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Abstract
Semantic consistency of a language model is
broadly defined as the model’s ability to pro-
duce semantically-equivalent outputs, given
semantically-equivalent inputs. We address the
task of assessing question-answering (QA) se-
mantic consistency of contemporary large lan-
guage models (LLMs) by manually creating
a benchmark dataset with high-quality para-
phrases for factual questions, and release the
dataset to the community.

We further combine the semantic consistency
metric with additional measurements suggested
in prior work as correlating with LLM QA ac-
curacy, for building and evaluating a framework
for factual QA reference-less performance pre-
diction – predicting the likelihood of a language
model to accurately answer a question. Evaluat-
ing the framework on five contemporary LLMs,
we demonstrate encouraging, significantly out-
performing baselines, results.

1 Introduction

Consistency of a model is broadly defined as the in-
variance of its behavior under meaning-preserving
variations of its input (Elazar et al., 2021; Raj et al.,
2022). Clearly, consistency is a highly desirable
property of large language models, increasing their
safety, robustness and trustworthiness. Here we ad-
dress the question of factual consistency of LLMs
in the context of open-domain zero-shot factual
question answering. As a concrete example, a con-
sistent model will produce the same answer for the
set of questions {“What is Stevie Cameron’s oc-
cupation?”, “What job does Stevie Cameron do?”,
“What does Stevie Cameron earn a living as?”}.
A model’s consistency metric is defined to be ag-
nostic to answers’ accuracy (Elazar et al., 2021),
meaning that semantically-equivalent (possibly in-
correct) outputs are qualified as consistent. As such,
while the correct answer to the questions above
is “journalist”, three other identical answers (e.g.,
“politician”) will score as perfectly consistent.

Semantic consistency of masked language mod-
els (MLMs) has been studied by Elazar et al.
(2021), who inspected masked tokens as predicted
by encoder models, for alternations of word tu-
ples, using a dataset of factual statements and their
crowd-sourced paraphrases, specifically tailored
for working with MLMs. Raj et al. (2022) evalu-
ated semantic consistency of decoder models for
the task of non-factual question answering, experi-
menting with a range of consistency metrics. The
authors automatically generated paraphrases for
questions in the TruthfulQA dataset (Lin et al.,
2022), and scored a model’s consistency as its ro-
bustness to paraphrases. However, the sub-optimal
quality of automatic paraphrases, along with open
and often lengthy nature of answers to questions,1

as well as multiple (occasionally semantically di-
verse) reference answers, challenge benchmarking
of LLMs’ QA consistency using TruthfulQA.

A benchmark dataset for measuring the robust-
ness of LLMs to paraphrases in the context of fac-
tual QA should satisfy two desirable properties:
(1) strictly semantically-equivalent question para-
phrases, and (2) questions that call for single short
(possibly multi-word) answer, facilitating accurate
evaluation. Using the recently introduced PopQA
dataset with over 14K factual questions (Mallen
et al., 2023), we create its carefully curated ex-
tended version—PopQA-TP (PopQA templated
paraphrases)—where 3–10 manually-created al-
ternations were appended for each original ques-
tion. The final dataset comprises over 118K ques-
tions, while preserving metadata (e.g., reference
answers) from the original PopQA. We further
use this dataset for benchmarking factual seman-
tic consistency of multiple encoder-decoder and
decoder-only LLMs. The dataset is made available
for the community at https://huggingface.co/
datasets/ibm/popqa-tp.

1Example questions: "What happens if an earthworm is
cut in half?", "Do you only own a gun for self defense?"
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We next demonstrate that robustness to question
paraphrases correlates with a model’s answer cor-
rectness for the given question. Practically, this
finding means that semantic consistency score is
predictive of a model accuracy. Combining this
predictor with additional metrics suggested in prior
work as correlating with LLM QA correctness, we
perform a comprehensive regression analysis of the
predictive power of various metrics on the model’s
accuracy, as well as interactions between those met-
rics. Moreover, we show that the developed frame-
work can be used for predicting the likelihood of a
language model to accurately answer a factual ques-
tion. Collectively, these results pave the way for the
extremely challenging, yet highly important, task
of question-answering performance prediction, a
reference-less evaluation of QA performance, in
the absence of ground-truth answers.

The contribution of this work is, therefore,
twofold: First, we introduce and release a large
extension of the PopQA dataset (PopQA-TP), with
high-quality paraphrases, that can be used for
benchmarking QA semantic consistency of LLMs.
Second, we develop a prototype model for QA
performance prediction, allowing for comparative
analysis of various metrics, and demonstrating pre-
dictive power much higher than baselines.

2 Dataset

Benchmarking semantic consistency of LLMs re-
quires high quality question alternations, eliminat-
ing possible confounds that stem from issues in
automatic paraphrase generation. Despite the im-
mense advances in paraphrasing models during
the past few years (e.g., Bandel et al. 2022; Raj
et al. 2022; Rahamim et al. 2023), automatic tools
still occasionally produce paraphrases that are not
meaning-preserving (e.g., “Who is the vocalist of
‘Perfect’?” for the original question “Who is the
composer of ‘Perfect’?”), incomplete (e.g., “Who
is the vocalist of ‘Perfect’? Shape of You”), or
violate, albeit infrequently, grammatical rules (e.g.,
“Tap water’s safe drinking?" as a paraphrase of “Is
tap water safe to drink?"). Aiming at a high-quality
benchmark dataset, we opted to manually construct
paraphrase templates specific to each question cat-
egory in PopQA, as detailed below.

2.1 Paraphrase Templates Creation

Each question q ∈ PopQA is formed by substitut-
ing a single-entity subject into a question template

that is fixed for each category. For instance, the
occupation and religion templates are “What is
<subject>’s occupation?" and “What is the religion
of <subject>?", respectively. These fixed templates
are sometimes grammatically awkward depending
on the type of subject, for instance for the religion
category subject ‘Assumption of Mary’.

We create the paraphrase question dataset by
manually creating multiple paraphrase templates
specific to each category, and substituting the sub-
ject of each q in PopQA into each template, yield-
ing a set of paraphrases denoted by P (q). Thus,
each question in a given category has the same num-
ber of paraphrases. We name the resulting dataset
PopQA-TP (PopQA templated paraphrases), which
thus consists of (P (q)+{q} : q∈PopQA), that is,
the original questions and their paraphrases.

Table 1 shows summary statistics of the num-
ber of questions, by category and overall, for both
the original PopQA and our PopQA-TP datasets.
Examples of original questions and paraphrases in
PopQA-TP are reported in Table 2.

category # Q # Q alternatives total # Q
author 1514 6 9084
capital 645 6 4515
capital of 363 3 1452
color 34 5 204
composer 978 5 5868
country 838 9 8380
director 1999 10 21989
father 570 4 2850
genre 1619 6 11333
mother 187 5 1122
occupation 532 5 3192
place of birth 584 6 4088
producer 1520 10 16720
religion 338 5 2028
screenwriter 1999 10 21989
sport 547 6 3829
total 14267 118643

Table 1: Dataset summary statistics, for each category
label in PopQA. Column ‘#Q’ shows the number of
original questions, one per subject, in PopQA; column
‘#Q alternatives’ is the number of template paraphrase
for each question in that category, in our PopQA-TP
dataset; ‘total # Q’ is the resulting number of questions
in PopQA-TP, which is (1+(#Q alternatives))× (# Q).

Some PopQA question categories contain sub-
jects of the same underlying type, while in others
the type may vary. For instance, subjects of occupa-
tion questions are all persons, and in capital of they
are all states, provinces, or countries, etc. In reli-
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question
What genre is Avatar: The Last Airbender?
What type of work is Avatar: The Last Airbender?
Fans of what genre would like Avatar: The Last Airbender?
What genre does Avatar: The Last Airbender belong to?
What genre is "Avatar: The Last Airbender"?
What genre is Avatar: The Last Airbender associated with?
Avatar: The Last Airbender is associated with what genre?
What is Shozaburo Nakamura’s occupation?
What is the occupation of Shozaburo Nakamura?
What kind of work does Shozaburo Nakamura do?
What does Shozaburo Nakamura earn a living as?
What job does Shozaburo Nakamura do?
What is Shozaburo Nakamura’s job?

Table 2: Example set of question paraphrases in PopQA-
TP for the genre and occupation categories. The first
question in each paraphrase grouping is the original
question from PopQA.

gion, some are persons (e.g., Rumi or Paul, but also
people like Bertrand Russell who were not religious
leaders), ethnic or national groups (e.g., Swedes,
Arabs), institutions (e.g., Boston College), or mis-
cellaneous topics (e.g., saint, Bourbon Restoration,
Assumption of Mary). For some subjects, thus, it
would be more grammatical to phrase the religion
question as what religion the subject ‘follows’, and
in for others which religion the subject is ‘associ-
ated with’. Note that this awkwardness is inherent
in the original PopQA, and so our paraphrase tem-
plates are designed to span the possible meanings.
Nevertheless, we expect a good model to answer
these questions intelligently and not be stumped by
slight grammatical awkwardness.

Throughout the work, we obtain text vector em-
beddings using the SentenceTransformer (ST) en-
coder (Reimers and Gurevych, 2019). The quality
of paraphrases of q can thus be assessed by the
average cosine similarity between the embeddings
of each paraphrase and q. Calculating the average
paraphrase quality for each question category, and
averaging across categories, we obtain a high value
of 0.914; this shows that the templated paraphrases
are sufficiently similar to the original questions.

3 Benchmarking Semantic Consistency

We next use PopQA-TP, our dataset of manually-
constructed paraphrase templates for assessing the
semantic consistency of multiple contemporary
LLMs. We report both models’ accuracy (the ratio
of correct answers to questions), as well as their
consistency (robustness to question alternations),
and further develop hypothesis about the correla-

tion of semantic consistency and correctness.

3.1 Experimental Setup

We experiment with several openly-available
encoder-decoder and decoder-only contemporary
LLMs, that have been proven effective in multiple
generative tasks: Google Research’s Flan-T5-XXL
(11B; Chung et al., 2022) and Flan-UL2 (20B; Tay,
2023), BigScience Workshop’s MT0-XXL (13B;
Muennighoff et al., 2022), EleutherAI’s GPT-NeoX
(20B; Black et al., 2022) and Mosaic ML, Inc.’s
MPT-Instruct2 (7B; MosaicML, 2023).

Each question in PopQA-TP is queried to each
model in greedy decoding mode, i.e., no sam-
pling is allowed. Following previous studies (Raj
et al., 2022), for the decoder-only models, the
prompt is formatted using the input query template
Question:<*>\n Answer:, while for the encoder-
decoder models, it is submitted as-is. The GPT-
NeoX and MPT-Instruct2 models often generated
multi-sentence answers; in these cases, only the
first sentence was used for evaluation.

3.2 Semantic Consistency – Metrics

Semantic consistency of a language model
is broadly defined as the model’s ability to
produce semantically-equivalent outputs, given
semantically-equivalent inputs (Elazar et al., 2021;
Jang et al., 2021; Zhou et al., 2022). The precise
approach to consistency assessment may, however,
vary according to the characteristics of the gener-
ated text. Here we distinguish between free-form
(possibly long) answers to open questions, and
short, often single-word, factoid answers.

Semantic Consistency of Free-form Answers
In the context of open-domain zero-shot QA, Raj
et al. (2022) quantify the equivalence of a model’s
answers to semantically-equivalent paraphrases of
the same question. The authors show, among oth-
ers, that semantic equivalence of relatively long
(sentence- or short paragraph-length) answers, is
most reliably quantified by means of measuring
lexical entailment between pairs of answers. In par-
ticular, they demonstrate higher correlation of this
metric to human judgements, than e.g., using pair-
wise cosine similarity between answers’ dense rep-
resentations. As a concrete example, consider two
answers for rephrases of the question "What are
the benefits of eating an apple a day?" (expanded
TruthfulQA, Raj et al., 2022):

(1) Apples are a delicious and nutritious fruit
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that offer a range of health benefits when consumed
regularly. (2) Apples are a popular and healthy
food that provide numerous benefits.

While the second answer could be reasonably
entailed from the first one (and vise versa), cosine
similarity between the two embeddings might not
be very indicative of their (rough) equivalence due
to the relatively high lexical distinction.

Semantic Consistency of Factoid Answers Con-
trary to questions that call for a (possibly long) free-
form answer, PopQA, and its paraphrase-extended
version, require short, single- or a few-word an-
swers, that constitute a less-natural fit for the task
of lexical entailment. Alternatively, cosine similar-
ity of answer embeddings provides a more reliable
similarity score for very short utterances. As an ex-
ample, semantic consistency rating of two answers
to the question "What is <person>’s occupation?"
(PopQA, Mallen et al. 2023), with a SOTA NLI
model2 and cosine similarity is reported in Table 3:

answer 1 answer 2 NLI cosine
actress actress 0.927 1.00
architect architect 0.876 1.00
politician german politician 0.075 0.70
german politician politician 0.588 0.70

Table 3: NLI and cosine similarity scores of two answers
to rephrases of the same question. Note the NLI score
distinction between the two “politician” examples due to
the inherently asymmetric nature of lexical entailment,
as well as differences for “actress” and “architect”.

3.3 Experimental Results

We next present the results of LLMs correctness
and semantic consistency, using PopQA-TP.

3.3.1 Correctness
Following Mallen et al. (2023), we consider a ques-
tion answered correctly if a substring of the gener-
ated text is an exact string match to one of the gold
answers (e.g., a generated answer of "film director"
matches "director"). Figure 1 presents the mean
correctness results for the five models, split by cate-
gory. Evidently, some categories are systematically
easier than others, e.g., color and sport, while oth-
ers pose challenge across the board, e.g., author
and director. This result can be partly attributed
to the more restricted space of plausible answers
to former categories (there is only a limited set

2https://huggingface.co/microsoft/
deberta-xlarge-mnli

of color names), compared to the infinitely large
space of person names for the latter. Notably, the
two decoder-only models—MPT-Instruct2 (accu-
racy of 0.224) and GPT-NeoX (accuracy of 0.184)—
perform better than their encoder-decoder counter-
parts, on average, across categories.

3.3.2 Semantic Consistency
Internal semantic consistency of a set of (possi-
bly non-unique) texts T ={t1, t2, . . . } can be cal-
culated by the mean pairwise cosine similarity of
their respective embedding vectors {e1, e2, . . . },
which ranges from 0 to 1. Formally:

int_sim(T )=
1(|T |
2

)
|T |−1∑

i=1

|T |∑

j=i+1

cosine(ei, ej) (1)

Given A, the set of generated answers to q and
paraphrases P (q), we define the semantic consis-
tency of A as SCons(q)=int_sim(A)∈[0, 1].

Figure 2 presents results of mean answer se-
mantic consistency computation, by question cat-
egory. Consistency values vary in the [0.4, 0.9]
range, with some (albeit lower) deviation across
categories. Similarly to correctness, the relatively
high consistency values in capital, color, country,
religion, and sport can be attributed to the more
restricted space of plausible answers, compared to
other categories. Figure 3 shows a scatterplot of
the mean category correctness and consistency for
the Flan-T5-XXL as a representative example of
the models. Across categories, answer correctness
and consistency are positively correlated. Across
all models considered, the religion category is an
outlier among the categories above with restricted
answer space, in that these questions had relatively
low correctness but high consistency.

Contrary to correctness results, here encoder-
decoder LLMs (MT0-XXL, Flan-UL2 and Flan-
T5-XXL) outperform decoder-only models.

4 QA Performance Prediction

We next define and address the task of factual
question-answering performance prediction. Here
we rely on some parallels to the task of query per-
formance prediction (QPP) in IR (search) systems –
an established research area (Zhou and Croft, 2007;
Carmel and Kurland, 2012; Raiber and Kurland,
2014; Faggioli et al., 2023). QPP is defined as
the assessment of the retrieval quality of a search
system for a query, without relevance judgments.
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Figure 1: Mean LLMs’ correctness on questions in the PopQA dataset (Mallen et al., 2023), by category. Blue
shades denote encoder-decoder models, green – decoder-only.

Figure 2: Mean LLMs’ consistency on questions in the PopQA dataset (Mallen et al., 2023) and their paraphrases
(PopQA-TP, this work), by category. Blue shades denote encoder-decoder models, green – decoder-only.

Figure 3: Scatterplot of mean in-category answer cor-
rectness and consistency (as depicted in Figures 1 and
2) for the Flan-T5-XXL model. The evident positive
correlation supports the intuition that semantic consis-
tency has a predictive power on an LLM QA accuracy.

Core differences exist between IR and LLM-based
systems used for the task of open-domain factual
QA; yet, we address a conceptually similar task:

assessment of a system’s potential answer quality
(that is manifested by its correctness) for a question,
without relying on ground-truth answers.

Casting the task as a classification scenario,
we train a logistic regression model, where sev-
eral regressors—variables proven to correlate with
LLMs correctness—carry over predictive power
on the outcome variable: the model’s likelihood to
produce a correct answer for a given question.

4.1 Predictor Variables

4.1.1 Question Subject Popularity (SPop)

Mallen et al. (2023) hypothesize that factual knowl-
edge that is less frequently discussed on the web
may not be well memorized by LLMs. Given a
question that can be modeled by the {subject, re-
lationship, object} triple, e.g., “What is the cap-
ital of (R) Louisiana (S)?”, the authors approxi-
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mate its subject’s popularity by the mean number
of monthly views of the corresponding Wikipedia
page. The answer—“Baton Rouge”—is scored by
popularity in a similar way, but we refrain from
using this score for our predictive analysis, since it
is unknown in a realistic QA setup.

Following Mallen et al. (2023), we define
our first predictor—question subject popularity
(SPop)—as the mean number of monthly views of
the subject entity’s Wikipedia page. In the PopQA
datset, the SPop score varies from 2 to over 15M.

4.1.2 Semantic Consistency (SCons)

Semantic consistency—as defined by the SCons
metric in Section 3.2—associated with q, is mea-
sured as SCons(q)=int_sim(A), where A consists
of greedily-generated answers to q itself and the
set of its paraphrases P (q).

4.1.3 Answer Certainty (Cert)

Multiple studies investigated the uncertainty of nat-
ural language generation in the context of free-form
QA. Kuhn et al. (2022) put forward a hypothesis
that given some degree of freedom (i.e., sampling,
not greedy generation), “. . . very uncertain gener-
ations should be less likely to be correct”. Specif-
ically, the authors suggest that a (non-greedily-
probed) model producing multiple distinct answers
for the same question is unstable and less robust,
potentially affecting the model’s ability to provide
a correct answer to the question.

Uncertainty of a set of answers A to a factual
question q is manifested by the relative amount
of distinct answers out of the entire answer pool
A. Multiple metrics were suggested to measure
uncertainty—or, its complementary metric, cer-
tainty—of a set of answers, including lexical simi-
larity, Rouge-L (Lin and Och, 2004), and predictive
entropy (Kuhn et al., 2022). As with semantic con-
sistency (see Section 4.1.2), we found mean pair-
wise semantic similarity of answers in A to be the
most appropriate metric for certainty of very short
factoid answers. Our sampled answers certainty
metric is defined as Cert(q)=int_sim(A), where,
following Kuhn et al. (2022), A is a set of ten an-
swers to q sampled non-greedily, setting models’
temperature to 0.5. Table 4 presents several results
of sampling answers to questions in the PopQA
dataset, along with their respective certainty score.

4.1.4 Question Category (QCat)
Figure 1 suggests that question category—the se-
mantic grouping a question belongs to—has a con-
siderable effect on an LLM’s ability to answer a
question correctly. While models systematically
succeed in answering questions on capital, color,
and sport, they struggle in categories like director,
producer, and author. Question category (QCat)
has been shown to interact with numerical variables
(see Section 4.2), suggestive of the potential bene-
fits of including question category as a (nominal)
categorical variable in our regression analysis.

4.2 Predictive Model
We build a logistic regression model for predicting
if an LLM will answer a question correctly. Specifi-
cally, for an original question q∈PopQA, we define
a model using the four predictors described in Sec-
tion 4.1, where the regression outcome is a binary
indicator: will q be answered accurately (1), or not
(0).3 We denote the regression response variable by
correct, and use QCat, SCons, Cert and SPop as
regressors. We apply a natural log transformation
to SPop, reducing its skewness, and strengthening
its relationship with the target variable.

The regression model assumes a linear relation-
ship between each regressor and the logit of the
binary target, holding other regressors constant.
We consider the first-order effects of QCat and the
numeric variables (SCons, Cert and SPop), as well
as the second-order interaction between each nu-
meric variable and question category QCat, where
the intuition is that the precise impact of a nu-
meric predictor varies by category. Figure 5 in
Appendix A.1 illustrates the need to account for
QCat interactions with the numeric regressors be-
cause the marginal effect (slope of linear relation-
ship) of each variable on correctness differs by the
QCat group. Consequently, we define our regres-
sion model using the common regression notation
as correct∼ QCat*log(SPop) + QCat*SCons +
QCat*Cert, where ‘*’ denotes the second- and first-
order effects of two variables. QCat is treated as a
fixed rather than random categorical effect, since
we are interested in the individual effect of each
category and do not assume that the relationship
types were randomly sampled from the population
of available ones. Appendix A.2 table 9 quantifies
the relative contributions of each regressor to the

3At inference time, the likelihood of an LLM to provide
an accurate answer (i.e., probability value in the 0-1 range)
can be considered, instead of the binary target.
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question sampled answers certainty score
What is Robby Krieger’s occupation? (guitarist, guitarist, guitarist, guitarist, guitarist) 1.000
What is Shozaburo Nakamura’s occupation? (samurai, samurai, film director, actor, director) 0.250
What is the capital of Benin? (cotonou, bamako, abidjan, bamako, bamako ) 0.521

Table 4: Examples of Cert score assigned to a set of sampled answers to the same question. Notably, cultural
bias(es) in contemporary LLMs are manifested by the “samurai” answer to the question about Japanese politician.

model’s goodness of fit, and shows that QCat and
its interactions are strongly statistically significant.

Logistic regression is implemented using
Python’s statsmodels (Seabold and Perktold,
2010) module formula interface. We report regres-
sion results when applied on each of the five LLMs
detailed in Section 3.1, further explore the rela-
tive contribution of each predictor, and perform an
ablation study in the next section.

4.3 Experimental Results

Main Results Table 5 reports the performance of
the logistic regression trained on each of the five
LLMs. A regression model’s goodness of fit is mea-
sured using McFadden’s pseudo-R2; according to
McFadden (1977), values of 0.2 and above indicate
very good fit.4 We also report regression models’
accuracy on the 20% held-out test set, where the
accuracy should be interpreted in terms of the rel-
ative percent increase, compared to the majority
vote baseline – fixing all predictions to 0, due to
the higher prior of incorrect answers for questions
in PopQA, for all five LLMs in this study. Notably,
the random choice baseline is 0.5.

We repeat the experiment in a more balanced
(and desirable) setting, where the set of question
categories is limited to those an LLM shows over
10% correctness on. Naturally, the lower (but still
negative) prior, is reflected in the lower majority
voice baseline, posing higher prediction difficulty
for the regression model. We show (Table 5, right)
that the benefits of the suggested approach are am-
plified in this setting: models obtain high accuracy,
improving over the majority vote baseline by a sig-
nificant extent, between 13.40–26.23%.

Ablation Study Next we test the robustness of
the regression model, by eliminating regressors,
one by one, from an example LLM regression
model, and inspecting the outcome, as reported
in Table 6. Again, we perform this experiment

4Note that this measure does not adjust for the number of
regression terms. In appendices we also report AIC, which
penalizes models with excessive number of regressors.

with all question categories, and the set of cate-
gories with the correctness prior > 0.1, for the se-
lected model. High prediction accuracy (0.902 and
0.781) is maintained, even when removing SPop
and QCat, thereby only including regressors inde-
pendent of external knowledge—semantic consis-
tency and certainty—predictors that can be com-
puted automatically (including paraphrase genera-
tion). Moreover, using only semantic consistency
or certainty as a single predictor shows consider-
able performance gains, in both settings.

In-category Coefficient Analysis The ablation
study findings are further supported by the regres-
sion summary in Table 7, for two sample question
categories with high correctness: capital and sport.
Regressor coefficients (β̂), as well as their 95%
confidence intervals, and p-values are presented.
Positive coefficients reflect the (expected) positive
correlation between the predictors and the regres-
sion model outcome: higher semantic consistency,
higher certainty or question subject popularity are
predictive of higher LLM’s answer accuracy with
respect to the question at hand.

5 Related Work

Semantic Consistency of LLMs Studies in the
domain of model consistency were pioneered with
the work by Elazar et al. (2021), who investigated
this question in the context of masked language
models, where the same factual knowledge (in the
form of a single token) was masked from multi-
ple meaning-preserving alternations of the same
statement. Fierro and Søgaard (2022) extended the
factual consistency study on MLMs to the multilin-
gual setup. Jang et al. (2022) extend the notion of
consistency to six behavioral consistency proper-
ties, including semantic textual similarity, machine-
reading comprehension, and topic classification.
The authors make use of adapted and newly-created
datasets for testing multiple fine-tuned language
models on the set of selected tasks. Factual consis-
tency experiments are explicitly excluded from the
set of tests. Multiple semantic consistency metrics
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model {q ∈ PopQA} {q ∈ PopQA | correct(QCat(q)) > 0.1}
R2 ACC(test set) mjr. baseline R2 ACC(test set) mjr. baseline

MT0-XXL (ED) 0.489 0.936 (+2.63) 0.912 0.308 0.809 (+18.27) 0.684
Flan-UL2 (ED) 0.479 0.915 (+4.69) 0.874 0.344 0.829 (+19.10) 0.696
Flan-T5-XXL (ED) 0.491 0.928 (+3.80) 0.894 0.311 0.794 (+26.23) 0.629
MPT-Instruct2 (D) 0.430 0.878 (+13.1) 0.776 0.425 0.862 (+13.40) 0.760
GPT-NeoX (D) 0.418 0.883 (+8.21) 0.816 0.310 0.791 (+22.82) 0.644

Table 5: QA performance prediction using logistic regression with various models. ‘ED’ stands for encoder-decoder
models, ‘D’ – for decoder-only. McFadden’s pseudo R-squared is reported as well as models’ accuracy on held-out
test set (20%); relative performance improvement, compared to the baseline, is specified with ‘+’ in parenthesis.
Left: all question categories are considered, right: only categories with correctness exceeding 0.1 are considered.

included predictors {q ∈ PopQA} {q ∈ PopQA | correct(QCat(q)) > 0.1}
R2 ACC(test set) R2 ACC(test set)

SPop, QCat, SCons, Cert (the full model) 0.479 0.915 (+4.69) 0.344 0.829 (+19.10)
QCat, SCons, Cert 0.442 0.911 (+4.23) 0.298 0.803 (+15.37)
SPop, SCons, Cert 0.362 0.904 (+3.43) 0.207 0.782 (+12.35)
SCons, Cert 0.352 0.902 (+3.20) 0.196 0.781 (+12.21)
Cert 0.328 0.892 (+2.06) 0.156 0.769 (+10.48)
SCons 0.264 0.886 (+1.37) 0.164 0.753 (+08.18)

Table 6: Ablation analysis with one of the best performing models (Flan-UL2), testing various predictor combi-
nations. The majority vote baseline of Flan-UL2 is 0.874 for the full set of questions, and 0.696 for questions in
categories with baseline correctness>0.1. High accuracy, in particular, much higher than baseline, is maintained
when omitting QCat; omitting both (not easily obtainable) QCat and SPop results in yet powerful regression model,
improving the baseline by 3.20 and 12.21 percent, for the full and selective question set, respectively.

predictor β̂ [0.025 0.975] p-value

ca
pi

ta
l intercept 0.83 0.67 1.04 0.114

log(SPop) 1.64 1.28 2.10 0.000
SCons 2.68 1.98 3.63 0.000
Cert 2.29 1.68 3.12 0.000

sp
or

t intercept 1.35 1.12 1.63 0.001
log(SPop) 0.94 0.77 1.15 0.584
SCons 1.82 1.40 2.37 0.000
Cert 1.47 1.15 1.88 0.002

Table 7: Logistic regression summary of the Flan-UL2
model for two of its best-performing categories: capital
and sport. Variable are standardized (to have a mean
of 0.0 and STD of 1.0) for comparative analysis of co-
efficients. Appendix A.2 (tables 10–14) reports full
regression models’ results, including variable interac-
tions, for all LLMs in this study.

were evaluated by Raj et al. (2022) on automati-
cally generated paraphrases of (mostly not factoid)
open-domain questions in the TruthfulQA dataset
(Lin et al., 2022); the authors demonstrate that NLI-
based consistency metric correlates best with hu-
man judgements, when evaluating the consistency
of sentence-length answers.

A wider notion of prompt consistency was stud-
ied by Zhou et al. (2022) for multiple tasks: NLI,

co-reference resolution, word sense disambiguation
and sentence completion. The authors design pair-
wise distillation loss that encourages consistency
between semantically-equivalent pair of prompts,
and demonstrate increase of over 10% in models’
performance. Finally, Newman et al. (2021) intro-
duce P-Adapters for increasing the robustness of
MLMs (specifically, BERT (Devlin et al., 2018))
to prompt alternations. No prior work, to the best
of our knowledge, has explicitly addressed the task
of LLMs factual semantic consistency, with a high-
quality benchmark factual QA dataset.

QA Performance Prediction Inspired by the es-
tablished and well-studied task of query perfor-
mance prediction (QPP) in the domain of informa-
tion retrieval (i.e., search engines), we develop a
framework for predicting the correctness of a gen-
erative (not retrieval-based) LLM’s response to a
factual question – question answering performance
prediction. Given a question, the ultimate goal is
to score the likelihood of the model to answer the
question correctly, without any reference answers.
The open-domain nature of questions pose a special
challenge for the task, in the complete absence of
information facilitating reference-less evaluation,
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such as a document for the task of summarization,
or a paragraph for context-based extractive QA.

Despite its evident importance, prior work on
QA performance prediction is relatively scarce.
Kuhn et al. (2022) have shown that semantic
certainty—the consistency of a model’s answers to
a question, where sampling is allowed—is indica-
tive of the model’s ability to answer the question
correctly. Specifically, they report that "... [when
sampling is allowed] Incorrectly answered ques-
tions have more semantically distinct answers than
correct ones." Introducing the PopQA dataset of
factual questions, Mallen et al. (2023) suggest that
factual knowledge memorization depends on the
popularity of the entity, the subject of a question
refers to: the frequency of information about the
question subject on the web.

6 Conclusions

We explore the robustness of LLMs to paraphrases
in the context of open-domain zero-shot QA. Intro-
ducing a large and carefully-curated extension of
the PopQA dataset (PopQA-TP), with high-quality
paraphrases, we first benchmark the semantic con-
sistency of diverse LLMs; next, we develop a
framework for QA performance prediction, incor-
porating semantic consistency, as well as additional
aspects, shown to correlate with model’s QA accu-
racy. Collectively, our work shows that a model’s
ability to answer a question accurately can be re-
liably predicted, in a reference-less setting. Our
future work includes the exploration of how the se-
mantic consistency metric used in this work can be
adapted to additional generative tasks with long(er)
answers, e.g., summarization, dialogue.

7 Limitations

Our study has several limitations: First, the se-
mantic consistency measurement has been studied
in the relatively narrow context of the factual QA
task; it would be useful to explore how this met-
ric applies and should possible be adapter for ad-
ditional generative tasks, such as summarization,
translation, or QA with free-form long(er) answers.
Second, the presented QA performance prediction
framework exhibits best results with the full set of
predictors, exploiting “external knowledge”— sub-
ject popularity and question category; those are not
always available. Given said that, we show signif-
icant prediction benefits even when using easily-
obtainable predictors, Scons and Cert.
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A Appendices

A.1 Logistic Regression Diagnostic Plots
As mentioned in Section 4.2, in logistic regres-
sion, a binary response y (in our case, the indica-
tor correct∈{0, 1}) is modeled as a function of
a set of regressors; the regressors consist of cer-
tain predictor variables and possible interactions
between them. More precisely, the logit transfor-
mation of the dependent variable p = Pr(y = 1),
the probability of the indicator equaling 1 (denoted
pcorrect) is modeled as a linear function of the
regressors; thus, the logit should have a linear rela-
tionship with each regressor.

Identifying Predictor Interactions Our chosen
logistic model is correct ∼ QCat*log(SPop) +
QCat*SCons + QCat*Cert. The appropriateness
of the addition of a regressor in the logistic model
can be visually analyzed by plotting the empirical
values of p (here, pcorrect) conditioned on values
of a regressor. Here, we we illustrate with the inter-
action of the categorical QCat with each numeric
variable x∈{log(SPop), SCons, Cert}. The inter-
action means that the slope of the estimated linear
relationship between pcorrect and each variable
x can differ conditionally on each level of the cat-
egorical QCat. If the interaction is significant, we
should see significant slope differences for at least
some of the levels of QCat; if there is no interaction,
the lines will have similar slope but possibly differ-
ing vertical displacement (i.e., vertical intercepts).
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Because the continuous-valued pcorrect is not
observed (we see only the binary correct), we
can approximate it by first, binning the observed
range of each variable into, say, 15 equal-width
bins; second, restricting to observations with value
of x in a given bin and a given value of QCat, and
calculating the average value of correct for these,
we can approximate the typical value of pcorrect
(assuming that there are enough observations in the
subset) for x in that bin interval. In Figure 5, we
plot this estimated value of pcorrect versus the
bin midpoint, considering only bins of x falling
between in the center 95% interval of observed
x values for that level of QCat (see Figure 4), to
reduce noisy estimates at the edges.

Figure 5 shows that the presence of an interac-
tion is reasonable, since for each variable, the re-
lationship is roughly linear for each value of QCat
but that the slopes often differ; the differing vertical
displacements of the lines for each variable x are
modeled by the single-order coefficients of QCat.

A.2 Logistic Regression Coefficient Tables

Here we present summary tables from the logis-
tic model in Section A.1 fit to the results of each
LLM on PopQA-TP, without a train-test split. Ta-
ble 8 summarizes the overall fit of the chosen logis-
tic model on each LLM. The McFadden’s statistic
measures overall goodness-of-fit without penaliz-
ing the number of regressors; since statistic values
over 0.4 indicate excellent fit, the model fits very
well for each LLM. The Akaike Information Cri-
terion (AIC) statistic adjusts for the number of re-
gressors, and this model specification achieved the
lowest (best) AIC for each LLM over the reduced
models, indicating that the interaction effects are
correctly included in the predictive logistic model.

model McFadden’s R2 AIC
Flan-T5-XXL 0.492 5029.942
Flan-UL2 0.479 5746.113
MT0-XXL 0.490 4471.597
MPT-Instruct2 0.430 8770.356
GPT-NeoX 0.419 8040.402

Table 8: Summary of logistic regression fits by model.

Table 9 quantifies how much each regressor in
the logistic model contributes to the overall fit of
the model. This can be assessed by comparing the
magnitudes of the Wald χ2 statistics (“stat.”) for
different regressors in the same LLM, and across

different LLMs. The statistical significance of each
is indicated by the “symbol” column, which codes5

the statistic’s p-value: *** (< 0.001), ** (< 0.01),
* (< 0.05), . (< 0.1), or blank (≥ 0.1). The statisti-
cal significance penalizes the regressor’s constraint
degrees of freedom (‘df’ column), which equals 1
for numeric variables and #levels-1 for a categor-
ical variable; hence here the numeric interactions
with QCat have 15 degrees of freedom, since there
are 16 categories.

Overall, the question category QCat has the most
explanatory power (its statistic is the largest), fol-
lowed by Cert or log(SPop); SCons contributes
relatively little on its own, but more when it is in-
teracted with QCat. Interestingly, the contributions
of log(SPop), Cert, the log(SPop)-QCat interac-
tions are much larger in the encoder-only LLMs
(MPT-Instruct2 and GPT-NeoX-20B) compared to
the encoder-decoder language models, though the
interactions in both cases are already very signifi-
cant (scoring *** regardless).

Though Table 9 summarizes each regressor’s
contribution, it does not tell us about the direction
of the effect of each regressor. For that, we refer to
Tables 10–14, which show the full set of coefficient
estimates. In each table, we have the coefficient es-
timate (β̂), its 95% confidence interval, the p-value,
and the symbol coding of the p-value. The inter-
pretation of a coefficient is the marginal effect on
logit(correct) of a 1-unit increase in each regres-
sor. For the numeric variables, which have been
standardized, this corresponds to a 1 standard devi-
ation change (allowing their effect to be compared
despite the different original scales); for the factor
QCat, this corresponds to the increase in the logit
associated with the given category value relative to
that of the omitted level, “author”. Thus, positive
values of the coefficient indicate that regressor, all
others being equal, is associated with a positive in-
crease in correctness. For QCat, for instance, since
the choice of omitted level is arbitrary (it is alpha-
betical), the coefficient sign only has a relative, not
absolute interpretation. For instance, if the coeffi-
cient on log(SPop) is 4.5, and its interaction with
QCat=color is −3.2, this means that log(SPop) is
still positively correlated (4.1−3.2=0.9>0) with
correct when QCat=color, but that its marginal
effect is lower than for “author”. Hence, for ease
of interpretation, we introduce a “conditional coef-
ficient” column, which performs this adjustment to

5This notational convention is used in R statistical software.
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Figure 4: Kernel density plots for numeric variables, conditional on each level of QCat. These are fixed in PopQA
and thus do not depend on the language model.

Figure 5: Line plots of average value of observed correct, conditional on levels of QCat, for each numeric variable
within a given interval of its range.

regressor Flan-T5-XXL Flan-UL2 MT0-XXL MPT-Intruct2 GPT-NeoX-20B
mame df stat. symbol stat. symbol stat. symbol stat. symbol stat. symbol
intercept 1 115.45 *** 184.73 *** 42.26 *** 220.42 *** 351.11 ***
QCat 15 172.68 *** 245.25 *** 175.08 *** 499.15 *** 873.53 ***
log_SPop 1 16.08 *** 22.78 *** 8.76 ** 165.84 *** 172.14 ***
SCons 1 0.10 1.38 6.29 * 4.51 * 2.35
Cert 1 34.87 *** 34.39 *** 13.06 *** 76.95 *** 15.09 ***
QCat:log_SPop 15 88.27 *** 126.21 *** 78.63 *** 420.01 *** 393.47 ***
QCat:SCons 15 29.15 * 32.45 ** 22.47 . 65.27 *** 69.93 ***
QCat:Cert 15 92.00 *** 71.28 *** 82.93 *** 116.04 *** 61.94 ***

Table 9: Logistic regression Wald statistics for each language model.

allow each regressor to be evaluated on its own;
but it is not the original variable in the regres-
sion, hence should only be used in the context
of understanding the table values. We see that in
nearly every value of QCat, the numeric variables
log(SPop), SCons, and SCert have positive val-
ues for this column, indicating positive effect on
correctness. This accords with Figure 5, where the

lineplots nearly all have positive slopes.
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coefficient (β̂) [0.025 0.975] p-value symbol conditional coefficient
intercept -4.467 -5.282 -3.652 0.000 *** -4.467
QCat[T.capital] 2.338 1.437 3.239 0.000 *** -2.129
QCat[T.capital of] -0.240 -1.589 1.110 0.728 -4.707
QCat[T.color] -3.205 -8.514 2.104 0.237 -7.672
QCat[T.composer] 0.852 -0.077 1.782 0.072 . -3.615
QCat[T.country] 1.844 0.921 2.767 0.000 *** -2.623
QCat[T.director] -4.019 -7.026 -1.012 0.009 ** -8.487
QCat[T.father] 1.409 0.479 2.338 0.003 ** -3.059
QCat[T.genre] 1.955 1.081 2.830 0.000 *** -2.512
QCat[T.mother] -0.005 -1.977 1.967 0.996 -4.473
QCat[T.occupation] 2.493 1.610 3.377 0.000 *** -1.974
QCat[T.place of birth] 0.480 -0.655 1.614 0.407 -3.988
QCat[T.producer] -1.924 -4.359 0.511 0.122 -6.391
QCat[T.religion] 0.530 -1.180 2.239 0.544 -3.938
QCat[T.screenwriter] -0.124 -1.456 1.209 0.856 -4.591
QCat[T.sport] 3.205 2.271 4.140 0.000 *** -1.262
log_SPop 1.125 0.575 1.674 0.000 *** 1.125
QCat[T.capital]:log_SPop -0.680 -1.267 -0.093 0.023 * 0.444
QCat[T.capital of]:log_SPop 0.798 0.052 1.544 0.036 * 1.923
QCat[T.color]:log_SPop -1.087 -2.406 0.231 0.106 0.037
QCat[T.composer]:log_SPop -1.202 -1.893 -0.512 0.001 *** -0.078
QCat[T.country]:log_SPop -0.952 -1.533 -0.371 0.001 ** 0.173
QCat[T.director]:log_SPop 1.823 0.152 3.494 0.032 * 2.948
QCat[T.father]:log_SPop -0.789 -1.418 -0.160 0.014 * 0.336
QCat[T.genre]:log_SPop -0.766 -1.348 -0.184 0.010 ** 0.358
QCat[T.mother]:log_SPop -0.485 -1.641 0.671 0.411 0.640
QCat[T.occupation]:log_SPop -0.872 -1.474 -0.271 0.004 ** 0.252
QCat[T.place of birth]:log_SPop -1.045 -1.802 -0.287 0.007 ** 0.080
QCat[T.producer]:log_SPop 0.528 -0.883 1.940 0.463 1.653
QCat[T.religion]:log_SPop -0.301 -0.921 0.320 0.342 0.824
QCat[T.screenwriter]:log_SPop -0.881 -1.883 0.121 0.085 . 0.244
QCat[T.sport]:log_SPop -1.118 -1.716 -0.519 0.000 *** 0.007
SCons 0.097 -0.514 0.708 0.756 0.097
QCat[T.capital]:SCons 0.258 -0.407 0.923 0.447 0.355
QCat[T.capital of]:SCons -0.128 -0.863 0.607 0.733 -0.031
QCat[T.color]:SCons 1.466 -0.711 3.643 0.187 1.563
QCat[T.composer]:SCons 0.208 -0.495 0.911 0.562 0.305
QCat[T.country]:SCons 0.904 0.210 1.598 0.011 * 1.001
QCat[T.director]:SCons -0.102 -1.178 0.974 0.853 -0.005
QCat[T.father]:SCons 0.031 -0.694 0.756 0.934 0.128
QCat[T.genre]:SCons 0.223 -0.439 0.885 0.508 0.320
QCat[T.mother]:SCons -0.748 -2.099 0.603 0.278 -0.651
QCat[T.occupation]:SCons 0.252 -0.415 0.919 0.459 0.349
QCat[T.place of birth]:SCons 0.522 -0.271 1.315 0.197 0.619
QCat[T.producer]:SCons -0.013 -1.464 1.437 0.986 0.084
QCat[T.religion]:SCons -0.061 -0.951 0.829 0.894 0.036
QCat[T.screenwriter]:SCons 0.036 -1.145 1.216 0.953 0.133
QCat[T.sport]:SCons 0.457 -0.210 1.124 0.179 0.554
Cert 2.100 1.403 2.797 0.000 *** 2.100
QCat[T.capital]:Cert -0.933 -1.683 -0.183 0.015 * 1.167
QCat[T.capital of]:Cert -0.869 -1.741 0.003 0.051 . 1.231
QCat[T.color]:Cert 1.967 -0.997 4.930 0.193 4.067
QCat[T.composer]:Cert -1.613 -2.418 -0.808 0.000 *** 0.487
QCat[T.country]:Cert -1.050 -1.807 -0.292 0.007 ** 1.051
QCat[T.director]:Cert -1.170 -2.335 -0.005 0.049 * 0.930
QCat[T.father]:Cert -1.419 -2.278 -0.560 0.001 ** 0.681
QCat[T.genre]:Cert -2.008 -2.749 -1.266 0.000 *** 0.092
QCat[T.mother]:Cert -1.922 -3.959 0.116 0.065 . 0.179
QCat[T.occupation]:Cert -1.702 -2.487 -0.917 0.000 *** 0.398
QCat[T.place of birth]:Cert -0.735 -1.630 0.159 0.107 1.365
QCat[T.producer]:Cert 0.620 -1.414 2.655 0.550 2.720
QCat[T.religion]:Cert -1.126 -2.232 -0.020 0.046 * 0.974
QCat[T.screenwriter]:Cert 1.183 -0.241 2.607 0.104 3.283
QCat[T.sport]:Cert -1.192 -1.968 -0.416 0.003 ** 0.908

Table 10: Logistic regression results for model Flan-T5-XXL.
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coefficient (β̂) [0.025 0.975] p-value symbol conditional coefficient
intercept -4.152 -4.750 -3.553 0.000 *** -4.152
QCat[T.capital] 2.133 1.425 2.841 0.000 *** -2.019
QCat[T.capital of] -0.718 -1.988 0.551 0.267 -4.870
QCat[T.color] 3.100 -0.626 6.826 0.103 -1.051
QCat[T.composer] 0.111 -0.746 0.969 0.799 -4.040
QCat[T.country] 1.129 0.328 1.931 0.006 ** -3.023
QCat[T.director] -1.259 -2.387 -0.131 0.029 * -5.411
QCat[T.father] 1.102 0.334 1.870 0.005 ** -3.050
QCat[T.genre] 1.642 0.986 2.297 0.000 *** -2.510
QCat[T.mother] 0.030 -1.572 1.632 0.971 -4.122
QCat[T.occupation] 1.633 0.871 2.394 0.000 *** -2.519
QCat[T.place of birth] 1.578 0.818 2.337 0.000 *** -2.574
QCat[T.producer] -0.850 -2.011 0.311 0.151 -5.002
QCat[T.religion] 1.324 0.322 2.325 0.010 ** -2.828
QCat[T.screenwriter] -0.038 -0.911 0.834 0.931 -4.190
QCat[T.sport] 3.386 2.671 4.101 0.000 *** -0.766
log_SPop 1.060 0.625 1.495 0.000 *** 1.060
QCat[T.capital]:log_SPop -0.655 -1.134 -0.176 0.007 ** 0.405
QCat[T.capital of]:log_SPop 1.269 0.573 1.964 0.000 *** 2.329
QCat[T.color]:log_SPop -0.286 -1.807 1.235 0.713 0.774
QCat[T.composer]:log_SPop -1.088 -1.698 -0.479 0.000 *** -0.028
QCat[T.country]:log_SPop -0.824 -1.298 -0.349 0.001 *** 0.236
QCat[T.director]:log_SPop 0.268 -0.490 1.026 0.488 1.328
QCat[T.father]:log_SPop -0.783 -1.295 -0.270 0.003 ** 0.277
QCat[T.genre]:log_SPop -0.416 -0.882 0.051 0.081 . 0.644
QCat[T.mother]:log_SPop -1.379 -2.285 -0.472 0.003 ** -0.318
QCat[T.occupation]:log_SPop -0.459 -0.972 0.054 0.079 . 0.601
QCat[T.place of birth]:log_SPop -0.824 -1.398 -0.249 0.005 ** 0.237
QCat[T.producer]:log_SPop 0.339 -0.440 1.119 0.394 1.399
QCat[T.religion]:log_SPop -0.148 -0.665 0.369 0.575 0.912
QCat[T.screenwriter]:log_SPop -0.040 -0.678 0.597 0.901 1.020
QCat[T.sport]:log_SPop -1.126 -1.620 -0.631 0.000 *** -0.065
SCons 0.256 -0.171 0.683 0.240 0.256
QCat[T.capital]:SCons 0.587 0.088 1.086 0.021 * 0.843
QCat[T.capital of]:SCons 0.139 -0.465 0.743 0.652 0.395
QCat[T.color]:SCons 0.266 -1.315 1.847 0.742 0.522
QCat[T.composer]:SCons 0.397 -0.211 1.005 0.201 0.653
QCat[T.country]:SCons 0.553 0.034 1.071 0.037 * 0.809
QCat[T.director]:SCons -0.199 -0.913 0.514 0.584 0.057
QCat[T.father]:SCons 0.220 -0.313 0.754 0.418 0.477
QCat[T.genre]:SCons 0.040 -0.440 0.520 0.870 0.296
QCat[T.mother]:SCons 0.372 -0.660 1.404 0.480 0.628
QCat[T.occupation]:SCons -0.189 -0.728 0.351 0.493 0.068
QCat[T.place of birth]:SCons 0.182 -0.394 0.759 0.535 0.438
QCat[T.producer]:SCons -0.086 -0.749 0.578 0.800 0.171
QCat[T.religion]:SCons -0.177 -0.809 0.455 0.583 0.079
QCat[T.screenwriter]:SCons 0.529 -0.084 1.142 0.091 . 0.785
QCat[T.sport]:SCons 0.376 -0.133 0.886 0.148 0.633
Cert 1.490 0.992 1.987 0.000 *** 1.490
QCat[T.capital]:Cert -0.669 -1.253 -0.085 0.025 * 0.820
QCat[T.capital of]:Cert -1.007 -1.703 -0.312 0.004 ** 0.482
QCat[T.color]:Cert -0.833 -2.490 0.824 0.324 0.656
QCat[T.composer]:Cert -0.123 -0.828 0.582 0.732 1.366
QCat[T.country]:Cert -0.029 -0.642 0.583 0.926 1.460
QCat[T.director]:Cert 0.416 -0.354 1.185 0.290 1.905
QCat[T.father]:Cert -0.439 -1.086 0.209 0.184 1.051
QCat[T.genre]:Cert -1.177 -1.736 -0.617 0.000 *** 0.313
QCat[T.mother]:Cert -0.028 -1.381 1.324 0.967 1.461
QCat[T.occupation]:Cert -0.996 -1.659 -0.333 0.003 ** 0.493
QCat[T.place of birth]:Cert -1.069 -1.734 -0.405 0.002 ** 0.420
QCat[T.producer]:Cert -0.438 -1.134 0.259 0.218 1.052
QCat[T.religion]:Cert -1.045 -1.813 -0.278 0.008 ** 0.444
QCat[T.screenwriter]:Cert -0.214 -0.861 0.433 0.517 1.275
QCat[T.sport]:Cert -0.949 -1.550 -0.348 0.002 ** 0.540

Table 11: Logistic regression results for model Flan-UL2.
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coefficient (β̂) [0.025 0.975] p-value symbol conditional coefficient
Intercept -3.544 -4.612 -2.475 0.000 *** -3.544
QCat[T.capital] 2.576 1.453 3.700 0.000 *** -0.967
QCat[T.capital of] -0.237 -1.653 1.179 0.743 -3.781
QCat[T.color] 1.247 -2.831 5.325 0.549 -2.297
QCat[T.composer] 2.375 0.794 3.955 0.003 ** -1.169
QCat[T.country] 1.572 0.402 2.743 0.008 ** -1.971
QCat[T.director] -13.903 -24.854 -2.952 0.013 * -17.447
QCat[T.father] -0.053 -1.317 1.211 0.934 -3.597
QCat[T.genre] 0.054 -1.133 1.242 0.929 -3.489
QCat[T.mother] -0.891 -3.655 1.873 0.527 -4.435
QCat[T.occupation] 1.336 0.151 2.521 0.027 * -2.208
QCat[T.place of birth] -1.173 -2.588 0.243 0.104 -4.716
QCat[T.producer] -5.700 -9.819 -1.580 0.007 ** -9.243
QCat[T.religion] 0.043 -1.268 1.353 0.949 -3.501
QCat[T.screenwriter] -4.373 -8.736 -0.010 0.050 * -7.916
QCat[T.sport] 1.063 -0.098 2.223 0.073 . -2.481
log_SPop 0.907 0.307 1.508 0.003 ** 0.907
QCat[T.capital]:log_SPop -0.747 -1.374 -0.120 0.020 * 0.161
QCat[T.capital of]:log_SPop 0.837 0.047 1.628 0.038 * 1.745
QCat[T.color]:log_SPop -0.428 -1.763 0.907 0.530 0.480
QCat[T.composer]:log_SPop -1.197 -2.100 -0.295 0.009 ** -0.290
QCat[T.country]:log_SPop -0.695 -1.321 -0.069 0.029 * 0.212
QCat[T.director]:log_SPop 5.929 1.201 10.657 0.014 * 6.837
QCat[T.father]:log_SPop -0.772 -1.440 -0.104 0.024 * 0.135
QCat[T.genre]:log_SPop -0.817 -1.464 -0.170 0.013 * 0.090
QCat[T.mother]:log_SPop -0.119 -1.335 1.097 0.847 0.788
QCat[T.occupation]:log_SPop -0.390 -1.043 0.262 0.241 0.517
QCat[T.place of birth]:log_SPop -0.965 -1.753 -0.176 0.016 * -0.057
QCat[T.producer]:log_SPop 2.210 0.286 4.133 0.024 * 3.117
QCat[T.religion]:log_SPop -0.274 -0.952 0.404 0.429 0.634
QCat[T.screenwriter]:log_SPop 0.773 -0.394 1.940 0.194 1.681
QCat[T.sport]:log_SPop -0.654 -1.330 0.021 0.058 . 0.253
SCons 0.861 0.188 1.534 0.012 * 0.861
QCat[T.capital]:SCons -0.406 -1.118 0.307 0.264 0.455
QCat[T.capital of]:SCons -0.641 -1.402 0.121 0.099 . 0.221
QCat[T.color]:SCons -1.429 -4.268 1.409 0.324 -0.568
QCat[T.composer]:SCons -0.067 -0.950 0.817 0.882 0.794
QCat[T.country]:SCons -0.600 -1.342 0.142 0.113 0.262
QCat[T.director]:SCons 0.582 -1.432 2.596 0.571 1.443
QCat[T.father]:SCons -1.066 -1.855 -0.277 0.008 ** -0.205
QCat[T.genre]:SCons -0.354 -1.111 0.402 0.359 0.507
QCat[T.mother]:SCons 0.709 -0.902 2.319 0.388 1.570
QCat[T.occupation]:SCons -0.387 -1.139 0.366 0.314 0.474
QCat[T.place of birth]:SCons -0.684 -1.497 0.128 0.099 . 0.177
QCat[T.producer]:SCons -0.489 -2.023 1.045 0.532 0.372
QCat[T.religion]:SCons 0.086 -0.855 1.027 0.858 0.947
QCat[T.screenwriter]:SCons -0.655 -1.729 0.419 0.232 0.206
QCat[T.sport]:SCons -0.380 -1.157 0.397 0.338 0.481
Cert 2.119 0.970 3.268 0.000 *** 2.119
QCat[T.capital]:Cert -1.189 -2.366 -0.012 0.048 * 0.930
QCat[T.capital of]:Cert -1.111 -2.345 0.123 0.078 . 1.008
QCat[T.color]:Cert -0.683 -3.289 1.924 0.608 1.437
QCat[T.composer]:Cert 2.431 0.363 4.498 0.021 * 4.550
QCat[T.country]:Cert -0.976 -2.167 0.215 0.108 1.143
QCat[T.director]:Cert -1.007 -3.974 1.961 0.506 1.112
QCat[T.father]:Cert -1.180 -2.428 0.069 0.064 . 0.939
QCat[T.genre]:Cert -1.744 -2.934 -0.553 0.004 ** 0.376
QCat[T.mother]:Cert -0.451 -2.781 1.879 0.705 1.668
QCat[T.occupation]:Cert -1.850 -3.101 -0.599 0.004 ** 0.269
QCat[T.place of birth]:Cert -0.615 -1.854 0.625 0.331 1.505
QCat[T.producer]:Cert 2.403 -1.103 5.910 0.179 4.522
QCat[T.religion]:Cert -0.851 -2.137 0.434 0.194 1.268
QCat[T.screenwriter]:Cert -3.343 -8.438 1.753 0.199 -1.223
QCat[T.sport]:Cert -0.055 -1.271 1.161 0.930 2.064

Table 12: Logistic regression results for model MT0-XXL.
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coefficient (β̂) [0.025 0.975] p-value symbol conditional coefficient
intercept -1.678 -1.900 -1.457 0.000 *** -1.678
QCat[T.capital] -0.885 -1.613 -0.156 0.017 * -2.563
QCat[T.capital of] 0.317 -0.248 0.883 0.271 -1.361
QCat[T.color] -0.195 -2.309 1.920 0.857 -1.873
QCat[T.composer] -0.438 -0.786 -0.091 0.013 * -2.117
QCat[T.country] 1.979 1.595 2.362 0.000 *** 0.300
QCat[T.director] -2.233 -2.708 -1.759 0.000 *** -3.912
QCat[T.father] -0.714 -1.178 -0.250 0.003 ** -2.392
QCat[T.genre] -0.826 -1.165 -0.488 0.000 *** -2.505
QCat[T.mother] -2.124 -3.200 -1.048 0.000 *** -3.802
QCat[T.occupation] 0.548 0.187 0.908 0.003 ** -1.131
QCat[T.place of birth] 0.064 -0.448 0.575 0.808 -1.615
QCat[T.producer] -2.002 -2.577 -1.428 0.000 *** -3.681
QCat[T.religion] -0.464 -1.266 0.338 0.257 -2.142
QCat[T.screenwriter] -1.020 -1.497 -0.544 0.000 *** -2.699
QCat[T.sport] 1.397 0.988 1.806 0.000 *** -0.282
log_SPop 1.987 1.685 2.290 0.000 *** 1.987
QCat[T.capital]:log_SPop -1.230 -1.595 -0.866 0.000 *** 0.757
QCat[T.capital of]:log_SPop -0.603 -1.048 -0.157 0.008 ** 1.385
QCat[T.color]:log_SPop -0.434 -1.828 0.960 0.542 1.553
QCat[T.composer]:log_SPop -0.800 -1.203 -0.398 0.000 *** 1.187
QCat[T.country]:log_SPop -1.915 -2.269 -1.561 0.000 *** 0.072
QCat[T.director]:log_SPop 1.062 0.563 1.561 0.000 *** 3.049
QCat[T.father]:log_SPop -0.850 -1.232 -0.467 0.000 *** 1.138
QCat[T.genre]:log_SPop -1.110 -1.457 -0.763 0.000 *** 0.877
QCat[T.mother]:log_SPop -0.620 -1.238 -0.001 0.050 * 1.368
QCat[T.occupation]:log_SPop -1.300 -1.679 -0.921 0.000 *** 0.688
QCat[T.place of birth]:log_SPop -1.591 -2.008 -1.173 0.000 *** 0.397
QCat[T.producer]:log_SPop 0.156 -0.326 0.637 0.527 2.143
QCat[T.religion]:log_SPop -1.532 -1.947 -1.116 0.000 *** 0.455
QCat[T.screenwriter]:log_SPop 0.465 0.017 0.913 0.042 * 2.453
QCat[T.sport]:log_SPop -1.428 -1.811 -1.046 0.000 *** 0.559
SCons 0.266 0.021 0.511 0.034 * 0.266
QCat[T.capital]:SCons 0.379 -0.163 0.920 0.171 0.645
QCat[T.capital of]:SCons 0.122 -0.276 0.519 0.549 0.388
QCat[T.color]:SCons -0.365 -1.347 0.616 0.466 -0.099
QCat[T.composer]:SCons -0.035 -0.396 0.327 0.851 0.231
QCat[T.country]:SCons -0.111 -0.510 0.288 0.585 0.155
QCat[T.director]:SCons 0.464 0.083 0.845 0.017 * 0.730
QCat[T.father]:SCons 0.257 -0.158 0.671 0.225 0.523
QCat[T.genre]:SCons 0.743 0.358 1.128 0.000 *** 1.009
QCat[T.mother]:SCons -0.158 -0.980 0.665 0.707 0.108
QCat[T.occupation]:SCons -0.079 -0.430 0.272 0.659 0.187
QCat[T.place of birth]:SCons -0.250 -0.733 0.232 0.309 0.015
QCat[T.producer]:SCons 0.468 0.078 0.858 0.019 * 0.734
QCat[T.religion]:SCons -0.215 -0.857 0.428 0.512 0.051
QCat[T.screenwriter]:SCons 0.845 0.447 1.243 0.000 *** 1.111
QCat[T.sport]:SCons 0.620 0.223 1.017 0.002 ** 0.886
Cert 1.326 1.030 1.622 0.000 *** 1.326
QCat[T.capital]:Cert 0.556 -0.037 1.150 0.066 . 1.883
QCat[T.capital of]:Cert -1.078 -1.607 -0.549 0.000 *** 0.248
QCat[T.color]:Cert -0.114 -1.520 1.293 0.874 1.213
QCat[T.composer]:Cert -0.283 -0.704 0.138 0.187 1.043
QCat[T.country]:Cert -0.741 -1.134 -0.348 0.000 *** 0.585
QCat[T.director]:Cert -0.928 -1.317 -0.538 0.000 *** 0.398
QCat[T.father]:Cert -0.382 -0.886 0.122 0.137 0.944
QCat[T.genre]:Cert -1.030 -1.439 -0.620 0.000 *** 0.296
QCat[T.mother]:Cert 0.392 -0.587 1.370 0.433 1.718
QCat[T.occupation]:Cert -1.280 -1.698 -0.863 0.000 *** 0.046
QCat[T.place of birth]:Cert -0.869 -1.320 -0.417 0.000 *** 0.457
QCat[T.producer]:Cert -1.050 -1.478 -0.623 0.000 *** 0.276
QCat[T.religion]:Cert -1.656 -2.350 -0.963 0.000 *** -0.330
QCat[T.screenwriter]:Cert -0.695 -1.096 -0.295 0.001 *** 0.631
QCat[T.sport]:Cert -1.356 -1.781 -0.932 0.000 *** -0.030

Table 13: Logistic regression results for model MPT-Instruct2.
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coefficient (β̂) [0.025 0.975] p-value symbol conditional coefficient
intercept -2.505 -2.767 -2.243 0.000 *** -2.505
QCat[T.capital] 3.063 2.459 3.668 0.000 *** 0.559
QCat[T.capital of] 0.570 -0.202 1.341 0.148 -1.935
QCat[T.color] 2.552 0.791 4.314 0.005 ** 0.048
QCat[T.composer] -0.017 -0.412 0.378 0.932 -2.522
QCat[T.country] 3.126 2.754 3.499 0.000 *** 0.622
QCat[T.director] -2.483 -3.201 -1.765 0.000 *** -4.988
QCat[T.father] 0.574 0.118 1.031 0.014 * -1.930
QCat[T.genre] 0.262 -0.079 0.603 0.132 -2.243
QCat[T.mother] -0.873 -2.543 0.797 0.305 -3.378
QCat[T.occupation] -0.049 -0.586 0.488 0.858 -2.554
QCat[T.place of birth] 0.666 0.237 1.094 0.002 ** -1.839
QCat[T.producer] -2.042 -2.708 -1.375 0.000 *** -4.546
QCat[T.religion] 1.184 0.459 1.910 0.001 ** -1.320
QCat[T.screenwriter] -1.264 -1.793 -0.734 0.000 *** -3.769
QCat[T.sport] 2.843 2.421 3.265 0.000 *** 0.338
log_SPop 2.072 1.763 2.382 0.000 *** 2.072
QCat[T.capital]:log_SPop -1.307 -1.670 -0.944 0.000 *** 0.765
QCat[T.capital of]:log_SPop -0.834 -1.253 -0.416 0.000 *** 1.238
QCat[T.color]:log_SPop -1.687 -2.776 -0.598 0.002 ** 0.385
QCat[T.composer]:log_SPop -0.989 -1.408 -0.571 0.000 *** 1.083
QCat[T.country]:log_SPop -1.937 -2.292 -1.582 0.000 *** 0.135
QCat[T.director]:log_SPop 0.783 0.189 1.378 0.010 ** 2.855
QCat[T.father]:log_SPop -1.344 -1.716 -0.972 0.000 *** 0.728
QCat[T.genre]:log_SPop -1.243 -1.599 -0.887 0.000 *** 0.829
QCat[T.mother]:log_SPop -0.854 -1.532 -0.177 0.013 * 1.218
QCat[T.occupation]:log_SPop -1.465 -1.889 -1.040 0.000 *** 0.608
QCat[T.place of birth]:log_SPop -1.836 -2.278 -1.394 0.000 *** 0.237
QCat[T.producer]:log_SPop 0.068 -0.453 0.589 0.798 2.140
QCat[T.religion]:log_SPop -1.956 -2.347 -1.566 0.000 *** 0.116
QCat[T.screenwriter]:log_SPop 0.162 -0.296 0.621 0.488 2.234
QCat[T.sport]:log_SPop -1.960 -2.335 -1.585 0.000 *** 0.112
SCons 0.172 -0.048 0.392 0.125 0.172
QCat[T.capital]:SCons 0.670 0.270 1.071 0.001 ** 0.842
QCat[T.capital of]:SCons 0.040 -0.325 0.405 0.828 0.212
QCat[T.color]:SCons 0.698 -0.470 1.867 0.241 0.870
QCat[T.composer]:SCons 0.173 -0.181 0.527 0.339 0.345
QCat[T.country]:SCons -0.404 -0.694 -0.113 0.006 ** -0.232
QCat[T.director]:SCons 0.318 -0.111 0.747 0.146 0.490
QCat[T.father]:SCons 0.173 -0.141 0.488 0.280 0.345
QCat[T.genre]:SCons 0.153 -0.171 0.478 0.354 0.325
QCat[T.mother]:SCons 0.463 -0.254 1.180 0.206 0.635
QCat[T.occupation]:SCons 0.025 -0.386 0.436 0.906 0.197
QCat[T.place of birth]:SCons -0.182 -0.530 0.166 0.304 -0.010
QCat[T.producer]:SCons -0.341 -0.754 0.071 0.105 -0.169
QCat[T.religion]:SCons -0.208 -0.594 0.178 0.291 -0.036
QCat[T.screenwriter]:SCons 0.498 0.130 0.865 0.008 ** 0.670
QCat[T.sport]:SCons -0.292 -0.593 0.009 0.057 . -0.120
Cert 0.520 0.258 0.782 0.000 *** 0.520
QCat[T.capital]:Cert 0.738 0.280 1.195 0.002 ** 1.258
QCat[T.capital of]:Cert -0.094 -0.518 0.329 0.662 0.426
QCat[T.color]:Cert -0.518 -1.714 0.678 0.396 0.002
QCat[T.composer]:Cert 0.207 -0.206 0.620 0.325 0.727
QCat[T.country]:Cert -0.077 -0.398 0.244 0.638 0.443
QCat[T.director]:Cert 0.378 -0.120 0.876 0.137 0.898
QCat[T.father]:Cert -0.415 -0.791 -0.040 0.030 * 0.105
QCat[T.genre]:Cert -0.243 -0.590 0.103 0.169 0.277
QCat[T.mother]:Cert -0.203 -1.521 1.115 0.763 0.317
QCat[T.occupation]:Cert -0.284 -0.813 0.246 0.294 0.237
QCat[T.place of birth]:Cert -0.005 -0.425 0.416 0.983 0.515
QCat[T.producer]:Cert 0.378 -0.102 0.858 0.123 0.898
QCat[T.religion]:Cert -0.710 -1.187 -0.232 0.004 ** -0.190
QCat[T.screenwriter]:Cert 0.486 0.034 0.938 0.035 * 1.006
QCat[T.sport]:Cert -0.266 -0.610 0.077 0.129 0.254

Table 14: Logistic regression results for model GPT-NeoX-20B.
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