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Abstract

The Private Equity (PE) firms operate invest-
ment funds by acquiring and managing compa-
nies to achieve a high return upon selling. Many
PE funds are thematic, meaning investment pro-
fessionals aim to identify trends by covering as
many industry sectors as possible, and picking
promising companies within these sectors. So,
inferring sectors for companies is critical to the
success of thematic PE funds. In this work, we
standardize the sector framework and discuss
the typical challenges; we then introduce our
sector inference system addressing these chal-
lenges. Specifically, our system is built on a
medium-sized generative language model, fine-
tuned with a prompt + model tuning procedure.
The deployed model demonstrates a superior
performance than the common baselines. The
system has been serving many PE profession-
als for over a year, showing great scalability to
data volume and adaptability to any change in
sector framework and/or annotation.

1 Introduction

Private Equity (PE), as a fast-growing branch of the
investment industry, operates investment funds on
behalf of institutional and accredited investors by
acquiring and managing companies before selling
them to achieve high, risk adjusted returns. The
common PE investment strategies, according to
(Block et al., 2019), include venture capital, growth
capital, and leveraged buyouts. The majority of PE
funds strive to be “thematic” (Bérubé et al., 2014),
aiming to identify macro-level trends by covering
a variety of relevant sectors and picking promising
companies within these sectors. In order to do that,
any company should be put into a sector that best
describes its main business activity. The sectors are
often defined hierarchically (cf. the sector frame-
work in Section 2), where the sectors higher up in
the hierarchy tend to have a broader scope (hence
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Figure 1: A PE sector framework defined as a tree with
a depth L=4. Each non-root node represents a sector
(i.e., s1 ∼ sM ) that is numbered in a depth-first order.
The integer attached to the m-th sector/node indicates
the number of companies |Cm| annotated for sm.

usually fewer in number) and be more stable, while
the ones lower down (a.k.a. “industries”) are more
fine-grained and prone to change. A well-defined
sector framework enables investment professionals
to conduct a deeper analysis of the economy within
each individual sector.

There are currently hundreds of millions of com-
panies worldwide, and thousands of new compa-
nies are founded daily. Realistically, human pro-
fessionals can only evaluate a limited number of
companies to determine their belonging sectors. In
order to significantly increase the coverage of sec-
tor mapping, practitioners have begun resorting to
predictive systems to infer the belonging sectors of
companies. Due to the reasons discussed in Sec-
tion 2, there has not been any effective system that
is generic enough to drive the wide adoption in PE
operations. In this paper, we standardize the sec-
tor framework and discuss the typical challenges;
we then introduce our sector inference system ad-
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dressing these challenges. Our system has been
successfully serving hundreds of PE professionals
for over a year. The highlight is three fold:

• We propose to co-tune the PLM (pretrained
language model) starting from a later stage of
prompt tuning, attempting to leverage the ca-
pability of medium-sized PLMs to an extreme
using scarce annotation.

• We implement an autonomous system, which
effectively handles the dynamic sector frame-
work, evolving annotation, data imbalance,
noisy features, and high inference volume.

• We experimentally show the superior perfor-
mance of our approach in comparison to the
common baselines, and justify many design
choices such as model paradigm and size.

2 The Problem and Challenges

Let cn denote the n-th company (n=1, 2, . . . , N )
in the scope of a PE firm; the total number of
companies N usually reaches the order of millions.
Most of the time, PE professionals maintain a hier-
archical sector framework containing M different
sectors represented as nodes (s1 ∼ sM ) in a tree
with L layers, as illustrated in Figure 1. In practice,
the value of L is mostly less than 4, and the total
number of sectors (i.e., M ) tracked by a large PE
firm may reach up to a few hundred. The problem
is how to assign each company cn to the most
relevant sector sm. Solving such a problem re-
quires addressing several challenges (abbreviated
as Chall.) that will be discussed below.

Chall.1: scarce, imbalanced and evolving an-
notation. One might notice there are some public
datasets such as G2 and Pitchbook1 that contain
sector annotations, i.e., cn → sm. In reality, they
can not be directly used to train the sector infer-
ring model, which is the consequence of two main
facts: (1) PE firms almost always maintain their
own version of sector framework that are drasti-
cally different from the ones from public datasets.
(2) PE funds may annotate companies differently;
for example, Klarna2 might fall into any sector of
payment method, digital bank and financial ser-
vice depending on the preference of investment
professionals or the fund specifications. To that
end, we allow professionals to select a sector for

1https://www.g2.com and https://pitchbook.com
2https://www.klarna.com

any company via the investment platform devel-
oped in-house. Formally, we use Cm to denote the
set of companies annotated for sector sm, and the
total number of companies in Cm is |Cm|; taking
node s3 in Figure 1 for example, its subscript 10

contains the value of |C3|, i.e., |C3|=10. In reality,
the sector annotation is scarce (an intrinsic limita-
tion of manual annotation), imbalanced (|Cm| can
vary greatly among sectors) and ever-evolving (the
mapping cn→sm may change frequently).

Chall.2: dynamic sector framework with vary-
ing granularity. Due to shifting market trends, the
sector framework is rarely fixed for extended peri-
ods of time. Instead, the sector framework is really
a dynamic one, where one of the three changes3

can occur: adding new layers, adding new nodes,
and removing nodes. Another observation is that
PE professionals will pick concepts they think are
important and define them as sectors, leading to
sectors with varying granularity even on the same
layer. For instance, a sector could be anything
from a new technology (e.g., block chain), an en-
vironmental concern (e.g., water shortage), to an
emerging market demand (e.g., Coronavirus test).

Chall.3: availability and quality of features. In-
tuitively, the most informative feature is probably
the textual description about a company, which can
be gathered from various data sources such as Pitch-
book and Crunchbase4. Given an example descrip-
tion “We develop security analytical tools to identify web-app

vulnerabilities. Contact us for a demo of our award-winning

product”, one could guess a “cyber security” sector
just by reading the first sentence, yet many texts
look more like the second sentence, which severely
lacks context. Moreover, a significant number of
companies simply do not have textual descriptions
available from popular data sources5.

Chall.4: high inference frequency and volume.
As soon as the textual feature of a company is
changed, we need to re-infer its sector. Besides,
any change around the sector framework or com-
pany annotation may trigger model update, which

3Note that changing the definition of an existing sector is
achieved by altering the associated company annotations; and
merging/splitting existing sector(s) can be done via combining
operations of adding and removing sector(s). Currently, only
a system superuser can modify the sector framework through
backend configuration files. However, our future plans in-
volve facilitating this process via a web-based graphical user
interface (GUI) integrated to EQT’s Motherbrain platform –
https://eqtgroup.com/motherbrain.

4https://www.crunchbase.com
5Cao et al. (2022) present a summary of data sources.
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Figure 2: Three paradigms of generative NLP models:
prompting P (s|c;θ2), model tuning P (s|c;θ1,θ2), and
prompt tuning P (s|c;θ2,θ3).

requires a re-inference for all N companies. With
the current data volume in our data warehouse, the
daily amount of re-inference can easily exceed 100
million, which may grow into a bottleneck.

3 The Core Model

Inferring the industry sector of companies can be
naturally addressed by a supervised NLP approach,
where we input the textual description of a com-
pany (denoted as c), and output a sector s based
on a θ-parameterized model P (s|c;θ); note that
we omit the subscripts n and m hereafter for the
sake of simplicity. To find the optimal θ, we use
the annotated mappings c → s to fit this condi-
tional probability. The prediction target s can be
either raw text (e.g., “cyber security”) or the encoded
M -dim one hot vector, where the former is a gen-
erative approach and the latter is discriminative.
It is crucial to highlight that generative methods
offer two primary advantages over discriminative
techniques (such as supervised classification): (1)
generative models are capable of predicting sec-
tors beyond those predefined, and (2) since these
models output natural words, they can more effec-
tively harness pre-learned knowledge in LM, thus
avoiding overfitting on smaller training datasets.

Nowadays, generative approaches dominate the
domains of computer vision (e.g., Stable Diffusion
by Rombach et al., 2022) and NLP (e.g., GPT-3
(Brown et al., 2020) and GPT-4 (OpenAI, 2023)).
Particularly, the language model (LM) is often pre-
trained following a generative approach, such as
predicting the masked words. To address Chall.1&2,
we need to exploit the capability of a pretrained
LM (PLM). We start with designing a template for
samples:

[NAME], concerns [TAGS], is [c]. Sector: [s].

For a certain company, [NAME] is its legal name,
[TAGS] is the concatenated tags/keywords6 that are

6Many data sources, such as Pitbook and Crunchbase, have
some keywords tagged for each company.
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Figure 3: Performance comparison over different model
paradigms (legend) and sizes (x-axis): the validation (a)
precision and (b) recall averaged over 84 sectors.

added to address Chall.3. For example, the filled
input for company “Klarna” may look like

Klarna Bank AB, concerns buy-now-pay-later and
shopping, is an online payment platform designed
to facilitate cashless payments. Sector: [s].

As the prediction target, [s] remains unreplaced,
thus it is an unanswered sample. Model optimiza-
tion essentially attempts to make the predicted [s]

closer to the annotated sector text, and in this ex-
ample s = “financial service”. We use c′ to denote
the filled sample for company c.

3.1 Prompt and Model Tuning
Despite minor differences, the generative NLP
models largely adhere to one of three paradigms:
prompting, model tuning, or prompt tuning. Seen
from Figure 2, prompting (Liu et al., 2023) freezes
the PLM weights θ1 while learning a mapping func-
tion (parameterized with θ2) to transform the raw
PLM output into the sector space. Model tuning
allows finetuning θ1, which is the de facto way of
leveraging large PLM for downstream tasks (Li and
Liang, 2021). Prompt tuning prepends some soft
prompts, which are essentially learnable virtual to-
kens, into the input sequence c′ and only trains
them (corresponding to parameter θ3) while keep-
ing θ1 fixed (Su et al., 2022). PLM can have bil-
lions of parameters making model tuning paradigm
expensive, while the prompt-based approach (Liu
et al., 2023) has only thousands of tunable parame-
ters (Lester et al., 2021).

Following the generative “text-to-text” T5 PLM
(Raffel et al., 2020), we compared the performance
of these paradigms towards the PE sector inferring
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Algorithm 1: Prompt + model tuning
Input: Sector annotations in the form of c→s, a

generative NLP model P (s|c;θ1,θ2,θ3),
PLM freezing steps t′, learning rates ϵ1 and ϵ2

Output: The optimal parameters θ∗
1, θ∗

2 and θ∗
3

1 Initialize θ1 by loading the pretrained T5 model;
2 Initialize θ2 and θ3 randomly;
3 for (t = 1; t ≤ T ; t++) do
4 Sample a mini-batch from the annotations;
5 Transform each c into a filled template c′;
6 Forward propagate c′ to obtain the prediction ŝ;
7 Calculate the T5 cross entropy loss L(ŝ, s);
8 if t ≤ t′ then
9 ϵ = ϵ1;

10 else
11 ϵ = ϵ2 and θ1 :=θ1−ϵ ∂L(̂s,s)

∂θ1
;

12 θ2 :=θ2−ϵ ∂L(̂s,s)
∂θ2

and θ3 :=θ3−ϵ ∂L(̂s,s)
∂θ3

;

13 θ∗
1 = θ1, θ∗

2 = θ2 and θ∗
3 = θ3;

14 return θ∗
1, θ∗

2 and θ∗
3;

task. Figure 3 shows the average precision and
recall in relation to different paradigms and model
sizes (Small, Base, Large and XL)7. We observe
that model tuning of T5 achieves stronger perfor-
mance than prompting and prompt tuning. Prompt
tuning catches up with model tuning as model size
increases, which coincide the conclusion drawn by
Lester et al. (2021). Intuitively, the label scarcity
(Chall.1) and varying granularity of sector frame-
work (Chall.2) could be better addressed by prompt
tuning, since it is supposed to keep the learned
knowledge in PLM untouched; meanwhile, we also
want to replicate the superior performance of model
tuning when using a smaller model. To that end,
we propose a model P (s|c;θ1,θ2,θ3) that carries
out t′ steps of prompt tuning (only optimize θ2

and θ3) before jointly tune the PLM weights θ1,
as presented in Algorithm 1. Seen from Figure 3,
this “Prompt + Model Tuning” approach outperforms
all compared methods by a large margin, which
is the case even when the PLM size is relatively
small.

According to Figure 3, the performance of our
approach increase with the size of PLM and plateau
(>98%) when reaching a “Large” size. Hence,
we initialize our model with the T5-Large PLM
and train for T =1×106 steps with a mini-batch
size of 50. The prompt tuning phase is trained for
t′ =3×103 steps with a learning rate of ϵ1 =0.1,
where the first 1×103 steps utilize a linear learning

7We did not manage to experiment the XXL T5 model due
to our restriction of computing and human resources. The T5
PLMs can be found in https://huggingface.co/google.

Figure 4: Demonstration of annotation (label) attribu-
tion process using s3 sub-tree from Figure 1 as an exam-
ple. Darker colored nodes are eligible for modeling.

rate warm-up (Goyal et al., 2017). Afterwards, the
joint prompt and model tuning begins with a warm-
up of 1.5×103 steps until reaching a learning rate of
ϵ2 = 5×10−3. Checkpoints are selected via early
stopping with respect to the validation accuracy.
All these hyper-parameters are determined by an
empirical grid search, and the implementation is
built upon OpenPrompt (Ding et al., 2022).

3.2 Annotation attribution

We empirically regulate that only the sectors with
at least 20 annotated companies can be included
in the modeling, which implies that some sectors,
such as s3, s6 and s7 in Figure 1, are not eligible
directly. Since sector annotation is scarce (Chall.1),
we try to utilize every annotation to predict as much
sectors as possible. Subsequently, we run a depth-
first (bottom-up) annotation attribution algorithm
to collect the eligible sectors sm and their annotated
set of companies Cm. Figure 4 demonstrates this
procedure in three steps assuming the annotation
attribution algorithm is currently processing the s3
sub-tree in Figure 1. Initially, only the child sectors
s4 and s5 are eligible (cf. s4 22 and s5 23 in Fig-
ure 4) because they have more than 20 annotated
companies. When it comes to s6 and s7, they have
insufficient annotations, thus are not eligible. How-
ever, their annotations will move up and contribute
to the parent sector s3, enabling s3 to be included in
the training dataset due to |C3|=10+8+16=34>20.

Despite our best-effort annotation attribution pro-
cedure, it is possible that some sectors may still be
excluded from training. However, in practice, the
trained generative model is capable of producing
sector names that are not within the eligible sector
set. We believe this occurrence represents scenarios
where the sectors are not covered by the labels, yet
they are still significant in terms of their inherent
business implications. This feature is particularly
desirable as it facilitates better understanding and
refinement of the sector framework.
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Algorithm 2: Sample balancing via EDA
Input: The eligible sectors s1, . . . , sM and their

corresponding company sets C1, . . . ,CM

Output: The balanced company sets C′
1, . . . ,C

′
M

1 Initialize: C′
1 = C1, . . . ,C

′
M = CM ;

2 Calculate ζ = 2 ·max{|C1|, . . . , |CM |};
3 for (m = 1;m ≤ M ;m++) do
4 for each c in Cm do
5 Augment c for ⌊ζ/CM⌋−1 times with EDA

(Wei and Zou, 2019), producing set c′;
6 C′

m = C′
m ∪ c′;

7 return C′
1, . . . ,C

′
M ;

3.3 Sample balancing via augmentation

As a part of Chall.1 discussed in Section 2, the value
of |Cm| can vary from merely 20 all the way to
a few hundred. Thus, the aforementioned annota-
tion attribution will produce a heavily imbalanced
training dataset. The overall idea is augmenting the
samples for minority sectors to achieve inter-sector
balance. There is a whole spectrum of text augmen-
tation methods: from rule-based to model-based
techniques (Feng et al., 2021), from which we
adopt the EDA (easy data augmentation) approach
(Wei and Zou, 2019) because of its simplicity and
universality. For individual [NAME], [TAGS] and [c]

from our sample template, we perform synonym
replacement, insertion, swapping and deletion at
random choice with random intensity. Algorithm 2
has the details of the entire balancing procedure.

3.4 Performance analysis

As of December 2022, there are 84 eligible sec-
tors after the annotation attribution procedure as
introduced in Section 3.2. We collect all samples
manually annotated under one of these 84 sectors,
thereby creating a dataset that exhibits imbalance in
terms of the number of samples annotated for each
sector. The dataset is then balanced via the augmen-
tation procedure introduced in Section 3.3. This
results in a final dataset containing 7,260 samples,
where each sector has ∼86 annotated samples in
average. We reserve 15% of the dataset for valida-
tion and report the accuracy of different baselines
in Table 1. Our approach (i.e., “Prompt + Model
Tuning”) manages to achieve an accuracy of over
80% on the validation set. In contrast, its discrimi-
native counterpart (cf. Section 5), which employs
an M -way classification output head, achieves only
70% accuracy (largely on par with prompt tuning),
likely due to the scarcity of labels.

Then we dig down to understand the error con-

Model Accuracy (%)
M -Way Classification 70.02
Prompting 64.63
Prompt Tuning 70.91
Model Tuning 76.44
Prompt + Model Tuning (Ours) 80.25

Table 1: Performance comparison of various baselines,
all employing “T5 Large” as the PLM. The reported
accuracies have been obtained (in December 2022) us-
ing the same random seed for consistency. The highest
performing result is highlighted in bold.

Figure 5: The confusion matrix for seven sectors picked
from the 84 (as of December 2022) predicted sectors.

tribution from each sectors and find that sectors on
low levels (e.g., L3 and L4 in Figure 1) have an
accuracy of over 90% except two L3 sectors named
horizontal software and vertical software, as re-
flected in Figure 5. A horizontal software company
caters to a wide and broad ranging market of con-
sumers, and a vertical one provides a solution for a
particular line of business or industry. Because of
the way they are defined, many businesses in hor-
izontal/vertical software sector might fit in other
sectors as well. For example, a company providing
bot-based customer service could be part of the hor-
izontal market of any customer support scenario,
while also targeting vertically to game publishers.
The complete list of predicted sectors is considered
to be sensitive proprietary information and there-
fore we only show the confusion matrix for seven
sectors (two from L2 and five from L3) in Figure 5.
Since L3 sectors are more fine-grained requiring
less (than L2) annotations, a generally better in-
ference performance is observed for L3 than L2,
which encourages us to run a bottom-up annotation
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Figure 6: The full system diagram with three scenarios
(1∼3) controlled by a rule-based inspection operator.

attribution (cf. Section 3.2) to prioritize lower-level
sectors.

4 The Full System

The evolving annotation (Chall.1) and dynamic
sector framework (Chall.2) both demand constant
model iteration; and any model update would re-
quire a full-scale re-inference. As a result, trigger-
ing model iteration upon any change in annotation
or sector framework will be computationally ex-
pensive and hard to scale. Instead, We trigger a
rule-based inspection only once every day (e.g., at
about 02:00 as exemplified in Figure 6) through Air-
flow8. The inspection rules lead to three scenarios:

(1) Finetune on T5 PLM when the sector frame-
work is changed or the annotation for any
existing sector has evolved significantly9; it
takes about 7 hours on 2 × Nvidia P100 GPU.

(2) Finetune on the latest sector model when the
sector annotation only changed marginally9;
but the first scenario will be enforced after 90
days since its last execution.

(3) Skip finetune otherwise and run incremental
inference introduced in Section 4.2.

The second scenario takes less than 1/7 of the effort
of the first scenario. We continue to present the key
ingredients of finetune and inference.

4.1 Finetune
Figure 7 shows the finetune pipeline which is encap-
sulated in a docker10 image run by Google Kuber-
netes Engine (GKE)11. From our data warehouse
managed by BigQuery12 (Melnik et al., 2010), the

8Apache Airflow: https://airflow.apache.org
9For sector sm that originally has |Cm| annotated com-

panies, the number of newly added/removed companies is
∆m, then ∆m/|Cm| ≥ 0.75 is regarded as significant, and
0.75 > ∆m/|Cm| ≥ 0.1 is a marginal change.

10https://www.docker.com
11https://cloud.google.com/kubernetes-engine
12https://cloud.google.com/bigquery

annotation attribution (Section 3.2)

sample balancing via augmentation (Algorithm 2)

prompt + model tuning (Algorithm 1)

QA (quality check) of the 
best model (Section 4.1)

evaluation 
metrics QA pass?

No

Yesreleased 
models

manual 
interveneGCS

GKE

company 
features

sector 
framework

sector 
annotation

BQ

Figure 7: The finetune workflow. BQ: BigQuery, GCS:
Google Cloud Storage, GKE: Google Kubernetes Engine.

inferred 
sectors

company 
features

Select companies for inference: 
(1) if a new model is trained, return all companies;
(2) otherwise, return companies with changed features.

released 
models GCS

Infer sectors for selected companies

evaluation 
metrics

BQ

Kafka

Investment 
Platform

Dataflow

Figure 8: The (differentiated) inference workflow that
starts with a rule-based company selection step.

annotation attribution (Section 3.2) collects all el-
igible sectors s1, . . . , sM together with their cor-
responding company sets C1, . . . ,CM , which are
balanced via augmentation (Algorithm 2). The bal-
anced dataset is then split (with a ratio of 9:1) into
training and validation sets that are used for prompt
+ model tuning following Algorithm 1.

The validation metrics (sector-wise precision
and recall calculated from a confusion matrix like
Figure 5) of the finetuned model will go through a
QA (quality check) step to determine if this model
is good enough to be automatically released in GCS
(Google Cloud Storage)13. QA constitutes a series
of assertions such as “The precision of vertical software
should be greater than 75%” and so on. If any of these
assertions fails, it will send an alarm to our data sci-
entists via Slack14 to request a manual interference
to take appropriate actions.

4.2 Inference

The inference workflow starts with a selection step
(cf. Figure 8) to determine a subset of companies
that need re-inference. The selection step greatly
reduce the daily inference load (by 95% at least
after the system stabilizes), hence it tackles Chall.4.

13https://cloud.google.com/storage
14https://slack.com

60

https://airflow.apache.org
https://www.docker.com
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/bigquery
https://cloud.google.com/storage
https://slack.com


Next, the latest trained model is loaded to infer the
sectors for the selected companies, where two facts
could relieve Chall.4 further: (1) being able to use
a medium-sized PLM, and (2) job parallelization
by Dataflow15. The inferred sectors are stored in
BigQuery and simultaneously published to Kafka16

so that our investment platform can further leverage
those predictions in many PE analytical use cases.

5 Related Work

As discussed in Section 3, the most relevant ap-
proach is M -way classification using either word
or sentence level features as input. But the fea-
tures are usually pre-learned with a fundamentally
different setup and target (e.g., MLM: Masked
Language Model, cf. Devlin et al., 2019), which
makes it potentially difficult to continue finetuning
towards a classification target (Gururangan et al.,
2020). There is a recent trend of unifying all down-
stream tasks as a text generation problem (Lester
et al., 2021), i.e., a generative NLP paradigm. In
fact, using prompt has become the symbol of this
paradigm. For example, we can potentially ask a
GPT-3 Brown et al., 2020 or InstructGPT (Ouyang
et al., 2022): “Klarna is a company that provide an cashless

online payment platform. What is Klarna’s industry sector?”
The likely answer would be something that gener-
ally make sense, yet will not be mapped directly
towards the predefined sector framework. As a re-
sult, prompting (Liu et al., 2023) and prompt tuning
(Su et al., 2022) emerge to fill this gap. However,
Lester et al. (2021) discover that model tuning still
prevails when the size of PLM is relatively small,
which inspires us to jointly tune small PLM and
prompt, as explained in Section 3.1.

6 Conclusion

In order to support thematic PE fund operations,
we design and deploy a scalable and adaptive sys-
tem to infer customized industry sectors for mil-
lions of companies. We empirically show that a
generative NLP model is superior to its discrimi-
native counterpart, leading to a solution of model
+ prompt tuning that guarantees superior perfor-
mance even using scarce annotation and medium-
sized PLM. The prompt template is designed to
cope with noisy input textual features. To address
the ever-changing sector framework and annotation,
the system automatically triggers and determines

15https://cloud.google.com/dataflow
16https://kafka.apache.org

the most appropriate scenario by quantifying the
change. Moreover, the system also incorporates
best-effort annotation attribution, sample balanc-
ing, and incremental inference. Hundreds of PE
professionals has benefited from this system for
over a year. Last but not least, our solution can be
directly generalized to many similar scenarios such
as e-commerce product tagging.
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