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Abstract

Despite the tremendous advances achieved over
the past years by deep learning techniques, the
latest risk prediction models for industrial ap-
plications still rely on highly hand-tuned stage-
wised statistical learning tools, such as gradient
boosting and random forest methods. Different
from images or languages, real-world financial
data are high-dimensional, sparse, noisy and
extremely imbalanced, which makes deep neu-
ral network models particularly challenging to
train and fragile in practice. In this work, we
propose DeRisk, an effective deep learning risk
prediction framework for credit risk prediction
on real-world financial data. DeRisk is the first
deep risk prediction model that outperforms
statistical learning approaches deployed in our
company’s production system. We also per-
form extensive ablation studies on our method
to present the most critical factors for the em-
pirical success of DeRisk.

1 Introduction

Credit risk is the risk of loan default or loan delin-
quency when a borrower fails to repay on time.
Credit risk prediction is an analytical problem that
is vital for financial institutions when they are for-
mulating lending strategies for loan applications.
It helps make lending decisions by assessing the
solvency of the applicants from their credit infor-
mation. Accurate prediction keeps bad debts at a
low level, which directly saves substantial financial
loss for the multi-billion dollar credit loan industry
(Malekipirbazari and Aksakalli, 2015; Tan et al.,
2018). As credit risk is one major threat to financial
institutions (Buehler et al., 2008; Li et al., 2015; Ma
et al., 2018; Tan et al., 2018), better credit risk pre-
diction also improves the risk management capacity
of banks and financial technology companies.
Although credit scores, such as FICO Score,
have been widely used as mainstream risk indi-
cators by many financial institutions, data-driven
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methods have recently shown their great poten-
tial and superior practical performances (Xu et al.,
2021). Deep learning (DL), the dominating model-
ing technique in various domains such as computer
vision, natural language processing, and recommen-
dation system, has been a promising and increas-
ingly popular tool considered to tackle financial
problems. Recent attempts include market predic-
tion (Ding et al., 2015; Minh et al., 2018), stock
trading (Sezer et al., 2017) and exchange rate pre-
diction (Shen et al., 2015). Despite the recent trend
of using deep models, non-DL methods, such as
XGBoost and logistic regression, remain the most
effective techniques so far for credit risk predic-
tion in the financial industry. Many existing studies
have shown that neural network models lead to
similar or even worse performances than non-DL
methods (Fu, 2017; Kvamme et al., 2018; Varmedja
et al., 2019; Li et al., 2020; Moscato et al., 2021).
Credit risk prediction can be formulated as a
binary classification problem, where the goal is to
learn a function fp : X — [0, 1] to map the credit
information z € X of an applicant to a risk score
y € [0, 1] that represents the probability of default.
Despite such a simple problem formulation,
credit risk prediction can be particularly challeng-
ing. Existing deep-learning-based solutions mainly
focus on e-commerce consumer data (Liang et al.,
2021), which typically include dense features and
highly frequent user activities, such as clicks and
payments, on e-commerce platforms. However,
these fine-grained data are not commonly available
to financial institutions. Specifically, in our appli-
cation, we adopt the official credit reports provided
by the Credit Reference Center (CRC) of the Peo-
ple’s Bank of China. These financial data are of
much lower quality, i.e., containing much higher di-
mensions (over 4k) with a large portion of missing
entries and extreme values, due to low-frequency
credit records. End-to-end training neural networks
on these data can be substantially more challeng-
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Figure 1: The three-stage pipeline of our DeRisk framework. First, in data pre-processing, feature selection and
DL-specific data argumentation are adopted to benefit the optimization of DL models. Then we separately train two
models for non-sequential data and sequential data, respectively. Finally, we combine them and fine-tune the joint
model on the whole multi-format data. In contrast to the end-to-end paradigm in conventional DL applications, we
remark the multi-stage process is critical to the overall success of DeRisk on real-world financial data.

ing and brittle (Poole et al., 2016; Borisov et al.,
2021). Therefore, to the best of our knowledge,
most financial institutions (e.g., banks) still adopt
non-DL-based methods.

In this work, we present a successful industrial
case study by developing an effective deep learning
framework, DeRisk, which outperforms our pro-
duction decision-tree-based system, on real-world
financial data. Our DeRisk framework consists of
three major stages including data pre-processing,
separate training of non-sequential and sequential
models, and joint fine-tuning. We also design a
collection of practical techniques to stabilize deep
neural network training under the aforementioned
challenges. Specifically for the low-quality real-
world financial data, we observe that a multi-stage
process with feature selection and DL-specific en-
gineering processing can be critical to the overall
success of our framework.

Main contributions. (1) We develop a com-
prehensive workflow that considers all the model
training aspects for risk prediction. (2) We imple-
ment DeRisk, the first deep risk prediction model
that outperforms statistical learning approaches
on real-world financial data. (3) We conduct ex-
tensive ablation studies on the effect of different
technical components of DeRisk, which provides
useful insights and practical suggestions for the
research community and relevant practitioners.

2 Related Work

There have been extensive studies using machine
learning techniques for credit risk prediction, in-
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cluding linear regression (Puro et al., 2010; Guo
et al., 2016), SVM (Jadhav et al., 2018; Kim and
Cho, 2019), decision tree based methods like Ran-
dom Forest (RF) (Malekipirbazari and Aksakalli,
2015; Varmedja et al., 2019; Xu et al., 2021) or
Gradient Boost Decision Tree (GBDT) (Xia et al.,
2017a; He et al., 2018), deep learning (Byanjankar
et al., 2015; Kvamme et al., 2018; Yang et al., 2018;
Yotsawat et al., 2021), or an ensemble of them
(Fu, 2017; Li et al., 2020). Most of these works
use data with non-sequential features. Although
deep learning is applied, empirical results find that
XGBoost or other GBDT approaches usually out-
performs deep learning (Fu, 2017; Kvamme et al.,
2018; Varmedja et al., 2019; Xu et al., 2021).

On the other hand, deep learning has shown its
superiority beyond tabular data through the flexi-
bility of deep neural networks. Convolutional Neu-
ral Network (CNN) (Kvamme et al., 2018), Long
Short-Term Memory (LSTM) (Yang et al., 2018)
and Graph Neural Network (GNN) (Wang et al.,
2021a) are adopted for sequential data or graph data
since other machine learning techniques like GBDT
fail to properly model non-tabular data. According
to (Liang et al., 2021), deep learning outperforms
conventional methods on multimodal e-commerce
data for credit risk prediction.

Many data challenges in financial applications
are also common in other machine learning fields.
(1) For high-dimensional data, many feature selec-
tion methods have been proposed, including filter
methods (Gu et al., 2011), wrapper methods (Ya-
mada et al., 2014) and embedded methods (Feng
and Simon, 2017). Many risk prediction works



have adopted feature selection for better perfor-
mance (Xia et al., 2017a; Ha et al., 2019; Li et al.,
2020) or interpretability (Ma et al., 2018; Xu et al.,
2021). (2) Handling multiple data formats and fea-
ture types is related to the field of deep learning for
tabular data (Gorishniy et al., 2021; Borisov et al.,
2021). There are typical three popular deep neural
network architectures for tabular data (Klambauer
et al., 2017; Huang et al., 2020; Arik and Pfister,
2021), including Multi-Layer Perception (MLP),
Residual Network (ResNet) (He et al., 2016) and
Transformer (Vaswani et al., 2017). Similar to the
financial domain, it is also reported that deep mod-
els are not universally superior to GBDT models
(Gorishniy et al., 2021) on tabular data. (3) For
the out-of-time distribution shift issue, it iS com-
mon to split training and test data according to
the temporal order (Kvamme et al., 2018; Jiang
et al., 2021). (4) Furthermore, data imbalance is
also a long-standing problem in machine learning
research. Among the popular over-sampling and
under-sampling strategies (He et al., 2018; Bastani
etal., 2019; Mahbobi et al., 2021), Synthetic Minor-
ity Over-sampling Technique (SMOTE) (Chawla
etal., 2002) is a widespread technique for synthetic
minority data, which is also reported be effective
for credit risk prediction (Bastani et al., 2019). Gen-
erative adversarial networks can also be used to
generate additional minority data (Mariani et al.,
2018) and this method can be applied to financial
data (Liu et al., 2020) for risk prediction. However,
these methods are limited to non-sequential data
generation, while our financial data has multiple
formats. Class-balanced loss is another method to
make the model attend more to the minority sam-
ples (Lin et al., 2017; Xia et al., 2017b; Cui et al.,
2019; Ren et al., 2022). Comparative experiments
(Kaur et al., 2019; Moscato et al., 2021) show that
all strategies have their pros and cons. In our work,
we use a class-balanced loss to mitigate the prob-
lem of data imbalance, and different strategies are
used for non-sequential data and sequential data
thanks to their great difference in data dimension.

3 Preliminary

In this section, we first present the problem
statement for the credit risk prediction task, and
then introduce the credit information and labels
used in the task.
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3.1 Task Formulation

The credit risk prediction task aims to decide
whether a loan can be granted to the applicant
according to his/her credit information. To be
more specific, the risk prediction model needs to
learn a function fp : X — [0, 1], which takes the
credit information x € X of an applicant as input
and produces a risk score y € [0, 1] that represents
the probability of delinquent on the applicant’s
payments.

3.2 Multi-format Credit Information.

In this work, we adopt the credit information in
the credit report data that is generally available
in financial institutions. The credit report data of
an applicant consists of two parts: non-sequential
features and sequential features. Specifically, the
non-sequential part usually contains thousands
of stable profiles of the applicant, including age,
marital status, industry, property status, etc. We re-
mark that the non-sequential data of a credit report
can be extremely high-dimensional and sparse,
which requires further processing to successfully
train deep neural network models. The sequential
part contains dozens of features and consists of
three components of the applicant’s financial
behavior organized by time: (1) applicant’s past
loan information (loan), including the date of loan
issuing, type of lending institution, loan amount,
etc.; (2) the records that applicant’s credit report
was inquired in the past (inquiry), including
inquiry time, inquiry institutions, inquiry reasons,
etc.; (3) applicant’s credit card information (card),
including card application date, credit card type,
currency, etc. Note that the number of sequential
features is much smaller than non-sequential
features.

3.3 Multiple Labels and Imbalanced Data

Loan repayments naturally generate multiple labels
because of installment (e.g., the first or the second
month to pay back) and different degrees of delin-
quency (e.g., one-week or one-month delay). These
labels are roughly categorized into short-term la-
bels (e.g., the first/second/third installment is more
than 30 days overdue) and long-term labels (e.g.,
any installment in recent 12 months is more than
5/15/30 days overdue). Due to the general priority
of short-term benefits and the convenience of subse-



quent collection, financial institutions typically use
short-term labels for evaluation. However, directly
using this short-term evaluation label as the train-
ing label can be suboptimal. The choice of train-
ing label needs careful consideration for the best
practice. Note that all these labels are particularly
imbalanced (10% or even 1% for minority sam-
ples) because applicants who pay on time are much
more than applicants who are overdue. Therefore,
different choices of labels may lead to drastically
different model performances in practice, as shown
in our ablation study in Section 7.2.

4 Methodology
4.1 Opverall Pipeline

The overall pipeline of our DeRisk framework is
shown in Figure 1. Firstly, we apply careful data
processing to turn noisy and irregular input fea-
tures into a neatly structured format, which is in-
dispensable for training deep networks. Secondly,
to well utilize both sequential and non-sequential
features, we design two main sub-models: a DNN
model for processing non-sequential features and
a Transformer-based model Mg for processing se-
quential features. We train them separately in the
second stage. In the last stage, we fuse Mygs and
Mg by concatenating the final hidden layers from
both models and applying another linear head to
give the final prediction score. We jointly fine-tune
this whole model to get improved performance.

4.2 Selection of Training Label

As we mentioned in Sec. 3, there are multiple
labels in risk prediction tasks that record an appli-
cant’s repayment behavior in different time periods.
Among these labels, we choose a long-term label to
train our model for two reasons. First, long-term la-
bels are more balanced than short-term labels. Sec-
ond, the data distribution (e.g., the ratio of negative
and positive data) varies over time (see Appendix
A.3) because of economic changes and the con-
tinual improvement of our deployed model. The
long-term label is less sensitive to these influences
and is more stable because it summarizes an appli-
cant’s behavior in the last 12 months, conceptually
performing a smoothing operator over the timeline.
We believe this will make our model more gener-
alizable and perform better on the out-of-time test
set, though predicting long-term risk is inherently
more difficult.
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4.3 Data Pre-Processing

The credit report data, especially the non-sequential
data, is extremely complex and noisy, as it con-
tains many missing values and outlier values. This
low-quality input can make the learning process un-
stable and hurts the final performance. Therefore,
proper data pre-preprocessing can be significantly
beneficial for the optimization of DL models.

Both sequential and non-sequential features can
be divided into three types: time features (i.e., fea-
tures about time such as credit card issue date),
real-value features (e.g., age, loan amount), and
category features (e.g., industry, type of lending
institution). For the time features, we always use a
relative date difference to avoid the models mem-
orizing input data according to the date. We also
apply normalization for the numerical time features
and real-value features, and discard minor classes
in the category features.

In addition, we adopt specific techniques for
non-sequential features. We found that lots of
non-sequential real-value features are useless noise
and even harmful for training. Hence we adopt
a commonly-used feature selection technique that
utilizes XGBoost (Chen et al., 2015) to select the
most important 500 features among thousands of
non-sequential real-value features and discard the
others. Besides, most non-sequential features have
many Os and missing values (NAN) that naturally
arise from the financial behaviors and data collec-
tion processes, which makes non-sequential data
sparse, noisy, and problematic for DL training.
These Os and NANs are not necessarily meaning-
less, e.g., a NAN in “The time of first application
for a mortgage" may imply that this applicant has
never applied for a mortgage. Besides, if we simply
fill these entries with a constant ¢, it will influence
those true entries close to ¢ and significantly in-
fluence the learned model. So, we treat these Os
and NANSs carefully. For every category feature,
we add a category (NAN), and for every real-value
and time feature, besides replacing all NANs with
0Os, we also create two indicators that directly tell
whether a value is 0 and is NAN. With explicit indi-
cators, DL models can therefore directly utilize the
information implied by meaningful Os and NANs
and learn to ignore those Os and NANSs that are
harmful to training.
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4.4 Modeling Non-sequential Features

We adopt a simple but effective neural network
for non-sequential features. The architecture is
shown in Figure 2. Firstly it uses an embed-
ding layer to convert category features into dense
vectors and concatenate them with time and real-
value features to the dense input :cdense e R™,
Then N dense is fed into a MLP (multi-layer percep-
tron) with ReL.U activation functlon to get the non-
sequential output hldden state 255, € R™2. And
the final prediction §N° is computed as: g

U((W%\é;t)Txlf;InSal + bloglt) where Wloglt € R™2 and
blog1t are the weight vector and bias for the logit,

respectively, 2N = (wie ) @iy + b10g1t is the
logit, and o(x) = 1/(1 + exp(—=x)) is sigmoid

activation.

4.5 Modeling Sequential Features

4.5.1 Architecture

We adopt a Transformer (Vaswani et al., 2017)-
based model for its strong modeling capacity. The
architecture is shown in Figure 3. Three such mod-
els, Mcard, Minquiry> and Mioan, are used for card,
inquiry, and loan features, respectively. Suppose
the sequence length is / and the embedding size is
e. Firstly a time net will convert the time feature
into time embedding F; € R!*¢, which plays a
role of position embedding, and attention is used to
merge different feature embeddings into one, i.e.,
Ef € R¢. Then a Transformer encoder will en-
code the sequential embeddings £/ = E; + E into

85

hidden feature z;, € R'*¢, which will be pooled
by another attention into output feature x:';nal € R¢,
where * refer to card, inquiry or loan. We concate-
card ,.inquiry loan : S 3
nate rgi, Tgoo o and Ty to obtain xy € RVC.

At last, similar to non-sequential case, we have

logit 25 = (W) 3y + biygir and final pred-
ication §° = o(2%). To improve the generaliza-

tion ability of the sequential model, we share the
time net and Transformer encoder among M.y,
Minquiry, and Moan.

4.5.2 Mask Language Model Pre-training

During training, we found that optimization of
the sequential model is much harder than the non-
sequential model (the left part of Figure 4) due to
the scarcity of sequential features compared with
non-sequential features. To ease the training of the
sequential model, we adopt mask language model
(MLM) pre-training as BERT (Devlin et al., 2019)
to make the model first learn informative and gen-
eral features from sequential data. We randomly
mask the input sequential features, where 80% of
masked value are replaced with token (MASK) (for
category features) or O (for time and real-value fea-
tures), 10% are replaced with a random value, and
10% remain unchanged. The three output hidden
features of Transformer encoder, i.e., l‘%ard, x}?qmry,
and xlo‘m will be input into different classification
heads to predict different type of origin value at the
masked position. After pre-training, we fine-tune
Mns on the downstream classification task.

4.6 Weighted BCE Loss

We also adopt weighted BCE loss to deal with data
imbalance. Firstly, BCE (binary cross entropy) loss
function is commonly used in binary classification
tasks:

n

BCE = —% Z[yz log(9;) + (1 —y;) log(1 — ;)]
i=1

However, when negative samples are much more
than positive samples, naive BCE loss will induce
the model to output y; = 0. To avoid this, we
can give more weight to positive samples by using
weighted BCE loss:

Z log(1

€D~

WBCE = —

Z log (7

€Dt

8- |D+r

where DT = {i : y; = 1} is the set of positive
samples and D~ = {i : y; = 0} is the set of
negative samples. Another implementation of the
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Figure 4: Left: valid AUC of non-sequential and sequential models with training epoch. Right: change of valid
AUC of the sequential model with and without MLM pre-training or oversampling.

above-mentioned weighted loss is oversampling,
i.e., adjusting the ratio [D~| : [DT|to 1 : 1 by
re-sampling positive samples.

We use oversampling on the sequential model
and use normal weighted BCE loss on the non-
sequential model and joint fine-tuning stage. This
is because the optimization of the non-sequential
model is much harder and slower than that of the
non-sequential model due to the small number of
non-sequential features, while oversampling en-
ables the model to see rare samples multiple times
in one epoch and thus accelerates optimization.
On the other hand, the number of non-sequential
features is large and the optimization of the non-
sequential model is already fast enough, oversam-
pling may lead to overfitting on the minority sam-
ples instead.

4.7 Separate Training & Joint Fine-tuning

To fuse the sequential and non-sequential fea-
tures, we use a concatenation layer (Concat Net)
on the top of them to concatenate their output
hidden states and to predict the final score, i.e.,
y = U((Wlogit)Txﬁnal + blogit), where wgnsal =
[2RS |, 23..1]. Note that the hardness of optimiza-
tion non-sequential and sequential models is dif-
ferent, so if we train them with the concatenation
layer together from scratch, the overall model will
totally rely on the non-sequential outputs, which
are easier to train on, while ignoring the output of
the sequential model. To avoid this and to utilize
the sequential features better, we adopt a two-stage
training strategy: separately train sequential and
non-sequential models first and then jointly fine-
tune them with the Concat Net.

Data Time Real-value Category
card 1 2 5
inquiry 1 0 2
loan 1 4 5
non-sequential | 13 4098 9

Table 1: Number of time, real-value, and category fea-
tures in each sample of sequential and non-sequential
data. The card, inquiry, and loan sequences for each
user are clipped with lengths 32, 64, and 128, respec-
tively.

S Experiment Setup

5.1 Notation

We mainly use a long-term label ) for train-
ing and a short-term label yggg}T for evaluation.

otherl other2 other3
Vot + Vehort s Vehort - » There are also three other
short-term labels used in our experiments. The

description of these labels are in Sec A.2.

5.2 Dataset Statistics

We sample 582,996 Yangianguan Users and use
their credit report data and repayment behavior
from August 2020 to July 2021 as the dataset. To
simulate the out-of-time prediction in real business
scenarios, we take the 430,865 data pieces from
August 2020 to May 2021 as the training set and
152,131 data pieces from June 2021 to July 2021
as the test set. The ratio of negative and positive
samples is about 50 : 1 according to the short-
term label used for evaluation and is about 10 : 1
according to the long-term label used for training.'
For sequential data, we set the maximum sequence
length of card, query, and loan data to be 32, 64,
and 128, respectively, according to the distribution

'We keep the exact ratio numbers confidential due to com-
mercial and security concerns.
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Model Voal, Vi yqer
non-seq model over non-seq data only

XGBoost 0.6418 0.6282 0.6187
DeepFM 0.5700 0.5508 0.5478
SDCN 0.6450 0.6319 0.6236
PDCN 0.6483 0.6343 0.6254
Autolnt 0.6454 0.6325 0.6238
DNN 0.6499 0.6349 0.6254
seq model over sqe data only

Pooled MLP 0.5996 0.5821 0.5749
LSTM 0.6108 0.5936 0.5859
Transformer 0.6132 0.5941 0.5871
Transformer+MLM  0.6156 0.5971 0.5885
joint model over the entire data

Add-Attn Net 0.6504 0.6369 0.6285
Mul-Attn Net 0.6520 0.6377 0.6278
DeRisk(ours) 0.6546 0.6398 0.6297

Table 2: All models are evaluated by AUC scores on
three different short-term labels.

of data length. Only the latest data will be included
for training and evaluation. Some statistics are
summarized in Table 1.

Note that all above data are definitely authorized
by the customers since they hope to apply for loan
in our platform and they should provide the access
to their credit report. We also anonymized the
names of people and organizations on credit reports
to protect customers’ privacy.

5.3 Evaluation Metric

The metric commonly used to evaluate credit risk
prediction models M is AUC (Area Under the
ROC Curve) score. We remark that this is a chal-
lenging task and an increment of 0.01 in AUC can
be significant in performance as this results in a
roughly 5% decrement of real-world bad debts.

6 Main Results

6.1 Baselines

For non-sequential model, the baselines include
(1) current popular traditional ML model XG-
Boost (Chen et al., 2015) (main baseline) and sev-
eral more complicated deep models including (2)
DeepFM (Guo et al., 2017): the final score is
NS = o (2NN + 2hy), where 2RS¥ is the logit
of DNN and ZFNI\% is the logit gotten by a FM
(factorization machine (Rendle, 2010)) layer. (3)

DCNv2 (Wang et al., 2021b): use cross-network
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(multiple cross layers) to obtain high-order cross
feature. A DNN can be stacked on top of the cross-
network (SDCN); we could also place them in par-
allel (PDCN). (4) AutolInt (Song et al., 2019): use
a multi-head self-attention to learn interacted fea-
tures.

For the sequential model, our baselines are
pooled MLP (which uses a pooling layer to aver-
age hidden states of different times that are individ-
ually produced by the MLP) and LSTM (Hochre-
iter and Schmidhuber, 1997).

For the final module that fuses the output of the
hidden state by the non-sequential model and se-
quential model, we compare our simple Concat Net
with an additive attention layer (Add-Attn Net)
and a multiplicative attention layer (Mul-Attn Net)
that use xfi\fli as a query vector to pool output hid-
den feature of Transformer Encoder xj, by additive
and multiplicative attention, respectively.

6.2 Evaluation and Analysis

Since our dataset has multiple formats, we first
test separated models for single-format data mod-
eling. For non-sequential data, we compare the
DNN module in DeRisk with XGboost, a widely-
used decision-tree model in our production system.
We aim to show whether our DeRisk system and
techniques can make its DNN module outperform
other non-DL methods on real-world financial data.
Other popular models in recommendation systems
like DeepFM, DCN, and Autolnt are also tested as
DL competitors. For sequential data, we consider
different sequential models including Pooled MLP,
LSTM, and Transformer for evaluation. Our De-
Risk adopts Transformer and additionally adopts
MLM-pretraining to accelerate training.

Finally, we consider joint models trained over
the entire dataset with both formats by fusing the
best non-sequential model, DNN, and the best se-
quential model MLM-pretrained Transfomer, to
obtain joint models for the best evaluation results.
With more data, the joint models outperform ei-
ther separated models, but we also find different
fusing techniques lead to different performances.
We compare our Concat Net with two different
attention-based methods.

Table 2 summarizes the main results. All mod-
els are evaluated by three different labels to show
consistent results. From the results we can see that:

(1) Our non-sequential model DNN and sequen-
tial model



Change AUC
No (ours) 0.6546
w/o Separate Training (end-to-end) 0.6487
w/ Freeze Sub-models 0.6512

Table 3: Y2

ot AUC scores with different training strate-
gies.

MLM+Transformer outperform all baselines,
respectively. Specifically, compared with cur-
rent popular XGBoost model, our DNN model
Mus and best joint model DeRisk (with Con-
cat Net) improve ygg;; AUC score by 0.0081

and 0.0128, respectively.

(2) Joint fine-tuning of non-sequential and se-
quential models can achieve better results than
only using a single non-sequential or sequen-
tial model.

(3) Complex models do not necessarily perform
better: simplest DNN and Concat Net outper-
form other more complicated models. This
indicates that the high-order features created
by those additional networks such as FM and
cross layers are not that helpful for the credit
risk prediction task.

7 Ablation Study

In this section, we conduct a series of experiments
to demonstrate the effect of each part of our De-
Risk framework. We mainly use ygggit for eval-
uation since we find it shows a consistent result
with other short-term labels as in Table 2. We test
the effectiveness of different modules in our multi-
stage process, including separate training & joint
fine-tuning, feature selection, indicator features,
and MLM-pretraining. Many different techniques
for data imbalance are also studied in this section.
With our ablation studies, we also present best prac-
tices for training deep neural network models over
real-world financial data.

7.1 Effect of Multi-stage Training

Because the hardness of optimization on non-
sequential data and sequential data is different as
shown in Figure 4, we first separately train Mg
and Mg and then joint fine-tune them. We also
tried joint training them from scratch (end-to-end),
or freezing Mg and M and only tuning the con-
catenating layer during joint fine-tuning. The re-
sults are reported in Table 3. We can see that sep-
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Training Label Test Label AUC
non-seq model
ylong (Ours) y;fgﬁt 0.6499
Vo' youo o 0.6392
Vion you o 0.6363
seq model
Viong (Ours) yeval 0.6156
Vo' yeal 06113
Vivar el 06105

Table 4: Experiment results of selecting different train-
ing labels on non-sequential and sequential models.

Change AUC

No (Ours) 0.6499
|Fr| = 4098 0.6415
|Fr| = 100 0.6390
w/o Indicator 0.6426
w/ BCE Loss 0.6454
w/ Focal Loss  0.6403
w/ Oversample 0.6458

Table 5: Analysis experiment results on non-sequential
DNN model, where |Fg| is the number of selected fea-
tures.

arate training outperforms the other two training
strategies.

Suggestion#1: It is beneficial to first perform
separate training and then joint tuning for multi-
format data. The additional tunable parameters
introduced in the fine-tuning process should be
sufficiently large for effective multi-format fu-
sion.

7.2 Effect of Different Training Labels

We tried taking two short-term labels (Y2 and
yggggt) and a long-term label (Viong) as the training
label, respectively. The results in Table 4 demon-
strate that the long-term label is the best choice for
both non-sequential and sequential models, even
when the model is evaluated on a short-term label.
Suggestion#2: It is better to choose a balanced
and stable signal that measures the long-term

behaviors as the training label.

7.3 Effect of Real-value Feature Selection

To show the effect of selecting real-value features
with XGBoost, we compare the following three



Change AUC

No (Ours) 0.6156
w/o MLM Pre-training 0.6132
w/o Oversampling 0.6153

Table 6: Analysis experiment results on sequential
Transformer-based model.

cases: no selection, selecting 500 real-value fea-
tures (Ours), and selecting 100 real-value features.
The results in Table 5 show that selecting 500 fea-
tures performs the best. This indicates that (1) by
selecting real-value features with XGBoost, we can
drop useful fewer features and improve the perfor-
mance. (2) dropping too many features would lead
to worse predictions.

Suggestion#3: It is important to perform feature
selection before deep learning training. The di-
mension of selected features should be chosen
carefully.

7.4 Effect of Indicator Features

To show the effect of NAN and zero indicators,
we compare the case with and without them. As
shown in Table 5, after removing indicators, the
AUC score decreases by 0.0073.

Suggestion#4: Some NANs and 0s can be mean-
ingful and it is better to use indicator features
rather than simply filling these missing values
with a constant or discarding them.

7.5 Comparison of Different Loss Functions

We compared the performance of using weighted
BCE loss (Ours) with using naive BCE loss on
the DNN model. In addition, we also tried Fo-
cal loss (Lin et al., 2017) which is designed for the
data imbalance case, but the result in Table 5 shows
that it is not helpful for our task and weight BCE
achieves the best performance.

Suggestion#5: Adding more weight to rare posi-
tive samples is critical to prevent the model from
biasing to the overwhelming negative outputs.

7.6 Effect of Oversampling

We compared the cases with and without oversam-
pling on both the non-sequential model and sequen-
tial model to demonstrate the effect of oversam-
pling. We can see from Table 6 and the right of
Figure 4 that for sequential model, oversampling
(1) improves AUC. (2) accelerates optimization.
By enabling the model to see rare positive sam-
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ples more times in each epoch, oversampling re-
duces the training difficulty of the sequential model.
On the other hand, oversampling also makes the
non-sequential model, the one easier to optimize,
overfits more quickly on the training data and thus
cannot achieve good performance as shown in Ta-
ble 5. In practice, DNN with oversampling usually
overfits after the first epoch.

Suggestion#6: Oversampling makes optimiza-
tion of the sequential model easier and improves
performance. And considering the difference be-
tween non-sequential data and sequential data,
each separated model should be optimized with
different sampling strategies.

7.7 Effect of MLM Pre-training of Sequential
Model

From Table 6 and the right of Figure 4 that MLM
pre-training of the sequential model (1) improves
performance. (2) accelerates optimization. This
indicates that the pre-trained model has learned
some knowledge of sequential data that are useful
for the risk prediction task.

Suggestion#7: MLM pre-training benefits the
optimization of the sequential model on credit
risk prediction.

8 Conclusion

In this work, we proposed an effective deep learn-
ing framework, DeRisk, which utilizes both se-
quential and non-sequential features for credit risk
prediction. We apply careful data pre-processing
to obtain clean and useful data for deep models,
use MLLM to pre-train the sequential model, adopt
weighted BCE loss and oversampling to deal with
the data imbalance problem, and select general-
izable and stable training labels for better perfor-
mance. The overall performance of DeRisk largely
outperforms existing approaches on real-world fi-
nancial data. We remark that it is unnecessary
that a more complicated network always performs
better. In our analysis, every components of the
training framework including data pre-processing
and a carefully designed optimization process are
all critical to make deep learning models perform
well on a real-world financial application. We hope
our framework and analysis can bring insights for
a wide range of important commercial applications
and inspire future research on developing more
powerful deep learning tools for real-world indus-
trial data.
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A Appendix
A.1 Training Details

For our model and all the deep-learning baselines,
we use Adam (Kingma and Ba, 2014) optimizer
with learning rate 5 x 10~% and weight decay 1 x
10~%. We set the batch size to 1,000. For non-
sequential model DNN, we set the embedding size
to 16, use three-layer MLP, and set the hidden size
to 1028, 256, and 128, respectively. For sequential
models, we use a one-layer Transformer encoder,
set the embedding size to 128, the number of heads
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to 8, and the dropout probability to be 0.1. We
adopt a 5-fold cross-validation on the training set
and evaluate the ensembled model on the test set.

Both sequential and non-sequential features are
composed of time features (i.e., features about time
such as date), real-valued features, and category
features. For every time feature in date format, we
subtract it by the date at which the credit report
is used for prediction. That is, the time feature
indicates the number of days between when the
financial activity happens and when the credit re-
port is called. Then for every time and real-value
feature, we do zero-mean and one-std normaliza-
tion and clip all values into [—4, 4] to make the
distribution easier for DL models to learn. For ev-
ery category feature, we merge all the categories
outside the top 30 into one category (UNK).

We utilize XGBoost (Chen et al., 2015) to se-
lect the most important 500 features of the non-
sequential real-value features and discard the rest
of them. We simply train an XGBoost model on the
same task of risk prediction. After that, we choose
500 features with the highest feature importance
value to feed the non-sequential DL model. For
every category feature, we add a category (NAN),
and for every real-value and time feature, besides
replacing all NANs with Os, we also create two
indicators [z = 0] and [x = NAN]. Therefore,
for every real-value and time feature, there will
be three corresponding features after this process.
Thus, the 500 features we selected above become
1500 features.

A.2 Label Notation

The dataset mainly contains two types of labels:
1) short-term label ixlabely, which means the user
fails to pay back y days after the xth-month’s repay-
ment deadline; 2) long-term label overduey, which
means the user has at least one y-day overdue be-
havior in the last year.

In the following experimental parts we
mainly use the following labels: Vine, the
long-term label overduel5; ygggit, the main

short-term label illabel30 used for evaluation;
yf}}gf{ 1,)7;’}:2?{2,)};’11‘2?{3, denoting another three

short-term labels illabell5, i2label30, i3label30,
for training and evaluation.

A.3 Dataset Analysis

We show in Figure 5 that the input data distribu-
tion, i.e., the ratio of negative and positive data,
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Figure 5: The change of imbalance ratio A% from

August 2020 to July 2021. Compared with illabell5
and 11label30, the ratio of overduel5 is more stable.

varies over time. Besides the changes of the eco-
nomic environment, the data distribution changes
also because the consumers are first filtered by a
basic decision model in practice, which keeps be-
ing optimized over time. As a result of a better
filtering process, fewer applicants default and the
data becomes more imbalanced. (e.g., see Jan-2021
and May-2021 for illabell5 and illabel30). Empir-
ically, compared to the short-term label, we notice
that the long-term label overduel5 is less sensitive
to economic environment influence and optimiza-
tion of the basic decision model. It is more stable
because it summarizes a customer’s behavior in the
last 12 months, which is conceptually performing a
smoothing operator over the timeline. In addition,
the prediction of long-term risk is more difficult and
thus is less affected by the basic decision model.
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