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Abstract

‘We propose a novel approach using instruction-
tuned large language models (LLMs), such as
ChatGPT, to automatically decompile entire
Java classes. Our method relies only on a tex-
tual representation of the Java bytecode and
corresponding unit tests generated from the
bytecode. While no additional domain knowl-
edge or fine-tuning is performed, we provide
a single training example of this decompila-
tion process in the model’s prompt. To over-
come both compilation errors and test failures,
we use an iterative prompting approach. We
find that ChatGPT-4 is able to generate more
human-readable output than existing software-
based decompilers while achieving slightly
lower pass rates on unit tests. Source code
and datasets are available at https://github.
com/BradMcDanel/gpt-java-decompiler.

1 Introduction

Decompilation is the process of converting a binary
machine language into a corresponding high-level
language source code. This technique has numer-
ous applications in fields such as rewriting legacy
code, malware analysis, and software vulnerabil-
ity repair. Unfortunately, existing software-based
decompilers are time-consuming to develop and
can generate source code that is hard for humans
to understand (Hosseini and Dolan-Gavitt, 2022).

Neural Machine Translation (NMT) methods
have been recently proposed as an alternative
to conventional software solutions to translate
between programming languages (e.g., C# to
Java) (Wang et al., 2021; Szafraniec et al., 2022).
NMT approaches have also been applied to pro-
gram decompilation, where the source language is
a compiled assembly/bytecode representation gen-
erated by a compiler and the target language is the
original programming language.

The majority of NMT approaches focus on
translating a single function with no side ef-
fects.  We speculate this constraint is due
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in large part to the limited source and target
lengths for Transformer-based translation models.
For instance, CodeT5 (Wang et al., 2021) and
CodeT5+ (Wang et al., 2023) typically use source
and target sequence lengths 1024 or fewer tokens
for a variety of code tasks such as writing and
translation. This problem is exacerbated when the
source sequence is an assembly/bytecode represen-
tation that can require 2-8x more tokens than their
programming language counterpart.

In this work, we focus on the task of translat-
ing the Java bytecode of an entire class file to Java
source code. This problem is significantly more
challenging than translating a single function for
multiple reasons. First, a class can contain tens of
methods that, when tokenized, often exceed smaller
token limits. Second, fields/methods defined ear-
lier in a class are used in the implementation of
other methods, making correct decompilation chal-
lenging due to long-term dependencies. Similarly,
imported packages, generally defined at the top
of the class, are also used throughout the file. Fi-
nally, there are many language-specific features
that generate more rarely occurring patterns of byte-
code (e.g., exceptions, static/final variables, multi-
ple constructors).

With the recent addition of longer context win-
dows for commercial instruction-tuned models',
we believe it is possible to take on more challeng-
ing programming translation tasks, such as entire
program decompilation.

To achieve accurate decompilation, we propose
an iterative generation loop to guide the model
around two types of error conditions: compilation
errors and unit test errors. For compilation errors,
we use ChatGPT to determine if the source of the
error is due (1) early stopping (i.e., emitting a stop
token in the middle of a large class) or (2) invalid
Java code. In the case of early stopping, we simply

'As of 06/13/2023, OpenAl provides a 16k token GPT-3.5
model and a 8k and 32k token GPT-4 model.
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instruct the model to continue generation, while
invalid code leads to a retry. Once compiled, we
apply unit tests to the code. If any unit test fails, we
start over with a new generation pass up to a maxi-
mum attempt limit. Our iterative approach achieves
a slightly lower test pass rate but leads to higher
quality code evaluated by several similarity met-
rics compared to state-of-the-art software-based
decompilers.

2 Related Work

2.1 Software-based Decompilers

Decompilation is the process of converting bi-
nary/assembly/bytecode generated by a compiler
back to the original high-level language. Decompi-
lation is often more difficult than compilation be-
cause much of the information in source file, such
as variable names and original control flow, has
been removed. Many techniques/heuristics have
been developed over time to estimate the origi-
nal source file with absence of complete informa-
tion (Cifuentes and Gough, 1995).

We compare our approach against several open-
source Java decompilers that have been in develop-
ment over a long period of time (Benfield, 2022;
skylot, 2022; mstrobel, 2022; Storyyeller, 2022;
feshOr, 2022). Harrand et al. provide a detailed
analysis of the quality of the source code generated
by these decompilers (Harrand et al., 2019). For
simple classes, all decompilers are able to provide
accurate and readable Java. However, for more
complicated class methods (e.g., deeply nested
code with complex control flow), they can generate
code that, while functionally correct, is often con-
voluted and not in line with standard Java program-
ming conventions, resulting in code that, though it
may execute as intended, is hard for developers to
read and understand, and may present challenges in
maintenance and integration into existing projects.

2.2 NMT-based Decompilers

Katz et al. framed LLVM-IR (intermediate rep-
resentation) to C decompilation as a translation
problem using a recurrent neural network (Katz
et al., 2018). This work constrained the problem
to short code snippets (max of 112 binary tokens
and 88 source code tokens). DIRE focused on the
sub-problem of generating good names for iden-
tifiers for x86-64 binary to C decompilation (La-
comis et al., 2019). Coda developed an instruction-
aware AST (for C programs) to restrict invalid to-
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Figure 1: Token sequence length (using the CodeT5
Tokenizer) for 5000 Java classes (in red) and their cor-
responding bytecode assembly representation (in blue).
Sequences longer than 8000 were truncated in the figure.
The GPT-3 tokenizer achieves comparable results.

ken generation of an LSTM model (Fu et al., 2019).
BTC developed a language agnostic decompiler to
generate functions from assembly to many source
languages (C/Go/Fortran/OCaml) using a single
model (Hosseini and Dolan-Gavitt, 2022).

Compared to this prior work, we believe we
are the first to tackle full Java class decompilation
where both source and bytecode token lengths can
be significantly longer than a 1024 token limit (up
to 10k tokens per class).

3 Constructing a Java Bytecode Dataset

We extract Java classes from Github repositories
indexed by Google BigQuery?. In order to generate
bytecode, we must be able to compile these files
with minimal configuration overhead. Therefore,
we discard files with 3rd party imports (anything
not starting with import java.*). Additionally,
we discard files containing multiple classes.

After these preprocessing steps, we split the Java
classes into a training and testing set with 150k
classes and 20k classes, respectively. When build-
ing the training and testing set, we first divide at the
Java project level, setting a project to be either in
the training or testing set. Additionally, we discard
any class that appears multiple times.

For each class, we used the Java 8 compiler to
generate bytecode. This bytecode was then dis-
assembled using Krakatau (Storyyeller, 2022) to
achieve a human-readable bytecode representation.
We use this disassembled bytecode representation
as input to our NMT model. Figure 1 shows the
sequence length of Java classes and disassembled
bytecode representations after being tokenized with
the CodeT5 tokenizer (Wang et al., 2021). For any
given Java class, the bytecode is often 3-4x longer.
Following the same approach as (Roziere et al.,

2https://console.cloud.google. com/marketplace/
details/github/github-repos
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Decompiler pass(%) chrF ROUGE CBS
Krakatau 88.33 0.72 0.71 0.90
Cfr 95.33 0.80 0.83 0.94
Procyon 94.00 0.83 0.85 0.94
Fernflower 95.67 0.78 0.83 0.94
GPT-3(16k) 89.00 0.85 0.78 0.91
GPT-4(8K) 92.33 0.87 0.86 0.94

Table 1: Decompiler evaluation. Pass rate (pass) is
the percentage of decompiled classes that pass all tests.
chrF, ROUGE (ROUGE-L), CodeBertScore (CBS) mea-
sure code similarity between the ground truth and the
decompiled Java files.

2021), we generate unit tests for each Java class
via fuzz testing using EvoSuite (Fraser and Arcuri,
2011) and keep test with a mutation score larger
than 90%. Generating unit tests for all 170k classes
took several days on a 32-core server.

While we use only a small subset of the test
dataset in this work, we will release the entire
dataset for future research into NMT-based Java
decompilers.

4 ChatGPT as a Java Decompiler

4.1 Structuring the Prompt

Prompt engineering techniques (Wei et al., 2022;
White et al., 2023) have recently shown that the
quality of output generated by instruction-tuned
LLMs can depend heavily on the structuring of
the prompt input to the model. For the task of de-
compiling Java bytecode, we found it important to
add a single training example of the decompilation
process with a variety of edge cases critically im-
portant to improve the model’s chance of correctly
solving the task. In a zero-shot setting (with no
sample given), the compilation success rate drops
30-40%.

Figure 2 shows the textual representation we use
for an example class. See Appendix A for more
details on the prompt used. Due to context window
limitations, we could only fit a single sample, as it
already has several thousand tokens. We found that
not adding any

4.2 Iterative Prompting Methodology

Figure 3 presents an overview of our method for
using LLMs like ChatGPT as a decompiler. A
test.class (bytecode) file is converted into a
human-readable disassembled text format using
Krakatau and used by Evosuite to generate unit

tests. This test sample (consisting of Java assembly
and unit tests) is passed along with a single training
example to be formatted as part of the prompt to
ChatGPT.

The prompt is then used as part of an iterative
prompting method that will attempt to generate
valid Java code that passes all unit tests up to a
maximum number of attempts. We define m as
the maximum number of attempts allowed for ei-
ther compilation or testing, A; as the current test
attempt, and A, as the current compilation attempt
for a test attempt. The A, value is reset to O for
each test attempt.

ChatGPT generates an output string that is inter-
preted as a pred. java file. We attempt to compile
this file using the Java compiler. If the compilation
fails, we use another instance of ChatGPT (with-
out message history) to try and diagnose the cause
of the failure. We find two general types of fail-
ure modes: (1) early stopping and (2) invalid code.
Early stopping typically occurs after approximately
1000 tokens (regardless of how much code is left to
be generated). We believe this is due to the typical
lengths of messages being no more than 1000 to-
kens during the instruction-tuning process, which
makes long generations (e.g., 5000 tokens) improb-
able to the model. To overcome early stopping, we
instruct the model to continue generation. After
each generation, we concatenate all prior messages
and treat it as a single file. This process can be
repeated multiple times up to a set number of com-
pile attempts A.. Alternatively, invalid code leads
us to delete the message history and start over.

If compilation is successful, we pass the gener-
ated pred. class to the Evosuite test runner (along
with the unit tests generated from the ground-truth
test.class) to get the number of tests passed by
the generated class. If one or more tests fail, we
again delete the message history and start over. We
do this until A; = m test attempts, at which point
we give up. Once all tests pass, we immediately
return the pred. java file that was successful.

5 Results

5.1 Evaluation Metrics

As mentioned before, we use unit tests to eval-
uate the functional correctness of the generated
pred. java file. We define pass rate as the percent-
age of samples that pass all unit tests.
Additionally, we use several similarity metrics to
estimate how similar the output of a given decom-
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piler is compared to the ground-truth Java source
file. When measuring code quality, we use a subset
of samples that have a pass rate of 1 for all de-
compilers. Otherwise, we can get skewed results
when a decompiler might emit empty strings for
samples it miscompiles. Following recommenda-
tions in (Evtikhiev et al., 2023) on the quality of
code metrics, we use chrF (Popovi¢, 2015) and
ROUGE-L (Lin, 2004) to evaluate the decompilers.
Additionally, we use CodeBertScore (Zhou et al.,
2023) which has recently been shown to achieve
stronger correlation with human preferences.

5.2 Comparison to Software Decompilers

We compare our iterative prompting methodology
using ChatGPT (with a temperature of 1.0) against
4 software-based decompilers on 300 Java classes,
which follow a sequence length distribution sim-
ilar to Figure 1. Of the software-based decom-
piler, Fernflower achieves the best pass rate of
95.67%, while Cfr achieves better code quality in
terms of both chrF and ROUGE-L. By compari-
son, our approach using GPT-4 achieves a pass rate
of 92.33%. Additionally, it ties or outperforms
all software-based decompilers on all code qual-
ity metrics. One of the major factors for this im-
provement is more descriptive variable names for
local variables which are not provided in the Java
bytecode. In Appendix B, we provide some quali-
tative comparisons of Java code produced by Chat-
GPT and the software-based decompilers. In Ap-
pendix C, we provide an analysis of why ChatGPT
achieves a lower pass rate than software decompil-
ers. In general, the length of a Java class correlates
strongly with failure, implying either (1) difficulty
with long-range attention between the bytecode in
the prompt and the Java code much further away or

Figure 3: An overview of the proposed iterative prompting method.

(2) the model hitting the context limit making de-
compilation impossible due to losing the bytecode
information.

Finally, since our approach detects failed unit
tests automatically, it could always fall back to a
software-based decompiler (e.g., Procyon) in the
case of failures. This would lead to more readable
decompiled Java code for the majority of samples
(e.g., 92%) but still provide working decompiled
code for as many samples as possible.

5.3 Impact of Iterative Prompting

Figure 4 shows the pass rate for the test set as the
maximum number of compile attempts and test
attempts are varied from 1 to 5. For GPT-3.5 and
GPT-4, giving a single attempt for both compilation
and passing all unit tests leads to a pass rate of
only 65.67% and 82.33%, respectively. Especially
for the weaker GPT-3 model, we see a dramatic
improvement in performance as both the number
of compile and test attempts are increased. This
illustrates the usefulness of iterative prompting to
improve the success of these stochastic models.

6 Conclusions

We describe an iterative prompting approach us-
ing instruction-tuned LL.Ms such as ChatGPT to
perform decompilation of entire Java classes. Com-
pared to existing software-based decompilers, our
approach achieves a slightly lower pass rate but
more human readable code. We hope the iterative
prompting approach can be useful in other domains
where an automatic feedback mechanism can be
used to attempt additional generations.
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Figure 4: The pass rate (percentage of decompiled sam-
ples that pass all tests) for GPT-3 and GPT-4 as the num-
ber of compile attempts and test attempts is increased
from 1 to 5.

Limitations

Cost Prohibitive Nature of Approach

While ChatGPT can successfully decompile the
majority of samples, this often requires multiple
attempts on long sequence lengths. This can easily
lead to 30k-50k tokens being generated for a single
sample. We estimate that we spent approximately
$20 and $150 in API costs for GPT-3 and GPT-4,
respectively, for only 300 samples. That being said,
if an engineer was going to spend multiple hours
trying to reverse engineer a Java class, they might
benefit from an implementation that is easier to
read even at a cost of around 50 cents.

Limited Test Set Size

While we collected a dataset with around 20k test
samples, we only evaluated this approach on a ran-
dom subset of 300 samples. This ties into the previ-
ous section on the costs of the approach. In princi-
ple, other than the cost, there is not preventing this
approach from being applied to a much larger test
set.

Lack of Comparison to Open-source Models

Currently, no open-source model trained on code
offers a context window long enough to reliably
perform decompilation of an entire Java class (es-
pecially if we include a training sample). For a
shorter context length of 2K tokens, the proposed
approach will not work, as our current prompt is
already longer than that. We hope that this work
provides evidence for the importance of more open-
source LLMs trained on longer context windows.

Ethics Statement

The field of decompilation, and specifically the use
of neural machine translation (NMT) models for
decompilation, raises a number of ethical consider-
ations. In this section, we will discuss some of the
key concerns that arise in this context.

Generation of Nefarious or Invalid Code

One unique concern with NMT-based decompila-
tion is that it may generate code that is invalid or
malicious in ways that differ from conventional
software-based decompilers. For example, a de-
compiler might produce code that appears syntacti-
cally correct, but that has unintended or malicious
side effects when executed. This could be a result
of the model failing to accurately understand the
original code, or it could be due to the model inten-
tionally feeding specific bytecode samples for the
purpose of generating malicious code.

To mitigate this risk, it is important to make these
types of issues known and to carefully evaluate the
code generated by NMT-based decompilers and to
use appropriate testing/validation techniques.

Software Reverse Engineering

Another ethical concern with NMT-based decompi-
lation is the potential for it to be used for software
reverse engineering. Reverse engineering is the
process of taking apart a piece of software in order
to understand how it works, or to identify vulnera-
bilities or other weaknesses. In some cases, reverse
engineering may be done for legitimate purposes,
such as to identify and fix security vulnerabilities
or to develop compatibility or interoperability so-
lutions. However, in other cases, it may be used
for nefarious purposes, such as to steal intellectual
property or to create competing software products.

While reverse engineering is possible using
conventional software-based decompilers, the im-
proved syntactic structure and clearer variables
names of NMT-based decompilers like our ap-
proach may lower the barrier of entry for many
programmers. This could lead to an increase in the
number of individuals and organizations engaging
in software reverse engineering, which could pose
a threat to the intellectual property and competitive
advantage of software companies.

To address these ethical concerns, it may be nec-
essary to put measures in place to restrict the use
of NMT-based decompilers to only those with le-
gitimate purposes. This could include the imple-
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mentation of licensing or access controls, as well
as educational campaigns to raise awareness about
the potential consequences of software reverse en-
gineering. It may also be necessary to address any
legal or regulatory issues surrounding the use of
these tools, such as clarifying the boundaries of fair
use and protecting the rights of software develop-
ers. Ultimately, the responsible use of NMT-based
decompilers will require a balance between the
benefits they offer and the potential risks they pose.

Security and Privacy

Finally, there are also potential security and pri-
vacy concerns related to NMT-based decompila-
tion. Decompiling software may reveal sensitive
information, such as hardcoded passwords or keys,
which could be exploited by malicious actors. In
addition, decompiling software may reveal vulner-
abilities or weaknesses in the code, which could be
exploited to gain unauthorized access or to disrupt
the software’s functionality. Again, while this is
already possible with conventional decompilers, as
NMT-based decompilers improve the readability of
code, it could become a larger risk.

Summary

In summary, the development and use of NMT-
based decompilers raises a number of ethical con-
cerns that should be carefully considered. These
include the potential for the generation of nefarious
or invalid code, the use of decompilers for software
reverse engineering, intellectual property concerns,
and issues related to security and privacy. While
these concerns are not unique to NMT-based de-
compilers, the improved capabilities of these tools
may make them more appealing to those with ma-
licious intent. Therefore, it is important for re-
searchers and practitioners in this field to carefully
consider these ethical implications and to take steps
to minimize potential negative consequences. This
may include carefully controlling access to these
tools, implementing safeguards to prevent the gen-
eration of invalid or malicious code, and working
with legal and policy experts to ensure that these
tools are used responsibly and in compliance with
relevant laws and regulations.
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A Prompt

The prompt used in our iterative decompilation
procedure is shown below.

#%TASK#%: Convert Java Assembly to a Complete Java Class

Your task is to transform the provided Java assembly and
corresponding generated Java tests into a complete,
syntactically valid Java class.

Please follow

the guidelines carefully:

1. #xComplete Class#*: Ensure your result is
class , with a properly defined class
can be spaced out across multiple messages
is extremely long. In this case, do not mention
you are doing so, simply assume the user will
understand and will be able to piece together the class
from the messages.

2. =xPackage Imports=#*: Incorporate any necessary package
imports at the beginning of the class. If you're unsure
, you may import any package you deem necessary .

3. =xJavadoc Comments#x: Every method in your class must be
preceded by clear and concise Javadoc comments,
outlining the method's purpose, parameters, and return
values (if any).

4. %xVariable Namingss*: In cases where you need to infer
variable names, make sure they are meaningful and self -
explanatory , adhering to Java's naming conventions.

a complete Java
structure . This
if the class
that

14
15
16
17

18

19

20

68

5. xxAvoid Java Assembly Instructionss#: Your output should
be devoid of any Java assembly instructions such as ldc
, invokevirtual , aload, etc. Remember, you're
converting assembly code to high-level Java code.

6. #xValid Java Codex#: Your final output should be a valid
plain text Java code, adhering strictly to Java's
syntax and semantic rules. It must be a complete,
correct , and executable Java class.

7. =xEdge Cases##%: Your code must be able to handle edge
cases such as empty input, null input, etc.
appropriately . Your code will be tested with EvoSuite
testing frameworks to ensure it matches exactly the
provided Java assembly code for all possible inputs.

#% Additional Information sx:

— You can only respond with code as it will be compiled

directly . Any written text will lead to a compilation
error.
— Always initialize variables where necessary.

— Handle exceptions appropriately with try—-catch blocks to

avoid any unexpected runtime errors.

— Ensure appropriate access specifiers (public, private ,
protected) are used where necessary .

— You must not end the class early prior to all methods
being defined.

— Example: // other methods here ... }

— This breaks the class structure and will lead to a
compilation error.

— Make sure the main method is present if the class is
intended to be executable.

— Regularly format and indent your code for better
readability .

— You must always respond in plaintext. Do not respond in a
codeblock .

test code as it is

class code.

— Do not generate any
Simply write the

already provided.

sk Example s :

Example Java Assembly
version 52 0

class public super TimeStat

super java/lang/Object

field private starts Ljava/util/Hashtable
field private times Ljava/util/Hashtable

Input:

method public <init> :
code stack 3 locals 1
aload_0

invokespecial Method java/lang/Object <init> ()V
aload_0

new java/util/Hashtable

dup

invokespecial Method java/util/Hashtable <init> ()V
putfield Field TimeStat starts Ljava/util/Hashtable
aload_0

new java/util/Hashtable

dup

invokespecial Method java/util/Hashtable <init> ()V
putfield Field TimeStat times Ljava/util/Hashtable
aload_0

invokevirtual Method TimeStat
return

(027

reset ()V

code

method

... shortened for brevity
end code
end method
sourcefile
end class

end
end

‘'TimeStat.java

Example Java Test Input:

import org.junit.Test;

import static org.junit.Assert.x;

import org.evosuite.runtime.EvoRunner;

import org.evosuite.runtime.EvoRunnerParameters;
import org.evosuite.runtime.System;

import org.junit.runner.RunWith;

@RunWith(EvoRunner. class) @EvoRunnerParameters (

mockJVMNonDeterminism = true , useVFS = true, useVNET =
true , resetStaticState = true, separateClassLoader =
true , useJEE = true)

public class TimeStat_ESTest extends
TimeStat_ESTest_scaffolding {

@Test(timeout = 4000)
public void testO () throws Throwable {
TimeStat timeStat0 = new TimeStat();

timeStat0 . markStartTime ("") ;
timeStatO . markEndTime ("") ;
timeStat0 . markStartTime ("") ;

timeStat0 . getTotalMilliseconds ("");

timeStat0 . markEndTime ("") ;

timeStat0 .keys () ;

String string0 = timeStat0.getAverageSummary () ;

assertEquals (" Average Summary:\n\n averaged 0.0
milliseconds. (2 total measurements)\n\n", string0);
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timeStat0.markEndTime ("") ;
timeStat0.markStartTime ("") ;
double double0 = timeStat0.getTotalMilliseconds ("");
assertEquals (0.0, double0, 1.0E-4);
}
... shortened for brevity ...
}
}

Example Java Output:
import java.sql.s;
import java.util .s;

public class TimeStat {
/+% Hash that holds a single start time for any single key
*/
private Hashtable starts = new Hashtable ()

Hash that holds all the measurement (duration) times
for any single key =/
private Hashtable times =

IEE]
new Hashtable () ;

/%% Sole constructor s/
public TimeStat() {
reset();

}

/+% Resets all measurements by deleting all times. =/

public void reset () {
starts = new Hashtable () ;
times = new Hashtable () ;

}

[

% Marks the start time for a given measurement,
identified by a key. Any previous start time in

# the hash is overwritten.

*/

public void markStartTime (String key) {
starts .put(key, new Timestamp ((new java.util.Date()).
getTime ()));

shortened for brevity ...

##%xINPUT JAVA ASSEMBLY CODE s
{input_java_assembly }

##%xINPUT JAVA TEST CODE: s
{input_java_test_code}

B Examples

In this section, we present a qualitative analysis
of decompiled samples that all software decompil-
ers miscompiled (i.e., had a compilation error) that
ChatGPT correctly compiled and passed all tests
with. For brevity, we show only the Procyon de-
compiler’s output for these classes. Refer to the
supplemental material for more details.

B.1 OptionalsFromEmptyStreams
B.1.1 Procyon

public static void main(final String[]
array) {
System.out.println(Stream.empty().
findFirst());
System.out.println(Stream.empty().
findAny ());
System.out.println(Stream.empty().
max ((Comparator<? super Object>)
String.CASE_INSENSITIVE_ORDER));
System.out.println(Stream.empty ().
min((Comparator<? super Object>)
String.CASE_INSENSITIVE_ORDER));
System.out.println(Stream.empty().
reduce((s, s2) -> s + s2));

7 System.out.println(IntStream.empty ()
.average());

8 }
Listing 1: Pryocon

The above code results in a compilation error
due to improper use of Java’s generic types. Specif-
ically, the ‘max’, ‘min’, and ‘reduce’ methods are
trying to operate on an unknown type.

B.1.2 GPT4

The GPT-4 model corrected the issue by specifying
that the Stream was intended for Strings:

I public static void main(String[] args) {

2 System.out.println(Stream.empty().
findFirst());
System.out.println(Stream.empty().
findAny ());

4 System.out.println(Stream.<String>
empty () .max(String.
CASE_INSENSITIVE_ORDER));

5 System.out.println(Stream.<String>
empty () .min(String.
CASE_INSENSITIVE_ORDER));

6 System.out.println(Stream.<String>
empty () .reduce((s1, s2) -> sl + s2))

7 System.out.println(IntStream.empty ()
.average());

8 }
Listing 2: GPT-4 Solution

Here, GPT-4 correctly specifies that the empty
Stream is intended for Strings resolving the previ-
ously erroneous operation issues.

B.2 UrlListFactoryBean
B.2.1 Procyon

1 for (final URL url this) {

2 if (sb != null) {

3 sb.append (', "');

4 } else {

5 sb = new StringBuilder();
6

7 sb.append(url. toString());

Listing 3: Pryocon

This code fails to compile because it attempts
to iterate over ‘this’ with a for-each loop, but ‘this’
refers to the current object which is not necessarily
iterable, thus causing a type mismatch error.

B.2.2 GPT-4
The GPT-4 model corrected the issue by using an
iterator:

1 while (it.hasNext()) {
2 final URL url = (URL)
3 if(sb.length() > 0) {

it.next();
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sb.append(',");
3
sb.append(url.toString());

Listing 4: GPT-4 Solution

Here, GPT-4 uses an Iterator (it) to loop through
the collection. By casting the next object to a URL
before assigning it to the url variable, it ensures
type safety. The ‘final‘ keyword was added to the
‘url‘ variable declaration to maintain the immutabil-
ity from the original code. This resolves the type
mismatch problem in the original code.

B.3 Student
B.3.1 Procyon

public static void main(final String[]
array) throws FileNotFoundException
{
final HashMap hashMap =
OF
final Scanner scanner = new Scanner(
new File("out/production/Student/
tutorials/othersingleexamples/
students.txt"”), "windows-1251");
while (scanner.hasNext()) {

final String[] split = scanner.

nextLine () .split("\\s*x\\[\\sx");

new HashMap

final String s = split[0];
final String s2 = split[1];
final String s3 = split[2];

Listing 5: Pryocon

This code fails to compile because the FileNot-
FoundException, HashMap, and Scanner classes
were not imported, causing a "cannot find symbol"
error.

B.3.2 GPT4

The GPT-4 model corrected the issue by using spe-
cific data types and classes, and assumed necessary
imports:

public static void main(String[] args)
throws FileNotFoundException {
HashMap<String, ArraylList<Student>>
map = new HashMap<>();
Scanner scanner = new Scanner (new
File("out/production/Student/
tutorials/othersingleexamples/
students.txt"”), "windows-1251");

while (scanner.hasNext()) {
String line = scanner.nextLine()

String[] parts = line.split(”\\s

A\\ [\ \sx");
String firstName = parts[0];
String lastName = parts[1];

String course = parts[2];

Listing 6: GPT-4 Solution

Here, GPT-4 specifies the types for the HashMap
and the array from the split line. It also replaces the
vague variable names with more descriptive ones.
The final keyword was omitted to conform to usual
Java conventions.

C Failure Modes

Figure 5 shows the cumulative pass rate of samples
for each decompiler ordered by the number of to-
kens in each sample. We see that GPT-4 arguably
has the highest pass rate for samples with less than
5000 tokens. As the samples get longer, all de-
compilers decrease in performance. However, the
GPT models decrease at a steeper rate compared to
the better software decompilers. We postulate that
longer sequences are harder for instruction-tuned
models that were mainly trained on shorter tasks to
adapt to correctly. Perhaps this could be overcome
with sufficient training on longer samples.

10I(D)ass Rate vs Number of Tokens
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Figure 5: The pass rate (percentage of decompiled sam-
ples that pass all tests) for all models ordered by the
number of tokens in the Java assembly code plus the
generated Java file.
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