
based on these instructions. Thus, with the grow-
ing popularity and capabilities of chat-models and
instruction-tuned models, such as GPT-4 (OpenAI,
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2023) or Llama-2 (Touvron et al., 2023), our frame-
work is becoming increasingly relevant.3

2 Related work

Existing benchmarks for evaluating language un-
derstanding in LLMs form the foundation for our
work. The main idea of our paradigm is to evaluate
LLMs in terms of their consistency across different
senses of these benchmarks and is therefore related
to other work on self-consistency in LLMs. In cre-
ating multiple senses through translation, there is
also a close connection between our execution of
this paradigm and multilingual evaluation. Ap-
pendix A provides a GenBench eval card (Hupkes
et al., 2023) that classifies our work in the context
of generalisation research.

Evaluating language understanding. A wide
range of benchmark tasks has been developed to
evaluate specific aspects of natural language un-
derstanding in LLMs. To evaluate general lan-
guage understanding across diverse tasks, genres,
and datasets, several of these tasks have been com-
bined into multi-task benchmarks, such as GLUE
(Wang et al., 2018) or SuperGLUE (Wang et al.,
2019a). These benchmarks focus on English and
evaluate, among others, paraphrase identification
(e.g. PAWS; Zhang et al., 2019), natural language
inference (e.g. MNLI; Williams et al., 2018), and
commonsense reasoning (e.g. COPA; Roemmele
et al., 2011). In response to the rapid improve-
ments of LLMs on these benchmarks other multi-
task benchmarks have been developed. MMLU, for
example, assesses world knowledge and problem-
solving ability across a large number of subjects,
covering STEM, humanities, social sciences, and
more (Hendrycks et al., 2021). While our paradigm
also makes an effort to find more appropriate evalu-
ation methods, it not only assesses performance but
also evaluates the model’s ability to consistently
solve a task across multiple languages, thereby pro-
viding insights into its ability to abstract from spe-
cific representational forms.

Self-consistency in LLMs. Various studies have
shown that inconsistencies are common in LLMs
(and suggested methods for improving consistency,
which is not our focus). These studies are mostly
concerned with self-consistency in natural lan-
guage inference (NLI) (e.g. Minervini and Riedel,

3Our code is available at https://github.com/
XeniaOhmer/multisense_consistency.

2018; Wang et al., 2019b; Li et al., 2019; Hosseini
et al., 2021) and question answering (e.g. Kassner
and Schütze, 2020; Alberti et al., 2019; Mitchell
et al., 2022; Chen et al., 2021; Elazar et al., 2021;
Kassner et al., 2021; Asai and Hajishirzi, 2020;
Hosseini et al., 2021). For example, Kassner et al.
(2021) created a dataset to measure a model’s con-
sistency by evaluating its responses to sentence
pairs that are subject to certain constraints (e.g.
if X is a dog is true, X has a tail must also be
true). More similar to our work, Elazar et al. (2021)
studied whether factual knowledge in masked lan-
guage models is invariant to paraphrasing. To this
end, they created PARAREL, a dataset containing
cloze-style English paraphrases. In these two ex-
amples, consistency is either evaluated against a
network of logical relationships between beliefs or
by generating different forms of the same meaning
through paraphrasing. BECEL (Jang et al., 2022) is
a benchmark for evaluating these two types of con-
sistency (logical and semantic) across various tasks.
This benchmark has recently been used to evalu-
ate ChatGPT, showing that it is more consistent
for negations than other LLMs, but still likely to
generate different responses to paraphrases of the
same meaning (Jang and Lukasiewicz, 2023). Un-
like previous work – except (Jang and Lukasiewicz,
2023) – we focus on true self -consistency: Differ-
ent forms of the same meaning are generated by
the model itself, rather than externally.

Multilingual evaluation. The development of
cross- and multi-lingual LLMs has spurred inter-
est in multilingual evaluation beyond translation.
Several multilingual versions of benchmark tasks
have been generated, such as PAWS-X (Yang et al.,
2019), XCOPA (Ponti et al., 2020), and XNLI
(Conneau et al., 2018) – usually through expert
translations from the original task (for a more
expansive overview, we refer to Hupkes et al.,
2023, Appendix D). In addition, multilingual tasks
have been combined to form multilingual multitask
benchmarks, including XTREME (Hu et al., 2020),
XTREME-R (Ruder et al., 2021), and XGLUE
(Liang et al., 2020). All of these benchmarks reveal
language-dependent differences in performance for
current multilingual LLMs. Our approach is dif-
ferent in that we aim to evaluate self-consistency
by detecting language-dependent changes in model
responses, relying on the model’s own translations
instead of external translations.
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3 Methods

We now proceed with describing the model (§ 3.1)
and the benchmark data (§ 3.2) we use for our
experiments, as well as the procedure we use for
extracting translations from the model (§ 3.3).

3.1 Model and hyperparameters

We showcase our paradigm using GPT-3.5-TURBO-
0301. We use the default parameters but set the
temperature to 0.25. We found a low temperature
to yield model responses that more closely match
the template answers for benchmarking, as well as
model translations that better capture the meaning
of the source sentences. In addition, we set the
maximal number of generated tokens to 256 for
benchmarking and 2048 for translation.

3.2 Benchmarking

Tasks and languages. We evaluate understand-
ing using the multilingual benchmarks PAWS-X
and XNLI (test splits). While our paradigm does
not require parallel multilingual datasets, we use
them here to evaluate translation quality, compare
translations between two languages in both direc-
tions, and analyse differences that arise from using
model-internal instead of model-external transla-
tions. PAWS-X is an adversarial paraphrase identi-
fication task, consisting of sentence pairs created
by word-swapping, resulting in negative pairs that
have clearly distinct meanings, but a high lexical
overlap (see, for instance, the example in Figure 1).
XNLI, on the other hand, is an NLI benchmark,
containing sentence pairs where one sentence en-
tails the other, contradicts it, or neither of the two
(neutral). Importantly, on either task, the model’s
judgment should not be dependent on nuances in
meaning that may be lost in translation. For our
experiments, we focus on the German, English, and
Chinese partitions of the respective benchmarks.

Instructions. We design task instructions in En-
glish to evaluate the model’s zero-shot performance.
Given that the benchmarks are binary/ternary clas-
sification problems, the instructions can be formu-
lated such that the model’s responses can be easily
standardised and evaluated:

• PAWS-X: Do the following sentences have the
same meaning? Sentence 1: “[sentence_1]”
Sentence 2: “[sentence_2]” Please answer
with “yes” or “no”.

• XNLI: Given the following sentence pair,
which one of the following is true: (A) the
first sentence entails the second sentence, (B)
the first sentence contradicts the second sen-
tence, or (C) neither of the two? Sentence
1: “[sentence_1]” Sentence 2: “[sentence_2]”
Please answer with “A”, “B”, or “C”.

In addition, these instructions are translated into
German and Chinese by native speakers (see Ap-
pendix B), in sum giving us ground truth input data
and instructions in each language.

Evaluation. We process each input in a separate
request. We only accept model responses match-
ing the template answer (e.g. “yes”) or containing
it (e.g. “Yes, the sentences have the same mean-
ing.”), ignoring casing.4 In the second case, we
apply a semi-automatic standardisation procedure:
a function maps the model’s responses to one of the
template answers, and these mappings are checked,
and if necessary corrected, by hand. Using the stan-
dardised responses, we can calculate the model’s
accuracy on the task, as well as the model’s consis-
tency across different runs.

3.3 Model-internal translations

We experiment with translations from English to
Chinese and German, and from Chinese and Ger-
man to English. The original English, Chinese, and
German tasks serve as baselines for our simula-
tions. Our main goal is to evaluate the consistency
between the model’s responses on these baselines
and the model’s responses on a model-internally
generated translation, always comparing the source
language to the translation from source to target.

Translation procedure and notation. We gener-
ate model-internal (zero-shot) translations of both
input data and instructions. The translation instruc-
tions (see Appendix C), written by native speakers,
are always given in the source language. For the
task instructions, the model translates the instruc-
tion prefix (e.g. Do the following sentences have
the same meaning?), the word for sentence (e.g.
sentence), and the instruction suffix (e.g. Please
answer with “yes” or “no”.) in separate requests,
and we recompose these translations to an instruc-
tion in the target language (see Appendix B). For

4Only a negligible amount of responses do not fall into
one of these two categories (< 1%). These are mapped onto
an additional label indicating invalidity.
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Figure 2: An overview of our experiments and analyses.

the input data, the model translates each sentence
per input sentence pair in a separate request.

In what follows, we will denote the instruction
of a task T with I and the input to which it is ap-
plied with X . We annotate the language in which
either of those is given with a subscript, which also
indicates whether it is a model translation from an-
other language. Thus, Ten refers to the scenario in
which both the instruction and the input are given in
English, using the original benchmark data, while
Ten→de denotes the model’s translation of instruc-
tion and input sentences from English to German.
Following the same principle, Ien→de and Xen→de

indicate instructions and input, respectively, that
the model has translated from English to German.

Evaluation. The model’s translations of the task
instructions were reviewed by native speakers who
found the translations to be appropriate, apart from
slight deviations in the translations from Chinese
to English: For PAWS-X the instructions mention a
single sentence instead of a sentence pair (Does the
following sentence have the same meaning?) and
for XNLI the word covers is used for entails. To
evaluate the quality of the model’s translations of
the actual input sentences, we employ BLEU scores
(Papineni et al., 2002) calculated with SacreBLEU
(Post, 2018), as well as ROUGE (Lin, 2004), and
COMET-22 (Rei et al., 2022) scores (see § 4.3).

4 Results

In this section, we discuss the results of our experi-
ments (see Figure 2), beginning with our primary
experiment in which we assess how consistent the
model’s task understanding is across languages
(§ 4.1). In subsequent experiments, we investi-

gate the individual effects of translating the dataset
or the instructions (§ 4.2), and ensure that incon-
sistencies do not arise from inaccurate translations
(§ 4.3) or poor task performance (§ 4.4).

4.1 Multilingual consistency

In our primary experiment, we assess the consis-
tency of a model’s understanding by comparing the
model’s responses in a monolingual setting – with
the original input data and instruction language
– with its responses when using a model-internal
translation of those. Crucially, the task translations
are produced by the model itself, rather than exter-
nally. Assuming that the model is a good model
of translation (see § 4.3), its translations should be
meaning-preserving. In that case, if the model has
a meaning-based task understanding, its responses
to both task versions should be consistent.

The results are reported in column T (Task) of
Table 1. As we can see, there is not a single
case where the scores are near-maximal, indicat-
ing that the task understanding of the model is
not consistent across the evaluated languages. Re-
garding the language pairs, consistencies tend to
be higher when translating between English and
German compared to English and Chinese, with
an exception for translations to English on XNLI
(bottom rows). More details on the differences
in predictions before and after translation can be
found in Appendix D and a qualitative analysis
of the translations from English to German in Ap-
pendix E. Besides, to provide an example where
our paradigm is applied to a monolingual bench-
mark, we run the main experiment also for BoolQ
(Clark et al., 2019), which yields similar results
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(see Appendix F).

Consistency
Src→Tgt T I X

PAWS-X

en→de 0.84 0.93 0.85
en→zh 0.76 0.91 0.79
de→en 0.86 0.93 0.86
zh→en 0.70 0.87 0.75

XNLI

en→de 0.74 0.81 0.76
en→zh 0.67 0.77 0.71
de→en 0.63 0.69 0.81
zh→en 0.67 0.79 0.72

Table 1: Consistency between baseline (Tsrc) and
model-internal translation from source to target lan-
guage (Tsrc→tgt). Shown are the consistencies for trans-
lating input data and instruction (column T), instruction
only (I), or input data only (X).

4.2 Interpretation and execution consistency

When the model is inconsistent across languages,
we need to determine whether it is due to an inad-
equate understanding of what it is asked to do in
the target language or an inability to perform what
it is asked to do in that language. We differentiate
these effects by assessing the model’s consistency
when translating only the instruction, while retain-
ing the original input sentences (e.g. comparing
Ten and Ien→de/Xen) and its consistency when
translating only the input sentences while preserv-
ing the original instruction (e.g. comparing Ten and
Ien/Xen→de). We show the results in Table 1.

Neither consistencies for translating only the in-
structions (column I) nor those for translating only
the input sentences (column X) are at their maxi-
mum, indicating that the model is inconsistent in
both interpretation and execution. Inconsistencies
are consistently higher for PAWS-X than XNLI,
probably because PAWS-X is a binary and XNLI
is a ternary classification problem. However, even
translating a simple instruction, such as the one for
PAWS-X, leads to inconsistencies for all transla-
tions. Consistencies seem to decrease more when
translating the input sentences compared to the in-
structions (except for German to English on XNLI)
and even more when translating both (column T).
Thus, inconsistencies in complete translations seem
to be driven by differences in both task interpreta-
tion and execution, although differences in execu-
tion are more pronounced.

Src→Tgt BLEU

PAWS-X

en→de 56.5
en→zh 49.2
de→en 60.0
zh→en 37.6

XNLI

en→de 41.4
en→zh 43.5
de→en 45.8
zh→en 28.0

Table 2: BLEU scores for the model-internal translation
of the input data.

4.3 Consistency and translation quality

The metric we propose in some way conflates
monolingual task understanding and translation
quality: inconsistencies can be driven by misalign-
ment in task understanding, but also by poor trans-
lation quality. While both are important, and the
metric therefore favours models that do well across
the board, it is worth further investigating which of
the two drives the observed inconsistencies.

We start by considering the hypothesis that the
model’s consistency is suboptimal simply because
it is not a good model for translation. If the trans-
lation quality is poor, inconsistencies may arise
from differences in meaning between original and
translated inputs, rather than a language-dependent
task understanding. To evaluate the model’s trans-
lation quality specifically on the benchmark data,
we examine the translations of the input data for all
languages and directions using BLEU scores (see
Table 2) and other commonly adapted metrics for
translation quality (see Appendix G).

All metrics indicate that the model’s translations
are of high quality across tasks and languages, with
the sole exception of translations from Chinese
to English. The scores are generally higher for
PAWS-X than XNLI, which might be due to the
more challenging and diverse text sources used in
generating XNLI. The high scores thus suggest that,
for most of the considered source-target language
combinations, inconsistencies cannot be ascribed
to changes in meaning induced by the translation.

To further substantiate this claim, we compute
the Pearson correlations between the BLEU score
of the translation and the (binary) consistencies
between the model’s original responses and its re-
sponses on the translated benchmark data (see Ta-
ble 3, top row for each task). We focus on the simu-
lations with model-internal translations of the input
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sentences, keeping the instruction in the source lan-
guage (e.g. Ien/Xen→de). For these simulations,
we can obtain a translation quality score per data
point, which is not confounded with the transla-
tion quality of the instruction. The BLEU score
for a given data point is calculated by averaging
the scores of the two sentences from the sentence
pair. All correlations are positive, yet, the absolute
values are very low (≤ 0.09). These findings sug-
gest that the observed inconsistencies are largely
independent of the translation quality, at least in
light of the generally high translation quality ob-
served for this specific model. Additional evidence
is presented in Appendix H, revealing significant
inconsistencies even when exclusively using the
best translations.

4.4 Consistency and performance

While we have shown that the model’s inconsis-
tency does not stem from poor translation quality,
it could still stem from an inability to perform the
task, leading to somewhat “random” responses on
different task versions. To investigate this hypothe-
sis we look at the model’s accuracies.

Task accuracies. In Table 4 (column Tsrc), we re-
port the monolingual task accuracies for the model
on both tasks, for all languages. Accuracies are
generally higher for PAWS-X (with only two class
labels) than XNLI (with three class labels). In par-
ticular, accuracies for German on XNLI are very
low. Appendix I presents the accuracies for var-
ious combinations of input data and instruction
languages, which indicate that the model struggles
with the German instruction (rather than input) for
XNLI. Furthermore, the accuracies for English are
higher than for other languages. While this may
not be surprising given the predominantly English
training data, it does raise an intriguing point: if a
model can perform a particular task in English, and
it can correctly translate the task into a different
language, why is it not able to perform the task at
a similar level in that other language?

ρ (BLEU, consistency)
en→de en→zh de→en zh→en

PAWS-X 0.02 0.07 0.06 0.03
XNLI 0.03 0.02 0.05 0.09

Table 3: Pearson correlation between BLEU scores and
model consistency between original and translated in-
puts (Isource/Xsource→target).

To further investigate this point, we now con-
sider the accuracies of the model on the task using
the model’s own translation, which we report in
Table 4 (column Tsrc→tgt). Accuracies for trans-
lating either instructions or input sentences only
can be found in Appendix J. The results confirm
our earlier observation that the model does not
maintain consistent meaning representations across
languages: even though translations are generated
by the model itself and thus should be meaning-
preserving according to the model, they lead to
differences in performance (compared to the base-
lines in column Tsrc).

These differences in performance also have prac-
tical consequences. While translating from En-
glish to German or Chinese leads to a decrease in
accuracy, translating from German or Chinese to
English leads to an increase in accuracy for both
PAWS-X and XNLI. Such improvements can also
be observed when translating to English from other
languages, like French and Spanish, and are largely
due to translating the instruction (see Appendix J).
It seems that the model’s language-dependent task
understanding – especially interpretation – can
be exploited to increase performance on “lower”-
resource languages by instructing the model to first
translate the incoming prompt to English and then
to perform the task.

Consistent correct vs incorrect. We further in-
vestigate if there is a difference in consistency be-
tween examples for which the model provides a cor-
rect answer and those for which it provides an incor-
rect answer. This comparison is interesting because
correct and incorrect consistent examples provide
different levels of evidence for the consistency of
a model. Being consistently incorrect across two

Accuracy
Src Tgt Tsrc Tsrc→tgt

PAWS-X

en de
0.77

0.76
en zh 0.66
de en 0.71 0.73
zh en 0.60 0.68

XNLI

en de
0.71

0.60
en zh 0.60
de en 0.48 0.65
zh en 0.56 0.61

Table 4: Accuracies on PAWS-X and XNLI for the orig-
inal task Tsrc, and model-internal translations Tsrc→tgt

from source (src) to target (tgt) language.
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Ten Ten→de Ten→zh Tde→en Tzh→en

PAWS-X
consistency all 0.99 0.84 0.76 0.86 0.70
consistency correct 0.99 0.89 0.78 0.92 0.82
consistency incorrect 0.98 0.67 0.71 0.72 0.52

XNLI
consistency all 0.98 0.74 0.67 0.63 0.67
consistency correct 0.99 0.77 0.71 0.83 0.80
consistency incorrect 0.96 0.66 0.57 0.45 0.50

Table 5: Detailed consistencies for the core experiment as well as for a baseline of two different runs with Ten.
Listed are the consistency across all responses (consistency all), as well as the consistency across responses that
were correct (consistency correct) and responses that were incorrect (consistency incorrect) on the source task.

examples points to an error in the model’s under-
standing but provides stronger evidence for the
consistency of its underlying representations than
examples that are consistently correct. Whereas the
latter are correct in both languages and could, in
theory, have been inferred independently from the
data for those respective languages, it is more un-
likely that a model makes an identical but unrelated
incorrect inference in two different languages.

First, we establish a baseline, by computing the
consistency between two runs with the same Ten

inputs (Table 5, first column, row 1 for each task,
respectively). The overall consistencies for this
baseline are very high: 99% for PAWS-X and 98%
for XNLI. Accordingly, when asked the same ques-
tion multiple times, the model usually gives the
same response. In the second and third row (per
task, respectively), we further break down consis-
tency and compute what percentage of the correct
and incorrect examples were consistent. As we can
see, the baseline case has a high consistency for
incorrect responses (98% and 96%), implying that
the model’s errors are systematic and not due to
random guessing.

Moving to the model-internal translations, we
observe a general decrease in consistency that af-
fects both correct and incorrect responses. How-
ever, the consistency for incorrect examples is no-
tably lower than for correct examples. Given that
the model’s errors are systematic, this discrepancy
suggests that at least some of the consistently cor-
rect examples have been inferred independently in
both languages. In conclusion, the comparatively
low consistencies for incorrect examples provide
corroborating evidence for a sense-dependent task
understanding.

5 Conclusion

In this paper, we presented a novel paradigm for
evaluating language models, which leverages con-
sistency across different linguistic senses. Our
method can be used to assess generalisation ability
beyond specific forms. It offers affordability and
applicability to different evaluation tasks, while
also mitigating the risk of evaluating on data that
the model has already encountered during train-
ing. As such, multisense evaluation is not an al-
ternative to current benchmarks but a complement.
Reporting consistency next to standard evaluation
metrics will make model evaluation more mean-
ingful in providing an estimate of how well the
model understands a given task beyond its specific
form. Therefore, we encourage other researchers
to treat multisense consistency as an essential part
of benchmarking.

To showcase the effectiveness of our paradigm,
we conducted a multilingual multisense consis-
tency evaluation of ChatGPT (gpt-3.5-turbo), a
SOTA LLM. The results of this evaluation unveiled
significant inconsistencies across different senses
generated by the model itself through translation,
suggesting a lack of genuine, cross-sense task un-
derstanding. To ensure the validity of this interpre-
tation, we ruled out alternative explanations such as
model-subjective or objective changes in meaning
caused by the translation as well as inadequate per-
formance on the original task. Collectively, these
findings show that ChatGPT exhibits a language-
and therefore sense-dependent task understanding,
which might also affect other leading LLMs.

Our paradigm can be cheaply and easily ex-
panded to include more languages, tasks, mod-
els, and notions of “sense”. Our choice to gen-
erate multiple senses through translation is well-
suited for evaluating current and future models,
given the growing trend towards multilingual mod-
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els with increasingly proficient translation abilities.
Nevertheless, numerous other multisense evalua-
tions are conceivable. For instance, instead of us-
ing model-internal translations, one could employ
model-internal paraphrases. Multiple senses could
also be generated in different domains, such as
arithmetic (different formulas yielding the same
result) or code (different functions producing the
same input-output mapping). Last but not least,
calculating consistency for various tasks may help
disentangle “unfounded” language-specific differ-
ences (forming the focus of our analysis) from dif-
ferences related to cultural bias.

In conclusion, multisense consistency can be ap-
plied as long as the model under investigation can
create different senses of a given task and has some
understanding of the task in its original sense. It
offers the possibility of evaluating the task under-
standing detached from a specific task realisation,
and we hope it will contribute to making standard
benchmark evaluations more meaningful.

Limitations

While our method can certainly be extended to
other tasks and models, some of these extensions
may prove more challenging than others. In par-
ticular, evaluating consistency between model re-
sponses that are more variable than the ones in our
experiments is less straightforward, and requires
an appropriate definition of consistency. More vari-
able responses may arise when working with LLMs
that have not been adapted to deal with instructions.
For example, we instruct ChatGPT to choose a re-
sponse from a set of predefined responses (Please
answer with “yes” or “no”, Please answer with

“A”, “B”, or “C”) and it largely follows these in-
structions. A standard LLM may deviate from these
answer templates, leading to complications in cal-
culating the consistency. In addition, more vari-
able responses may arise when dealing with tasks
that do not correspond to a classification problem.
Even testing factual knowledge with a question-
answering task may lead to variations in responses.
For example, model responses like 5, 5 times, or
five, may be consistent but are different. Further,
the model can generate responses that are only par-
tially overlapping, e.g. disastrous financial situa-
tion versus bad financial situation, which might
require a graded definition of consistency. Thus,
moving forward, it is important to develop appro-
priate definitions of consistency as well as corre-

sponding automatic evaluation procedures. Given
that judging whether two answers have the same
meaning is much easier than providing these an-
swers, the consistency evaluation might even be
outsourced to the model under investigation.

Ethics statement

We proposed a novel method for evaluating the self-
consistency of LLMs by using the models them-
selves to generate alternative forms or senses of the
same task. If a model is self-consistent according
to this evaluation, its task understanding goes be-
yond matching patterns that are present in specific
forms. Importantly, though, the model can still be
subject to the many problems that currently pertain
to pretrained LLMs such as hallucinations or biases.
Thus, when using the model to generate different
forms or to make predictions for a certain task, its
output may contain wrong information, as well as
biased and offensive content. These problematic
outputs may or may not lead to inconsistencies,
and as discussed in the conclusion, future work
could try to employ multisense consistency as a
tool to detect them. As of now, however, multi-
sense consistency is a means to evaluate a model’s
robustness, not a means to determine whether the
content of its answers is desirable.
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A Genbench evaluation card

Our work uses generalisation across senses to as-
sess task understanding in LLMs. In Figure 3, we
provide the GenBench eval card (Hupkes et al.,
2023) of our experiments.

Motivation
Practical Cognitive Intrinsic Fairness

⊠
Generalisation type

Compo-
sitional

Structural Cross
Task

Cross
Language

Cross
Domain

Robust-
ness

⊠ ⊠
Shift type

Covariate Label Full Assumed
⊠

Shift source
Naturally
occuring

Partitioned
natural

Generated shift Fully
generated

⊠
Shift locus

Train–test Finetune
train–test

Pretrain–
train

Pretrain– test

⊠

Figure 3: Our experiments assess cross-lingual generali-
sation for natural corpora, in pretrained LLMs, to assess
LLM task understanding.

B Task instructions

Table 6 shows the task instructions for both tasks, in
all languages. The table shows the original English,
German, and Chinese instructions, as well as the
model-internal translations of these instructions.5

C Translation instructions

We used the following instructions for model-
internal translations:

• en→de/zh:
Please translate the following text into
German/Chinese: “[text]”

• de→en:
Bitte übersetze den folgenden Text ins
Englische: “[text]”

5Note that we also accept不是 instead of否 for Izh.
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Task Language Instruction

PAWS-X

Ien Do the following sentences have the same meaning? Sentence 1: “[sentence_1]” Sen-
tence 2: “[sentence_2]” Please answer with “yes” or “no”.

Ide Haben die folgenden Sätze die gleiche Bedeutung? Satz 1: “[sentence_1]” Satz 2:
“[sentence_2]” Bitte antworte mit “ja” oder “nein”.

Izh 下面的句子有着相同的含义吗？句子1: “[sentence_1]”句子2: “[sentence_2]”请

用“是”或者“否”回答。

Ien→de Haben die folgenden Sätze die gleiche Bedeutung? Satz 1: “[sentence_1]” Satz 2:
“[sentence_2]” Bitte antworten Sie mit “Ja” oder “Nein”.

Ien→zh 以下句子的意思相同吗？句子1: “[sentence_1]” 句子2: “[sentence_2]” 请

用“是”或“不是”回答。

Ide→en Do the following sentences have the same meaning? Sentence 1: “[sentence_1]” Sen-
tence 2: “[sentence_2]” Please respond with ‘yes’ or ‘no’.

Izh→en Does the following sentence have the same meaning? Sentence 1: “[sentence_1]”
Sentence 2: “[sentence_2]” Please answer with ‘yes’ or ‘no’.

XNLI

Ien Given the following sentence pair, which one of the following is true: (A) the first sentence
entails the second sentence, (B) the first sentence contradicts the second sentence, or
(C) neither of the two? Sentence 1: “[sentence_1]” Sentence 2: “[sentence_2]” Please
answer with “A”, “B”, or “C”.

Ide Welche dieser Aussagen trifft auf das folgende Satzpaar zu: (A) der erste Satz impliziert
den zweiten Satz, (B) der erste Satz widerspricht dem zweiten Satz, oder (C) keines von
beiden? Satz 1: “[sentence_1]” Satz 2: “[sentence_2]” Bitte antworte mit “A”, “B”
oder “C”.

Izh 对于给出的一对句子，以下哪一个选项是正确的：（A）第一个句子涵盖了第

二个句子（B）第一个句子与第二个句子矛盾（C）两者都不？句子1: “[sen-

tence_1]”句子2: “[sentence_2]”请用“A”、“B”或“C”来回答。

Ien→de Angesichts des folgenden Satzpaares, welche der folgenden Aussagen ist wahr: (A) Der
erste Satz impliziert den zweiten Satz, (B) Der erste Satz widerspricht dem zweiten Satz
oder (C) Keines von beiden? Satz 1: “[sentence_1]” Satz 2: “[sentence_2]” Bitte
antworten Sie mit “A”, “B” oder “C”.

Ien→zh 给定以下句子对，哪一个是正确的：（A）第一句蕴含第二句，（B）第一句

与第二句相矛盾，还是（C）两者都不是？句子1: “[sentence_1]”句子2: “[sen-

tence_2]”请用“A”、“B”或“C”回答。

Ide→en Which of these statements applies to the following pair of sentences: (A) the first sentence
implies the second sentence, (B) the first sentence contradicts the second sentence, or (C)
neither of the above? Sentence 1: “[sentence_1]” Sentence 2: “[sentence_2]” Please
reply with “A”, “B”, or “C”.

Izh→en For a given pair of sentences, which of the following options is correct: (A) The first
sentence covers the second sentence. (B) The first sentence contradicts the second
sentence. (C) Neither of them? Sentence 1: “[sentence_1]” Sentence 2: “[sentence_2]”
Please answer with “A”, “B”, or “C”.

Table 6: Task instructions in different languages. The original instructions in English, German, and Chinese are
given by Ien, Ide, and Izh. The model-internal translations of these instructions (from source to target language) are
given by Isource→target.
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label
true false

ground truth 0.45 0.55
Ten 0.58 0.42
Ten→de 0.62 0.38
Ten→zh 0.69 0.31
Tde 0.65 0.34
Tde→en 0.62 0.38
Tzh 0.78 0.21
Tzh→en 0.53 0.47

Table 7: Ground truth and predicted label distributions
for PAWS-X.

• zh→en:
请将下面的文字翻译成英语: “[text]”

D Elaborations on the inconsistencies in
the main experiment

Tables 7 and 8 display the distributions of the
ground truth labels and the predicted labels for
different representations of PAWS-X and XNLI,
respectively. Regarding PAWS-X (see Table 7),
the model consistently overestimates the number
of paraphrases across all task representations. At
the same time, the predicted label distributions
vary – sometimes strongly – between the origi-
nal task versions (Ten, Tde, Tzh) and their model-
internal translations. For example, the amount of
predicted paraphrases increases from 58% in En-
glish to 62% when translating to German and 68%
when translating to Chinese. More extremely, the
model predicts 78% paraphrases on the Chinese
task version but only 53% on its translation to En-
glish. These distributions suggest the presence of
language-dependent biases in the model’s assess-
ment of whether two sentences convey the same
meaning or not. In particular, if the model trans-
lates from a certain source language to a certain
target language, the predicted label distribution for
the model-internal translation (Tsource→target) be-
comes more similar to that of the “model-external”
translation (Ttarget). In other words, if the model
predicts more or fewer paraphrases on the target
language (Ttarget) compared to the source language
(Tsource), the predictions on the model-internal
translation tend to increase or decrease accordingly.

These patterns are reflected in the types of incon-
sistencies observed when comparing the model’s
responses on the original task version to those on
the model-internal translation. When translating

label
entail neutral contradict

ground truth 0.33 0.33 0.33
Ten 0.48 0.21 0.30
Ten→de 0.62 0.18 0.20
Ten→zh 0.42 0.36 0.22
Tde 0.69 0.26 0.05
Tde→en 0.54 0.15 0.31
Tzh 0.52 0.25 0.22
Tzh→en 0.40 0.31 0.30

Table 8: Ground truth and predicted label distributions
for XNLI.

from English to German, 60% of the inconsisten-
cies are cases where the model classifies a sentence
pair as a paraphrase in German but not in English.
When translating from English to Chinese (with an
even higher proportion of predicted paraphrases),
these cases account for 0.72% of the inconsisten-
cies. Conversely, when translating from German or
Chinese to English, most inconsistencies are cases
where the model classifies a sentence pair as a para-
phrase in the source language but not in English
(60% for German and 92% for Chinese).

For XNLI (see Table 8), the model consistently
overestimates the number of entailments and, cor-
respondingly, tends to underestimate the number of
contradicting and neutral sentence pairs. Especially
notable are the high amounts of predicted entail-
ments for Tde (69%) and Ten→de (62%), which are
further explored in the qualitative analysis provided
in Appendix E. Despite this general trend, the pre-
dicted distributions exhibit significant variations be-
tween the source language and the model-internal
translation. For example, while the model predicts
only 48% entailments on Ten, it predicts 62% on
Ten→de. Conversely, while it predicts 69% entail-
ments on Tde, it predicts only 54% on Tde→en.

Compared to PAWS-X, it is more challenging to
identify patterns in the inconsistencies for XNLI.
Firstly, there are more interactions between incon-
sistencies as there are three class labels instead of
two. Secondly, the more complex task instruction
may have a stronger influence, leading to mixed
effects from differences in task interpretation and
execution. However, for translations between En-
glish and German (which are also of higher quality
than translations between English and Chinese),
some patterns can still be identified. Most inconsis-
tencies when translating from English to German
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involve sentences where the model switches from
neutral (33%) or contradiction (35%) to entailment,
together accounting for 68% of the inconsistencies.
When translating from German to English, in turn,
a large proportion of the sentence pairs formerly
classified as entailment are now classified as con-
tradiction, constituting 51% of the inconsistencies
(with 9% for switching from entailment to neu-
tral). These inconsistencies might be considered
a particularly strong argument against a genuine
task understanding by the model, as it regularly
switches interpretation between the contrasting con-
cepts of “entailment” and “contradiction”, rather
than mostly transitioning between neutral and the
other two categories.

E Qualitative analysis for model-internal
translations from English to German

We conduct a qualitative analysis of the model’s
inconsistencies when translating from English to
German. We examine 100% of the inconsistencies
on PAWS-X (329 data points) and the first 50% of
the inconsistencies on XNLI (664 data points).

To begin with, our focus lies on verifying
whether the model’s change in response is indeed
due to a change in sense (but not meaning) or
whether there might be an alternative explanation.
For that purpose, we classify the data points into
two categories: category (1) if no alternative ex-
planation can be identified and category (2) if an
alternative explanation can be identified. After re-
viewing the examples, we define the following al-
ternative explanations for category (2):

(2.1) Ambiguity

• Source ambiguities: the source sentence con-
tains ambiguous expressions and the model
a) switches interpretation or b) resolves this
ambiguity.

• Target ambiguities: the target sentence con-
tains ambiguous expressions that were not am-
biguous in the source sentence.

(2.2) Translation quality

• The translation does not preserve meaning.

• The translation is of poor linguistic quality,
potentially making the task more difficult.

(2.3) Identical sentences

• The translations of the input sentences are
identical, which confuses the model.

Note that this is a very conservative encoding.
Firstly, some of these cases should arguably not
cause inconsistencies. For example, if the model
“understands” what it means for two sentences to
have the same meaning, it should also understand
that two identical sentences have the same mean-
ing (subcategory 2.3). Secondly, even if there is
ambiguity in the source or target language, or the
linguistic quality is subpar, it is not clear whether
the model changes its response because of these
factors.

Here are examples illustrating the subcategories.
An example of ambiguity is the following sentence
pair from PAWS-X: “The film stars Oscar Nunez,
Rob Huebel, Timothée Chalamet, Lily Rabe, An-
thony Quintal, and Lili Reinhart.”, “Film stars Os-
car Nunez, Rob Huebel, Timothée Chalamet, Lily
Rabe, Anthony Quintal, and Lili Reinhart.” The
first sentence is ambiguous as to whether stars is
a verb or part of the compound noun film stars. In
German, it is translated as a verb (“Der Film hat Os-
car Nunez, [...]”), and as a result the sentence pair
is classified as a paraphrase in English but not in
German. An example of an inaccurate translation
is the following sentence pair from XNLI: “Smaller
boats for local jaunts can be rented at Sea Horse
Boat Rentals, Marsh Harbour, Abacos (Tel.,”, “You
can rent one passenger boats.” Due to the missing
hyphen between one and passenger in the premise,
one passenger boats is interpreted as one passen-
ger boat in the German translation (“Sie können
ein Passagierboot mieten.”). The model correctly
predicts that the sentences are neutral in German
but predicts entailment in English. Finally, here
is an example of identical sentences from PAWS-
X: “The first series was recorded by critics better
than the second .”, “The first series was better re-
ceived by critics than the second .”; which are both
accurately translated to “Die erste Staffel wurde
von Kritikern besser aufgenommen als die zweite.”
While the model predicts that the sentences have
the same meaning in English, it only replies that
the sentences are identical in German (“Die beiden
Sätze sind identisch.”).

Despite the conservative encoding, a majority of
the inconsistencies – 78% for PAWS-X and 86%
for XNLI – fall into category (1), which means that
none of the alternative explanations are applicable.
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For PAWS-X, 6% of the inconsistencies may be
related to ambiguities, 10% to translation quality,
and 4% to identical sentence pairs.6 For XNLI, it
is 7% for ambiguities, 7% for translation quality,
and 0% for identical sentence pairs. Alongside the
analyses in § 4.3 and § 4.4, this less general but
more in-depth analysis provides further evidence
that the model’s responses are sense-dependent.

Examining examples from category (1) can help
understand how a sense-dependent task understand-
ing might lead to inconsistencies. In most cases, it
remains unclear why the model makes different pre-
dictions. Especially for PAWS-X, it is surprising
how the model is sometimes fooled by the adver-
sarial nature of the sentences in one language but
not the other. For example, given the sentence
pair “The Tabaci River is a tributary of the River
Leurda in Romania .”, “The Leurda River is a trib-
utary of the Tabaci River in Romania .”; and the
correct German translations “Der Fluss Tabaci ist
ein Nebenfluss des Flusses Leurda in Rumänien.”,
“Der Fluss Leurda ist ein Nebenfluss des Tabaci-
Flusses in Rumänien.”; the model identifies that the
sentences have different meanings in English but
not in German. The reverse case where the model
is fooled in English but not in German also exists.

In some cases, one can speculate that certain in-
formational content of the sentences is more read-
ily available to the model in one language than the
other, which might influence its response. Take for
example the following sentence pair from XNLI:
“Among the many jazz clubs are the famed Jazz
Bakery in Culver City, the Catalina Bar and Grill
in Hollywood, and the Baked Potato in North Hol-
lywood.”, “There are no famous jazz clubs in Los
Angeles.” The model correctly predicts contradic-
tion in English but predicts entailment in German,
possibly because the information that Culver City is
part of Los Angeles appears more often in English
text than in German text. This example constitutes
an important exception because, unlike for most
other examples, the ability to make a correct predic-
tion is knowledge-dependent. As such, it illustrates
the very situation where the model should give the
same response in both languages. The fact that
the model apparently knows that Culver City is
in LA when asked in English but not when asked
in German thus provides powerful evidence for a

6The remaining 2% are sentences that do not fall into cate-
gory (1) or (2) because the original sentences are so ungram-
matical that it is difficult to determine whether the translation
is accurate.

sense-dependent task understanding.
An influence of prior knowledge may also lead to

mistakes as in the following example from PAWS-
X: “Stipsits was born in Korneuburg , Germany
and spent his childhood in Stammersdorf , Vienna
.”, “Stipsits was born in Korneuburg , and spent
his childhood in Stammersdorf , Vienna .” The
model correctly classifies these as paraphrases in
English, but argues that the sentences do not have
the same meaning in German because Korneuburg
is in Austria and not in Germany (“Nein. Satz 1 ist
inkorrekt, da Korneuburg in Österreich liegt und
nicht in Deutschland [...]”). It has very recently
been established that LLMs (including ChatGPT)
use prior knowledge for language inference, for
example, they judge the truth of the hypothesis
based on information in the training data rather
than information in the premise (McKenna et al.,
2023). Our results are in line with this finding and
further suggest that the interfering information is
language-dependent.

Other cases where the model provides an ex-
planation for its answer (deviating from the an-
swer template) are also revealing. In particular,
they show that the model generally struggles to
interpret the German instruction for XNLI, con-
sistent with the low accuracies for Ten→de (0.60)
and Tde (0.48) in Table 4. For example, on one
occasion the model responds “Die richtige Antwort
ist (C) Keines von beiden. Die beiden Sätze sind
unabhängig voneinander und widersprechen sich
nicht.”, on another one “Die richtige Antwort ist (C)
Keines von beiden. Die beiden Sätze haben keine
direkte Beziehung zueinander und widersprechen
sich auch nicht.” These responses indicate that the
model excludes the option of entailment because
the sentences are independent from each other or
do not have a direct relationship. Possibly, the
model also applies these as positive criteria for en-
tailment, which would explain why it significantly
overestimates the number of entailments in Ger-
man.

F Main experiment with BoolQ

BoolQ is a question answering dataset where each
example consists of a passage and a yes/no ques-
tion about that passage. We use the validation split
of the dataset and prompt the model by providing
the passage, followed by the question (capitalised
and with a question mark), and the instruction
Please answer with “yes” or “no”. We retrieve
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Task version Consistency Accuracy
Ten (orig) - 0.86
Ten→de 0.89 0.82
Ten→zh 0.81 0.78

Table 9: Consistency and accuracy for BoolQ. The first
column provides the consistencies between the model’s
responses on the original task (Ten) and the model-
internal translations of that task to German (Ten→de)
and Chinese (Ten→zh). The second column provides
the model’s accuracy for each task version.

the model’s responses for Ten and evaluate consis-
tency with Ten→de and Ten→zh, respectively. The
translations of the input sentences are obtained by
instructing the model to translate each passage and
question in a separate request, using the English
translation instruction (see Appendix C). Since the
instruction for BoolQ corresponds to the instruc-
tion suffix for PAWS-X, we reuse these translations.
The resulting consistencies are provided in Table 9,
together with the accuracy for each task version.
The consistencies follow the same pattern as those
for PAWS-X and XNLI when translating from En-
glish to German and Chinese (see Table 1): The
model is not perfectly consistent regardless of the
target language, with lower consistency for the Chi-
nese translation.

G Translation evaluation scores

We evaluate translation quality for the input sen-
tences using BLEU, ROUGE, and COMET-22
scores (see Table 10).

H Inconsistencies for very high quality
translations

We extend the analyses from Section 4.3 by cal-
culating the inconsistencies for data points with
a BLEU score of at least 50. Our focus remains
on translations of the input data and the model is
instructed in the original (source) language. Ta-
ble 11 shows the amount of data (%) included in
the analysis, along with the corresponding consis-
tency. Importantly, the model’s inconsistency per-
sists, as it never achieves consistencies surpassing
0.87. Moreover, across the board, consistencies
exhibit only a slight improvement compared to the
original values (see consistency orig, same as in
Table 1, column X). The only substantial increase
in performance occurs for translations from Chi-
nese to English on XNLI, with consistency rising

from 0.72 to 0.80. This finding aligns with the
observation that the translations from Chinese to
English are of significantly lower quality than the
other translations. Hence, bad translations may
reduce consistency, but this phenomenon is only
observed in one specific case.

I Performance on mixed languages for
input data and instructions

We look at different ablations to understand the
effect of using a language other than English for in-
put data or instruction. Table 12 shows the model’s
accuracy on different combinations of languages
for input sentences and instructions, always using
the input sentences provided by the multilingual
benchmark, and the English, German, or Chinese
instructions developed for us by native speakers.
Compared to Ten, with an accuracy of 0.77 on
PAWS-X and 0.71 on XNLI (see Table 4), ac-
curacy decreases when instruction or input data
are changed from English to German or Chinese.
Changing the language for both at the same time
further decreases accuracy, as errors from each lan-
guage change accumulate (see Tde and Tzh in Ta-
ble 4). For PAWS-X there is a more substantial
decrease when changing instructions or input data
to Chinese compared to German. For XNLI, es-
pecially the use of the German instruction is detri-
mental, with accuracies dropping from 0.71 to 0.50.
Testing alternative German instructions reveals that
this effect does not only pertain to our specific for-
mulation. While a decrease in performance may be
expected for non-English inputs, the extent of this
effect when changing only the task instruction is
surprising. For example, changing the instruction
for PAWS-X from English to Chinese leads to a
10% absolute decrease in accuracy, even though
this instruction is very simple.

J Task performance for model-internal
translations

Table 13 shows the model’s accuracies for all
source languages (Tsrc) and the correspond-
ing model-internal translations: instruction only
(Isrc→tgt / Xsrc), input sentences only (Isrc /
Xsrc→tgt), or both (Tsrc→tgt). In addition, we
add accuracies for French and Spanish and their
translations to English. § 4.4 shows that model-
internal translations from German and Chinese to
English increase the model’s accuracy compared
to the original Tde and Tzh tasks. The results for
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Src→Tgt BLEU Rouge1 Rouge2 Rouge-l COMET-22

PAWS-X

en→de 56.5 0.80 0.64 0.77 0.89
en→zh 49.2 0.68 0.42 0.62 0.86
de→en 60.0 0.87 0.72 0.83 0.88
zh→en 37.6 0.73 0.49 0.66 0.85

XNLI

en→de 41.4 0.71 0.52 0.68 0.88
en→zh 43.5 0.66 0.39 0.62 0.87
de→en 45.8 0.76 0.57 0.74 0.89
zh→en 28.0 0.61 0.37 0.57 0.86

Table 10: Evaluation of the model-internal translation of the input data.

en→de en→zh de→en zh→en

PAWS-X
consistency orig 0.85 0.79 0.86 0.75
consistency BLEU > 50 0.86 0.82 0.87 0.78
% included BLEU > 50 56.6 40.1 67.1 20.6

XNLI
consistency (orig) 0.76 0.71 0.81 0.72
consistency BLEU > 50 0.77 0.72 0.82 0.80
% included BLEU > 50 35.6 32.3 39.6 10.5

Table 11: Only datapoints with BLEU scores of > 50 are included in this analysis. The table shows the percentage
of included data points (% included BLEU>50), and the consistency of the model for these selected translations
(consistency BLEU>50) compared to the original consistency (consistency orig) repeated from Table 1 (column X).

X / I
en/de en/zh de/en zh/en

PAWS-X 0.75 0.67 0.73 0.68
XNLI 0.50 0.60 0.65 0.59

Table 12: Accuracies on mixed-language combinations
of original input data (X) and instructions (I).

French and Spanish show that translations from
other languages to English can also increase ac-
curacy. For instance, translating (input sentences
and instruction) from Spanish to English raises the
accuracy on PAWS-X from 0.72 to 0.73, and on
XNLI from 0.60 to 0.65. Looking at the separate
effects of translating the instructions or the input
sentences to English suggests that the observed
improvements can largely be ascribed to the trans-
lation of the instruction, regardless of the source
language.
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Acc (orig) Acc (translation)
Src Tgt Tsrc Tsrc→tgt Isrc→tgt / Xsrc Isrc / Xsrc→tgt

PAWS-X

en de
0.77

0.76 0.77 0.77
en zh 0.66 0.75 0.70
de en 0.71 0.73 0.72 0.70
zh en 0.60 0.68 0.67 0.63
fr en 0.72 0.72 0.72 0.71
es en 0.72 0.73 0.73 0.71

XNLI

en de
0.71

0.60 0.63 0.67
en zh 0.60 0.63 0.62
de en 0.48 0.65 0.64 0.49
zh en 0.56 0.61 0.59 0.56
fr en 0.58 0.63 0.61 0.60
es en 0.60 0.65 0.67 0.60

Table 13: Accuracies on the original multilingual benchmark tasks (Tsrc) and the model-internal translations of
these tasks from source (src) to target (tgt) language. We consider translations of both input data and instructions
(Tsrc→tgt), instruction only (Isrc→tgt / Xsrc), and input data only (Isrc / Xsrc→tgt). Besides, we add translations
from French and Spanish to English to further study whether translating to English can improve performance.
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