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Abstract

Modern virtual assistants are trained to clas-
sify customer requests into a taxonomy of pre-
designed intents. Requests that fall outside
of this taxonomy, however, are often unhan-
dled and need to be clustered to define new
experiences. Recently, state-of-the-art results
in intent clustering were achieved by training
a neural network with a latent structured pre-
diction loss. Unfortunately, though, this new
approach suffers from a quadratic bottleneck
as it requires to compute a joint embedding
representation for all pairs of utterances to clus-
ter. To overcome this limitation, we instead
cast the problem into a representation learning
task, and we adapt the latent structured predic-
tion loss to fine-tune sentence encoders, thus
making it possible to obtain clustering-friendly
single-sentence embeddings. Our experiments
show that the supervised clustering loss returns
state-of-the-art results in terms of clustering
accuracy and adjusted mutual information.

1 Introduction
Many virtual assistants like Alexa, Cortana, Google
Home, and Siri have a Natural Language Understanding
(NLU) component that categorizes customers’ requests
into supported experiences, organized by domains and
intents. However, when user requests don’t fit into these
categories, NLU models can fail, causing friction in
human-machine interaction. Analyzing these out-of-
scope utterances can help expand the assistant’s capa-
bilities, but manually inspecting all failing utterances
is unfeasible. Therefore, automation is needed, such as
clustering frictional utterances into new required expe-
riences. This approach is valuable for expanding the
assistants’ capabilities in a user-driven way. One way is
to use pre-trained sentence embeddings with unsuper-
vised clustering algorithms. Another option is to train
a clustering model in a supervised manner using utter-
ances with known intents. This supervised approach
has been successful in co-reference resolution (Finley
and Joachims, 2005) and has been recently applied to
intent clustering. A seminal work by Haponchyk et al.
(2018) uses measures of utterance similarity as input

to either Latent Structural Support Vector Machines
(LSSVM) or to a Latent Structured Perceptron (LSP)
(Yu and Joachims, 2009; Fernandes et al., 2014). The
same two algorithms - LSSVM and LSP - were later
used by Haponchyk and Moschitti (2021) to train a fully
Neural Supervised Clustering architecture (NSC) with
utterances encoded through pre-trained large language
models - e.g. BERT (Devlin et al., 2019). Supervised
clustering techniques use graph structures to represent
clusters and are highly effective, but have a quadratic
complexity due to the need for edge weights between
all possible sample pairs. In the NSC case, for example,
all pairs of utterances must pass through a convolutional
neural network at both training- and inference-time.

To avoid this, we propose using the supervised clus-
tering loss to fine-tune sentence encoders, producing
clustering-friendly single-sentence embeddings. This
turns supervised clustering into a metric or represen-
tation learning problem where we force embeddings
to be globally more suitable for intent clustering. Our
approach has the advantage of scaling linearly with the
number of samples, as embeddings only need to be com-
puted for all utterances, not all pairs. To validate our
approach, we perform experiments on CLINC150 (Lar-
son et al., 2019), BANKING77 (Casanueva et al., 2020),
DSTC11 (Galley et al., 2022), HUW64 (Liu et al., 2021)
and Massive (FitzGerald et al., 2022): these are 5 public
benchmark datasets for intent clustering, both monolin-
gual and multilingual. For each dataset we fine-tune
mBERT (Devlin et al., 2019), XLM roBERTa (Conneau
et al., 2020) and two state-of-the-art sentence encoders
(All Mpnet Base and Paraphrase Multilingual Mpnet)
with either our supervised clustering loss or one among
cross entropy loss, cosine similarity loss, contrastive
loss or triplet margin loss. Results show that, regard-
less of base sentence encoder or algorithm chosen to
perform clustering, our proposed fine-tuning strategy in-
duces state-of-the-art embeddings that perform equally
or better than those obtained with all other tested metric
learning losses, when evaluated on the intent clustering
task. Our code has been attached to this submission and
will be publicly released upon acceptance.

2 Related Works
This work lies at the intersection of three research areas:
intent clustering, sentence embeddings, and structured
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Figure 1: A sample calculation of the supervised clustering loss on two clusters (yellow points vs green points)

prediction - which we will briefly review below.

2.1 Intent Clustering

During the past few years, intent clustering has been
a very active research topic. While it has been shown
that pre-trained transformers perform poorly on out-of-
scope detection (Zhang et al., 2022a), fine-tuning in a
contrastive or semi-supervised fashion has proven bene-
ficial (Casanueva et al., 2020; Zhang et al., 2021c; Mehri
and Eric, 2021; Zhang et al., 2021d; Mou et al., 2022).
Early works mostly focus on unsupervised clustering
methods (Shi et al., 2018; Perkins and Yang, 2019; Chat-
terjee and Sengupta, 2020), but semi-supervision has
now gained popularity (Forman et al., 2015; Zhang et al.,
2022b). Lin et al. (2020), for example, propose to first
perform supervised training on known intents and then
use pseudo-labeling on unlabeled utterances to learn a
better embedding space. Quite similarly, and in line
with Deep Clustering (Caron et al., 2018), Zhang et al.
(2021b) propose to first pre-train on known intents and
then perform k-means clustering to assign pseudo-labels
on unlabeled data. Finally, a structured prediction loss
was used to directly teach both support vector machines
(Finley and Joachims, 2005; Haponchyk et al., 2018)
and neural networks (Haponchyk and Moschitti, 2021)
to directly output intent clusters for some input utter-
ances. This latter thread of research is the starting point
of our work.

2.2 Sentence Embeddings

Current state-of-the-art sentence embeddings (Reimers
and Gurevych, 2019, 2021; Liao, 2021; Kim et al., 2021;
Giorgi et al., 2021) are obtained by fine-tuning pre-
trained BERT-based architectures on SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2018) data
with either a cross entropy loss, a contrastive loss, or
a triplet margin loss. Gao et al. (2021) and Yan et al.
(2021) precisely show that contrastive loss can avoid
an anisotropic embedding space. As for intent-friendly
word and sentence embeddings, some works propose
to pre-train BERT on open domain dialogs in a self-
supervised manner (Mehri et al., 2020; Wu et al., 2020;
Henderson et al., 2020; Hosseini-Asl et al., 2020). On
the other hand, Zhang et al. (2020) formulated intent
recognition as a sentence similarity task. Another com-
mon option consists in pre-training with a contrastive
loss on intent detection tasks (Vulić et al., 2021; Zhang
et al., 2021d). Finally, and more generally, Zhang et al.
(2021a) show that combining a contrastive loss with a
clustering objective can improve short text clustering.

2.3 Structured Prediction

While in optimization problems local solutions often
produce optimal results, structured prediction represents
a valid alternative to solve NLP tasks requiring complex
output, such as syntactic parsing (Roth and Yih, 2004),
co-reference resolution (Yu and Joachims, 2009; Fernan-
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des et al., 2014), and clustering (Finley and Joachims,
2005; Haponchyk et al., 2018). Nonetheless, relatively
few works extend structured prediction theory to deep
learning (LeCun et al., 2006; Durrett and Klein, 2015;
Weiss et al., 2015; Kiperwasser and Goldberg, 2016;
Peng et al., 2018; Milidiú and Rocha, 2018; Xu et al.,
2018; Wang et al., 2019). In particular, when it comes to
clustering, designing a differentiable loss function that
captures the global characteristics of good clustering is
particularly hard; for this reason, when dealing with co-
reference resolution - a closely related task - Lee et al.
(2017) use simple losses, which already perform well
but do not strictly take into account the cluster struc-
ture. Haponchyk and Moschitti (2021), on the other
hand, represent clusters using graph structures and use
LSSVM (Yu and Joachims, 2009) and LSP (Fernandes
et al., 2014) - two structured prediction algorithms - to
compute an augmented loss for training a deep cluster-
ing architecture.

3 Supervised Clustering Loss for
Clustering-Friendly Representation
Learning

In this section, we demonstrate how a structured learn-
ing approach - which utilizes latent representations of
graph structures for predicting clusters from a set of
utterances - can be instead used to fine-tune sentence
encoders to be more clustering-friendly. Our approach
is unique in that it leverages supervised clustering prin-
ciples for the fine-tuning of sentence-transformers using
examples of clusters, known as gold clusters. This al-
lows for the creation of "cluster-friendly" embeddings,
whose cosine similarities can be used to directly clus-
ter the embedded utterances using various clustering
algorithms such as threshold-based, K-Means, or Hier-
archical Clustering.

Our fine-tuning loss represents utterances as nodes
of a fully-connected weighted graph. The edge weights
correspond to the cosine similarities between connected
pairs of utterances (as defined by Eq. 2). By pruning
the edges whose weight is below a certain threshold
(i.e., the cosine similarity is less than 0), we can obtain
a clustering. This clustering, however, is only used
at training time to compute a clustering-sensitive loss,
whose back-propagation contributes to the creation of
more clustering-friendly sentence embeddings.

We begin by briefly explaining how we can lever-
age a supervised clustering loss to fine-tune sentence
encoders, followed by a detailed description of the math-
ematical computation behind the loss.

3.1 Intuitive explanation of the Supervised
Clustering Loss

Our loss function is inspired by the Neural Supervised
Clustering (NSC) (Haponchyk and Moschitti, 2021).
Specifically, the computation of the loss accounts for
the differences between the gold clustering and the
embedding-based clustering. The loss is made up of
two components: a difference between two scores based

on edge weights (Eqs. 9, 10), and a structural-loss
based edge comparison (Eq. 8). Following the example
in Figure 1:

1. at each learning step, we use the actual embeddings
to compute a similarity matrix for the current clus-
tering scenario, represented as a fully-connected
graph (i);

2. using the gold clustering, we construct a first graph,
called gold graph (ii), keeping only edges that con-
nect nodes in the same clusters and pruning the
others; its connected components now represent
the gold clusters;

3. we construct a second graph, called violating graph
(iii), perturbing the similarity matrix (i) by penal-
izing the edges connecting nodes in the same clus-
ters; in this context, v is a real number between 0
and 1, representing the penalization factor on gold
edges, while r represent what percentage of this
penalization is transferred onto wrong edges;

4. we prune all the edges with weight below 0, result-
ing in a disconnected graph (iii), whose connected
components are the predicted clusters;

5. to perform the comparison between the two result-
ing clusterings, we keep the minimum possible
connectivity which preserves the connected com-
ponents and select the strongest edges by applying
Kruskal’s Maximum Spanning Tree to each con-
nected components, resulting in graphs (iv) and
(v);

6. we compute a score for each graph - as the weight
sum of the remaining edges, and the structural loss
- as the difference between the number of edges
of the gold graph and the numbers of correct and
incorrect edges of the max-violating graph.

7. finally, we perform back propagation only in case
the structural loss is greater than zero (which hap-
pens in the case of imperfect matching between the
two graphs).

3.2 Algorithm details

Let {(xi, yi)}ni=1 be a set of samples to be clustered,
where xi represents the i-th object and yi its cluster as-
signment. Let’s further assume that Netθ(.) is a generic
neural network that encodes the objects {xi}ni=1 into
k−dimensional real-valued vectors, such that:

A = [x̂1, ..., x̂n] = Netθ([x1, ..., xn]), (1)

where A ∈ Rn×k contains all the n objects encoded
with Netθ(.).

The first step to compute the supervised clustering
loss is to represent the clustering scenario {(xi, yi)}ni=1

through an undirected weighted graph, where the
i-th node corresponds to xi and the edge eij =
cosine_similarity(x̂i, x̂j). In practice, the weighted
adjacency matrix S with the pairwise cosine similarities
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fully defines the aforementioned graph. S can be effi-
ciently computed through matrix multiplication in the
following way:

S = 1− ĀĀT

2
, (2)

where Ā is just the l2-normalized version of A. Now,
let D and D̄ be two (n, n)-dimensional matrices such
that:

Dij =

{
1 if yi = yj

0 otherwise
D̄ij =

{
1 if yi ̸= yj

0 otherwise
(3)

In other words, D is a mask for all the edges connect-
ing any two samples sharing the same cluster (positive
edges from now on), while D̄ does the same for all the
edges connecting any two samples in different clusters
(negative edges from now on).

We will now define two graphs through their respec-
tive weighted adjacency matrices: i. a gold one where
only positive edges are kept, and ii. a violating one,
where weights on positive edges are decreased while
weights on negative edges are increased.

Sgold = S ◦D (4)

Sviol = max(0, S + v · (r · D̄ −D)) (5)

In both equations, all operations are element-wise - for
instance Sviol

ij = max(0, Sij +v · (r · D̄ij −Dij)). The
parameters v, r ∈ R+ are tunable. They are meant to
perturb the similarity matrix to make the edge selec-
tion for the correct clusters more challenging and more
robust to fluctuation; v controls the impact of this per-
turbation, while r is used to unbalance the importance
between positive and negative edges. On the possibly
fully connected graph Sviol, we define clusters as the
connected components obtained after neglecting all the
edges, whose weights are less than a threshold τ . The
next step is to exploit Kruskal’s algorithm to compute
the maximum spanning forest for both graphs.

Hgold = MaxSpanningForest(Sgold) (6)

Hviol = MaxSpanningForest(Sviol) (7)

In other words, Hgold and Hviol are two (n, n)-
dimensional matrices whose elements are equal to 1
if the edge eij is included in the maximum spanning
forest for Sgold and Sviol respectively. Intuitively, the
nodes appearing in the same connected component in
H are considered part of the same cluster.
Hgold results having the same clusters as D (i.e., the

gold clusters), but D’s connected components are fully-
connected, whereas Hgold’s are minimally connected by
virtue of Kruskal’s algorithm (for a subgraph of n nodes,
it has just n − 1 edges, instead of the fully-connected
n2).

We are now ready to compute the loss. Let’s first
define some additional quantities: a = sum(Hgold),
b = sum(D ◦Hviol) and c = sum(D̄ ◦Hviol) - where

a is equal to the number of edges included in the maxi-
mum spanning forest on Sgold, while b is equal to the
number of positive edges included in Hviol, and c to
the number of negative edges included in Hviol. These
three values are combined into a delta whose value de-
creases as more positive edges are included into the
violating forest and increases when more negative ones
are added:

∆ = a− b+ r · c (8)

Finally, let’s compute two intermediate scores:

sgold = sum(S ◦Hgold) (9)

sviol = sum(S ◦Hviol), (10)

where sgold and sviol represent the sum of all edge
weights/cosine similarities of the maximum spanning
forest on the gold and violating graphs respectively. The
supervised clustering loss will then be equal to:

L =

{
sviol − sgold if ∆ > 0

0 otherwise
(11)

A graphical sample calculation of the supervised clus-
tering loss can be found in figure 1.

Remark that the gradient cannot flow though the ∆
component, nonetheless it is influenced by it by virtue
of the condition for which L = 0 if ∆ ≤ 0.

3.3 Time Complexity of the Algorithm
The time complexity for the computation of the super-
vised clustering loss is O(n2 log n), where n is the num-
ber of utterances (see Sec. C.1 in the Appendix). This
is still more efficient than other losses commonly used
for fine-tuning sentence embeddings. For example, the
naive implementation of the triplet loss has O(n3) com-
plexity (Murphy, 2022). However, our experiments have
shown that training time is not a significant issue for ei-
ther loss, as the stopping criterion is typically triggered
after just a few epochs.

4 Baseline Metric Losses
Using the same notation as in section 3, we will now
define four other very well-known losses that proved
effective in fine-tuning sentence encoders (Liao, 2021;
Reimers and Gurevych, 2019; Nicosia and Moschitti,
2017). We used these losses as strong baselines for
comparing the performance of our supervised clustering
loss. Unlike the supervised clustering loss, these losses
work on pairs or triplets of items and try to reorganize
the embedding space simply by pushing away samples
not sharing the same label while pulling closer those
that do.

Let then (xi, xj) be any two samples encoded with
Netθ(.) into k−dimensional real-valued vectors, and
(yi, yj) their respective cluster assignments. We will
define the Binary Classification Loss as:{

ln(σ(W (xi, xy, |xi − xy|))) if yi = yj

1− ln(σ(W (xi, xy, |xi − xy|))) otherwise
(12)
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where W (xi, xy, |xi − xy|)) is just a linear projection
applied to the concatenation of the two embeddings
and their distance. Using instead the cosine similarity
between xi and xj we can define the Cosine Similarity
Loss as:{

[1− cos_sim(xi, xj)]
2 if yi = yj

cos_sim(xi, xj)
2 otherwise

(13)

where the embeddings of samples sharing the same
cluster are forced to have cosine similarity close to 1,
while keeping the embeddings of non-related samples
further apart. On the same line, the Contrastive Loss
(Hadsell et al., 2006) can be defined as:{

cos_dist(xi, xj)
2 if yi = yj

max[0,m− cos_dist(xi, xj)]
2 otherwise

(14)

in this case, we force the embeddings of samples in-
side the same cluster to have cosine distance equal to
zero, while keeping the cosine distance of non-related
utterances above the margin m.

To conclude, we will present the Triplet Margin Loss
which takes as input triples of samples (xi, xj , xk) such
that yi = yj ̸= yk - where the first element is called the
anchor, while the second and the third are commonly
referred to as the positive and negative examples. The
core idea behind this loss is to adjust the relative dis-
tances among the samples in each training triplet by
minimizing the following quantity:

max[0, cos_dist(xi, xj)− cos_dist(xi, xk)−m]
(15)

in short, for all triplets, we want to cosine distance
between the anchor and the negative to be higher than
the distance between the anchor and the positive by at
least the margin m.

5 Batch Sampling and Training
Procedure

To fine-tune sentence embeddings, the training set plays
a crucial role. The losses used for fine-tuning require
specific samples to be manually engineered. The su-
pervised clustering loss needs a ’clustering scenario’ as
input, while the other losses require pairs or triplets of
samples with labels equal to 1 if they share the same
cluster and 0 otherwise. To train, a common procedure
involves randomly selecting k clusters from the training
set and then randomly sampling m representatives from
each cluster to form a training batch. A training epoch
consists of n training batches.

For check-pointing and the stopping criterion, the
Precision Recall Area Under the Curve (PRAUC) is
monitored on pairs of utterances from the development
set. At each training step, m∗k utterances are randomly
sampled from the development set to calculate the co-
sine similarity among the sentence embeddings. At the
end of each epoch, the PRAUC is computed using the
true labels of pairs sharing the same cluster as 1 and
pairs with different clusters as 0. This criterion ensures

that the average cosine similarity between utterances
with the same intent is higher than the average cosine
similarity between utterances with different intents dur-
ing training.

6 Experiments
In this section, we present experimental results on in-
tent clustering using five losses applied to four sen-
tence encoders, with resulting utterance embeddings
clustered using Agglomerative Hierarchical Clustering.
Appendix includes results from DBSCAN and a con-
nected components-based procedure.

6.1 Benchmark Datasets
We experimented on five datasets commonly used
for benchmarking intent classification and cluster-
ing: CLINC150 (Larson et al., 2019), BANKING77
(Casanueva et al., 2020), DSTC11 (Galley et al., 2022),
HUW64 (Liu et al., 2021), and Massive (FitzGerald
et al., 2022). The first four are in English, while Mas-
sive is multilingual and larger in size with almost 1
million manually translated utterances in 51 languages.
To reduce its size, we randomly included 20% of the ut-
terances. DSTC11 and BANKING77 are single-domain,
while the rest are multi-domain. In essence, our study
focuses on in-domain intent clustering. See Table 1
and Section A of the Appendix for dataset statistics and
information on data acquisition and usage terms.

6.2 Base Models for Utterance Encoding
In our experiments, we rely on four different
transformer-based sentence encoders and see whether
our fine-tuning strategies improve their representation
power when it comes to intent clustering:

1. Average pooling of the word-level BERT embed-
dings (Devlin et al., 2019). BERT was trained on
the top 104 languages with the largest Wikipedia,
using both a Masked Language Modeling (MLM)
and a Next Sentence Prediction objectives,

2. Average pooling of the word-level XLM roBERTa
embeddings (Conneau et al., 2020). XLM
roBERTa is build on top of BERT but modifies key
hyper-parameters, removing the next-sentence pre-
training objective and training with much larger
mini-batches and learning rates,

3. All Mpnet Base (Reimers and Gurevych, 2019)
maps English-only sentences and paragraphs to
a 768-dimensional-dense vector space and was
shown to be the best performing sentence encoder
in English (HuggingFaceTeam, 2022). The model
was trained on multiple corpora of sentence pairs
using a Binary Classification Loss on top of a lin-
ear classifier that takes as input a concatenation of
the two sentence embeddings,

4. Paraphrase Multilingual Mpnet (Reimers and
Gurevych, 2020) maps sentences and paragraphs
to a 768 dimensional dense vector space and was
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DATASET # domains # intents # languages # total
utterances

Avg utt.
per intent

# train
intent

# dev
intent

# test
intent

CLINC150 10 150 1 (en) 22500 150 90 30 30
DSTC11 1 22 1 (en) 2093 95 13 4 5
HWU64 21 64 1 (en) 11106 174 38 12 14

BANKING77 1 77 1 (en) 13242 172 46 15 16
Massive 18 60 51 759966 12666 30 22 16

Table 1: Intent Clustering Benchmark Dataset Statistics

Figure 2: Fine-tuning always leads from moderate to large improvements in PRAUC on test utterances. The
supervised clustering loss and the triplet margin loss clearly outperform all other losses. Increases on All Mpnet
Base and Paraphrase Multilingual Mpnet are less pronounced because they were already on semantic similarity.

shown to be the best performing multilingual sen-
tence encoder (HuggingFaceTeam, 2022). The
model was trained on 1B sentence pairs using a
Binary Classification Loss on top of the cosine
similarity scores.

All Mpnet Base and Paraphrase Multilingual Mpnet
nonetheless were trained quite similarly to Sentence-
BERT, but with more data.

6.3 Experimental setting

We randomly assign 60% of intents to the training set,
20% to the development set, and 20% to the test set for
each of the 5 benchmark datasets. As detailed in section
5, the 4 base sentence encoders are separately fine-tuned
using all training intent utterances and each of the five
losses. Hyper-parameters are dataset-specific - see table
5 in the Appendix, and a max training epoch of 20
with 5 epochs of patience before early-stopping is set.
The best parameters for the supervised clustering loss,
triplet margin loss, and contrastive loss are selected via a
grid search over specified intervals to obtain the highest
PRAUC on the validation set. This procedure is repeated
5 times with different splits. The best parameters for
the losses are stable across datasets and experiments:
table 6 also shows the best values we used to obtain

the final models. The final models consist of 20 fine-
tuned models for each dataset (one per encoder-loss
pair) except Massive, for which there are 15 fine-tuned
models due to its multilingual nature. Information on
hardware and computational cost can be found in section
B of the Appendix.

Base and fine-tuned models are then used to extract
embeddings for all the utterances in the development
and test sets. After computing the matrix of pairwise
cosine distances, we cluster utterances into tentative
intents using agglomerative hierarchical clustering - an
algorithm that recursively merges pairs of clusters based
on a linkage criterion and a distance threshold. In the
Appendix, we also report results using DBSCAN, and a
procedure based on connected components. DBSCAN
finds core samples of high density and expands clusters
from them; in this case, the user needs to choose the min-
imum distance for two samples to be considered neigh-
bors (ϵ) and the minimum number of samples around
a candidate core sample. The third algorithm simply
takes as clusters the connected components, after cut-
ting all the edges below a certain threshold. The hyper-
parameters of these three algorithms are optimized on
the development set with respect to either the cluster-
ing accuracy or the adjusted mutual information score
(AMIS). Table 7 in the Appendix contains the hyper-
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DATASET LOSS
BASE SENTENCE ENCODERS

BERT Multilingual Cased XLM roBERTa Paraphrase Multilingual Mpnet All Mpnet Base
Average inter-intent

pairwise
cosine similarity

Average within-intent
pairwise

cosine similarity

Average inter-intent
pairwise

cosine similarity

Average within-intent
pairwise

cosine similarity

Average inter-intent
pairwise

cosine similarity

Average within-intent
pairwise

cosine similarity

Average inter-intent
pairwise

cosine similarity

Average within-intent
pairwise

cosine similarity

BANKING77

No fine-tuning 58.90% 67.10% 99.60% 99.70% 30.90% 58.30% 23.60% 56.00%
Binary classification loss 21.20% 66.50% 99.60% 99.70% 31.50% 59.90% 27.80% 61.80%

Cosine similarity loss 39.80% 69.90% 41.00% 68.40% 29.70% 72.10% 31.60% 72.80%
Contrastive loss 32.70% 65.80% 32.80% 65.30% 22.50% 68.80% 23.20% 69.90%

Triplet margin loss 25.80% 61.20% 48.70% 74.60% 16.40% 61.60% 13.80% 61.10%
Supervised clustering loss 11.70% 39.70% 20.60% 54.10% 3.50% 45.10% 2.60% 44.90%

CLINC150

No fine-tuning 54.10% 67.50% 99.60% 99.70% 16.90% 61.70% 9.90% 53.10%
Binary classification loss 50.00% 70.20% 99.50% 99.70% 17.40% 61.40% 10.90% 53.70%

Cosine similarity loss 28.10% 78.20% 41.60% 71.10% 14.90% 79.60% 20.20% 77.40%
Contrastive loss 20.80% 74.70% 22.80% 74.70% 8.70% 77.30% 15.80% 73.00%

Triplet margin loss 21.00% 65.90% 37.30% 80.10% 5.40% 65.50% 6.30% 63.70%
Supervised clustering loss 6.70% 44.10% 24.50% 63.40% 3.20% 50.50% 1.60% 49.50%

DSTC11

No fine-tuning 64.90% 69.90% 99.70% 99.70% 35.60% 62.20% 30.10% 57.80%
Binary classification loss 34.90% 68.90% - - - - 24.50% 70.10%

Cosine similarity loss 61.25% 79.35% 48.05% 78.10% 38.80% 77.95% 35.90% 75.50%
Contrastive loss 27.60% 63.90% 45.20% 68.90% 24.50% 67.30% 28.10% 72.60%

Triplet margin loss 34.90% 61.30% 47.05% 78.35% 12.80% 66.50% 12.80% 68.95%
Supervised clustering loss 19.45% 49.30% 19.45% 63.15% 5.70% 55.80% 7.05% 58.30%

HWU64

No fine-tuning 47.90% 62.60% 99.40% 99.60% 16.00% 53.80% 11.10% 42.80%
Binary classification loss 44.70% 65.90% 95.40% 97.90% 15.80% 54.10% 11.80% 42.90%

Cosine similarity loss 38.30% 68.30% 98.30% 99.20% 22.40% 78.10% 16.40% 48.40%
Contrastive loss 32.80% 65.80% 98.40% 99.20% 16.30% 75.60% 15.40% 76.70%

Triplet margin loss 18.70% 69.90% 39.90% 79.80% 9.50% 59.20% 6.00% 57.10%
Supervised clustering loss 6.20% 43.00% 97.40% 98.40% 1.70% 46.00% 1.50% 41.20%

Massive

No fine-tuning 41.60% 46.60% 99.30% 99.40% 22.80% 55.90% - -
Binary classification loss 34.90% 63.50% 99.20% 99.30% 19.10% 53.40% - -

Cosine similarity loss 40.60% 64.40% 98.70% 98.80% 31.00% 66.70% - -
Contrastive loss 30.60% 62.90% 98.70% 98.20% 22.30% 62.90% - -

Triplet margin loss 34.50% 61.50% 56.00% 77.30% 14.40% 54.70% - -
Supervised clustering loss 8.70% 30.00% 20.30% 49.30% 2.50% 46.40% - -

Table 2: Pre-fine-tuning and post-fine-tuning average inter-intent and within-intent pairwise similarity on test
utterances. The gap between the average inter-intent and within-intent pairwise similarities increases for all datasets,
losses and base sentence encoders. In other words, whatever loss we use, utterances that share the same intent get
closer while drifting apart from utterances with different intents. Interestingly enough, the supervised clustering
loss behaves in a markedly different manner, yes reducing the within-intent pair-wise similarity, but also leading the
inter-intent pair-wise similarity very close to zero. This is equal to say that the supervised clustering loss induces a
topological space which is different from the one created by the other losses.

parameter search spaces. Test utterances are eventually
clustered using the best hyper-parameters and the same
metrics are computed. For each dataset, the whole ex-
perimental procedure - from fine-tuning to clustering -
is repeated 5 times with different seeds and splits and
average results are reported with their variance.

6.4 Performance of Fine-Tuning Strategies

Figure 2 shows that fine-tuning always leads to moder-
ate or large improvements in PRAUC on test utterances,
regardless of the loss or base sentence encoder chosen.
The supervised clustering loss and the triplet margin loss
are especially effective fine-tuning strategies. All Mpnet
Base and Paraphrase Multilingual Mpnet show less pro-
nounced increases since they were already fine-tuned
on sentence similarity tasks. Table 8 in the Appendix
confirms these results when broken down by dataset.
Table 2 shows that improvements in PRAUC are re-
flected in average inter-intent and within-intent pairwise
similarities- which should be interpreted jointly. In an
ideal scenario, a loss should push the within-intent av-
erage cosine similarity close to 1 and the inter-intent
average cosine similarity to 0. Nonetheless, in our anal-
ysis, we show that things go differently.

The gap between the average inter-intent and within-
intent pairwise similarities increases for all datasets,
losses and base sentence encoders. In other words,
whatever loss we use, utterances that share the same
intent get closer while drifting apart from utterances
with different intents. Interestingly enough, however,
while most losses increase the average within-intent
pairwise similarity, the supervised clustering loss be-
haves in a markedly different manner, yes reducing the

within-intent pair-wise similarity, but also leading the
inter-intent pair-wise similarity very close to zero. This
is equal to say that the supervised clustering loss induces
a topological space which is different from the one cre-
ated by the other losses. This is further confirmed when
looking at figures 3, 4, 5, 6, 7, 8 in the Appendix - which
show the tSNE plots of the BANKING77 test utterances
when XLM-RoBERTa is used as base sentence encoder.

6.5 New Intent Clustering Results

The results of experiments with agglomerative hierar-
chical clustering using different datasets, sentence en-
coders, and losses are shown in tables 3 and 4. Although
we performed comparable experiments with DBSCAN
and a procedure based on connected components (see
the Appendix), for every dataset the highest clustering
accuracy and adjusted mutual information score were
achieved with agglomerative hierarchical clustering on
embeddings obtained from one of the four sentence en-
coders, fine-tuned with either the supervised clustering
loss or the triplet margin loss. Moreover, since the super-
vised clustering loss re-arranges the embedding space by
retaining edges only among utterances sharing the same
intent, embeddings obtained from any sentence encoder
fine-tuned with such loss are expected to be particularly
suitable for agglomerative hierarchical clustering.

As shown in table 3, when we optimize the clus-
tering algorithm hyper-parameters with respect to the
adjusted mutual information score, in 13 cases out of
19 the supervised clustering loss proved to induce more
clustering friendly embeddings, resulting in higher clus-
tering performance. As further shown in table 4, the
clustering behavior slightly changes when we optimize
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Average adjusted mutual information score on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the adjusted mutual information score

Clustering
algorithm

Base
sentence
encoder

Dataset No Fine-Tuning
Binary

classification
loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.53±0.02 0.55±0.05 0.67±0.03 0.66±0.04 0.76±0.03 0.77±0.05 Supervised clustering loss
CLINC150 0.73±0.02 0.76±0.03 0.77±0.04 0.77±0.04 0.84±0.03 0.85±0.02 Supervised clustering loss
DSTC11 0.29±0.05 0.52±0.10 0.47±0.14 0.50±0.10 0.60±0.06 0.63±0.10 Supervised clustering loss
HWU64 0.61±0.02 0.63±0.02 0.67±0.04 0.67±0.04 0.72±0.05 0.72±0.04 Triplet & Supervised
Massive 0.27±0.01 0.36±0.05 0.45±0.04 0.46±0.04 0.51±0.04 0.51±0.06 Triplet & Supervised

Paraphrase
Multilingual

Mpnet

BANKING77 0.74±0.02 0.72±0.07 0.76±0.06 0.75±0.05 0.83±0.02 0.81±0.03 Triplet margin loss
CLINC150 0.86±0.03 0.87±0.02 0.88±0.03 0.87±0.03 0.92±0.02 0.93±0.01 Supervised clustering loss
DSTC11 0.52±0.15 0.36±0.34 0.65±0.08 0.72±0.06 0.73±0.11 0.75±0.11 Supervised clustering loss
HWU64 0.79±0.05 0.76±0.01 0.79±0.03 0.79±0.01 0.79±0.04 0.81±0.04 Supervised clustering loss
Massive 0.60±0.09 0.60±0.06 0.65±0.06 0.64±0.06 0.71±0.06 0.70±0.05 Triplet margin loss

All Mpnet Base

BANKING77 0.84±0.01 0.83±0.01 0.83±0.02 0.83±0.03 0.88±0.02 0.86±0.02 Triplet margin loss
CLINC150 0.91±0.02 0.90±0.02 0.92±0.02 0.92±0.02 0.94±0.01 0.94±0.01 Triplet & Supervised
DSTC11 0.49±0.17 0.63±0.16 0.75±0.14 0.71±0.12 0.78±0.11 0.70±0.10 Triplet margin loss
HWU64 0.81±0.05 0.81±0.05 0.79±0.03 0.80±0.01 0.79±0.05 0.85±0.03 Supervised clustering loss

XLM roBERTa

BANKING77 0.48±0.01 0.60±0.04 0.66±0.06 0.66±0.04 0.73±0.06 0.75±0.03 Supervised clustering loss
CLINC150 0.66±0.02 0.72±0.07 0.74±0.05 0.71±0.07 0.86±0.03 0.86±0.01 Supervised clustering loss
DSTC11 0.28±0.02 0.42±0.00 0.53±0.04 0.53±0.04 0.68±0.05 0.65±0.10 Triplet margin loss
HWU64 0.52±0.04 0.61±0.09 0.56±0.05 0.55±0.07 0.73±0.05 0.77±0.04 Supervised clustering loss
Massive 0.20±0.01 0.28±0.12 0.23±0.11 0.19±0.02 0.51±0.06 0.58±0.04 Supervised clustering loss

Table 3: Average adjusted mutual information score on test set using agglomerative hierarchical clustering, for all
combinations of datasets and base sentence encoders - when optimizing wrt the adjusted mutual information score

Average clustering accuracy on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the clustering accuracy

Clustering
algorithm

Base
sentence encoder Dataset No Fine-Tuning

Binary
classification

loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.32±0.05 0.37±0.06 0.52±0.04 0.50±0.08 0.62±0.05 0.62±0.08 Triplet & Supervised
CLINC150 0.56±0.06 0.53±0.05 0.56±0.04 0.57±0.06 0.68±0.03 0.71±0.06 Supervised clustering loss
DSTC11 0.33±0.05 0.65±0.10 0.56±0.08 0.60±0.11 0.65±0.14 0.73±0.10 Supervised clustering loss
HWU64 0.52±0.04 0.51±0.03 0.56±0.06 0.55±0.04 0.59±0.06 0.56±0.04 Triplet margin loss
Massive 0.22±0.03 0.41±0.07 0.46±0.04 0.51±0.04 0.55±0.07 0.53±0.08 Triplet margin loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.62±0.06 0.56±0.08 0.64±0.06 0.62±0.03 0.72±0.03 0.69±0.06 Triplet margin loss
CLINC150 0.65±0.07 0.65±0.04 0.70±0.08 0.69±0.08 0.79±0.05 0.83±0.05 Supervised clustering loss
DSTC11 0.57±0.09 0.48±0.17 0.75±0.10 0.73±0.06 0.75±0.15 0.77±0.09 Supervised clustering loss
HWU64 0.73±0.09 0.74±0.10 0.69±0.05 0.67±0.03 0.75±0.07 0.68±0.05 Triplet margin loss
Massive 0.62±0.09 0.61±0.07 0.68±0.05 0.60±0.08 0.67±0.11 0.73±0.08 Supervised clustering loss

All Mpnet
Base

BANKING77 0.70±0.04 0.67±0.05 0.68±0.04 0.71±0.07 0.78±0.04 0.73±0.04 Triplet margin loss
CLINC150 0.75±0.06 0.75±0.06 0.77±0.05 0.78±0.08 0.81±0.03 0.82±0.04 Supervised clustering loss
DSTC11 0.56±0.12 0.67±0.09 0.78±0.16 0.83±0.12 0.78±0.14 0.77±0.14 Cosine similarity loss
HWU64 0.70±0.11 0.69±0.09 0.67±0.05 0.67±0.08 0.74±0.05 0.78±0.08 Supervised clustering loss

XLM
roBERTa

BANKING77 0.32±0.02 0.41±0.03 0.52±0.04 0.50±0.05 0.59±0.08 0.62±0.04 Supervised clustering loss
CLINC150 0.54±0.03 0.60±0.10 0.55±0.03 0.55±0.04 0.71±0.06 0.70±0.04 Triplet margin loss
DSTC11 0.36±0.08 0.68±0.00 0.57±0.19 0.61±0.18 0.74±0.08 0.71±0.09 Triplet margin loss
HWU64 0.42±0.02 0.52±0.12 0.37±0.02 0.44±0.11 0.65±0.08 0.73±0.07 Supervised clustering loss
Massive 0.23±0.02 0.30±0.09 0.26±0.09 0.22±0.02 0.52±0.04 0.61±0.04 Supervised clustering loss

Table 4: Average clustering accuracy on test set using agglomerative hierarchical clustering, for all combinations of
datasets and base sentence encoders - when optimizing wrt the clustering accuracy

with respect to the clustering accuracy, with the super-
vised clustering loss outperforming other losses in 11
out of 19 cases. Overall, the supervised clustering loss
and the triplet margin loss tended to perform similarly
and significantly better than other tested losses. How-
ever, in some cases, one loss outperformed the other
by up to 8 percentage points in clustering accuracy or
adjusted mutual information score, indicating that the
best loss depends on both the dataset and the base lan-
guage model chosen. Further investigation is warranted.
Notably, even pre-trained sentence encoders benefited
significantly from fine-tuning with either the supervised
clustering loss or the triplet margin loss, underscoring
the difference between intent similarity and semantic
similarity.

7 Conclusions and Future Work

We proposed a supervised clustering loss to fine-
tune sentence encoders, enabling the production of

clustering-friendly sentence embeddings. These em-
beddings can be used with any unsupervised cluster-
ing algorithm to discover new intents, overcoming the
quadratic bottleneck of current supervised clustering
architectures. Extensive experiments on 5 benchmark
datasets, including both monolingual and multilingual
data, and 4 different base sentence encoders showed
that our fine-tuning strategy induced embeddings that
perform equally or better than those obtained with all
other tested metric learning losses when comparing their
performance on intent clustering. In the future, we plan
to analyze the characteristics of the embedding spaces
induced by different losses to understand why the su-
pervised clustering loss works well with agglomerative
hierarchical clustering but not with DBSCAN. Notably,
regardless of the loss or sentence encoder chosen, fine-
tuned embeddings always improve the performance of
unsupervised intent clustering.
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8 Limitations and Ethical Considerations
Our work suggests further research on supervised clus-
tering algorithms, investigating the performance of sen-
tence embeddings generated using different clustering
algorithms and losses. Additionally, more exploration
is needed on the structural and topological differences
in embedding space between supervised clustering loss
and other losses. Although our experiments demon-
strate the effectiveness of supervised clustering loss,
we acknowledge the need for further investigation into
the circumstances in which triplet margin loss may be
preferable. Finally, while we strive to consider less
conventional requests, biases in clustering systems may
lead to oversimplification of people’s requests, and we
welcome further research on addressing this issue.
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela
Gerz, Paweł Budzianowski, Iñigo Casanueva, Nikola
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A Dataset licenses and release
DSTC11, Massive and HUW64 datasets are licensed
under the Apache-2.0 License, while CLINC150 and
BANKING77 are released under the cc-by-4.0 Creative
Commons Public Licence. Massive can be down-
loaded from https://github.com/jianguoz/
Few-Shot-Intent-Detection, DSTC11 from
https://github.com/amazon-science/
dstc11-track2-intent-induction and all
the other datasets from https://github.com/
jianguoz/Few-Shot-Intent-Detection.
None of the dataset contains any offensive content
or information that names or uniquely identifies
individual people. Finally, our code includes a
pre-processing script for every dataset that allows to
turn the downloaded files into the format required in
our pipeline.

B Hardware Infrastructure and
Computational Budget

We perform our experiments on one Amazon EC2 P3.16
instance, a 64-bit architecture with 488 GB of RAM, In-
tel Xeon E5-2686 v4 (64-core CPU running at 2.30GHz)

and 8x Nvidia Tesla V100 Tensor Core GPUs with 128
GB of VRAM.

C Time Complexity
C.1 Supervised Clustering Loss
Assumomg V is the number of nodes (utterances), and
E is the number of edges (all utterances pairs) in fig-
ure 1, the time complexity is O(V 2 log V ).

This result is the sum of the complexities for the
following steps:

1. Computation of the S similarity matrix (Eq. 2) has
quadratic complexity O(V 2).

2. Element-wise product (Eq. 4) and pairwise addi-
tion/subtraction (Eq. 5) have quadratic complexity
O(V 2).

3. Computing the maximum spanning forests (MSF)
by Kruskal’s algorithm (Eq. 6) and (Eq. 7) is
(E log V ). In our case, the gold MSF will be com-
puted only on correct positive edges E+, while
the most-violating MSF will be computed on all
the predicted positive edges E (both correct and
incorrect). In the worst case, E is equal to all pairs
of utterances V 2 (all nodes connected = all pairs
of utterances classified as being similar). So, the
resulting complexity is O(V 2 log V ).

4. Computing the structural loss (Eq. 8) has O(V )
complexity. This is due to the fact that in the
worst case scenario (i.e., a fully connected graph),
Kruskal’s algorithm would return V − 1 edges,
resulting in a O(V ) complexity for both element-
wise products and summations.

5. For the scores sgold (Eq. 9) and sviol (Eq. 10) the
previous argument applies as well.

6. Computing the loss (Eq. 11) has O(1) complexity.

Therefore, the overall complexity of the supervised clus-
tering loss is O(V 2 log V ).

C.2 Supervised Clustering predictions
After the system has been trained, the time complexity
for prediction is O(V ′2), where V ′ is the number of
utterances to be clustered. This is due to the following
steps:

1. Computation of the S similarity matrix (Eq. 2) has
quadratic complexity O(V ′2).

2. Computation of the connected components is lin-
ear in terms of the edges, hence has complexity
O(V ′2).

D Experiment Hyper-parameters
You can find here details of the experimented hyper-
parameters of training datasets (Table 5), losses (Table
6), and clustering algorithms (Table 7).
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E Fine-tuning complete experimental
results

Please find below average PRAUC (Table 8) for pre-
training and post-training on train, dev, and test sets for
each dataset, loss, and base sentence encoder.

F Clustering complete experimental
results

You can find here average clustering accuracy (Table
9) and adjusted mutual information score (Table 10) on
test set for all combinations of datasets, base sentence
encoders, and clustering algorithms.

G tSNE plots of test utterance
embeddings

Figures 3, 4, 5, 6, 7, 8 show the tSNE plots of the
BANKING77 test utterances when XLM-RoBERTa is
used as base sentence encoder. All plots where obtained
with the following hyper-parameters:

• Perplexity = 20

• Learning rate: 200

• Iterations: 2000

As shown in figure 3, when no fine-tuning is per-
formed - the point cloud is scattered all around. Same
thing happens when the binary classification loss is used
to fine-tune the model. In contrast, after fine-tuning with
the cosine similarity loss or with contrastive learning -
figures 5 and 6, respectively - intents are much better
separated. Such visual clustering further improves when
the triplet margin loss or the supervised clustering loss
are used as fine-tuning strategies - see figures 7 and 8.

DATASET # intents
per batch

# utterances
per intent

# batches
train
epoch

# batches
val

epoch
CLINC150 30 5 5 5
DSTC11 4 30 4 2
HWU64 12 15 4 4

BANKING77 15 8 5 5
Massive 12 10 5 5

Table 5: Dataset-specific training hyper-parameters

LOSS Hyper-parameters Search space Optimal values
c ([0,1]; step: 0.05) 0.15Supervised

Clustering Loss r ([0,1]; step: 0.05) 0.5
Triplet

Margin Loss m ([0,1]; step: 0.05) 0.15

Contrastive
Loss m ([0,2]; step: 0.10) 1.75

Binary
Classification Loss - - -

Cosine
Similarity Loss - - -

Table 6: Losses: hyper-parameter search spaces and
optimal values

ALGORITHM Hyper-parameters Search space
Linkage ward, complete, average

Agglomerative
Hierarchical Clustering

Distance
Threshold ([0,1]; step: 0.05)

Eps ([0,1]; step: 0.05)
DBSCAN Min

Samples [2, 5, 10, 15, 20, 25, 30]

Connected
components

Cut
Threshold ([0,1]; step: 0.05)

Table 7: Clustering algorithms: hyper-parameters search
spaces
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Average clustering accuracy on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the clustering accuracy

Clustering
algorithm

Base
sentence encoder Dataset No Fine-Tuning

Binary
classification

loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.32±0.05 0.37±0.06 0.52±0.04 0.5±0.08 0.62±0.05 0.62±0.08 Supervised clustering loss
CLINC150 0.56±0.06 0.53±0.05 0.56±0.04 0.57±0.06 0.68±0.03 0.71±0.06 Supervised clustering loss
DSTC11 0.33±0.05 0.65±0.1 0.56±0.08 0.6±0.11 0.65±0.14 0.73±0.1 Supervised clustering loss
HWU64 0.52±0.04 0.51±0.03 0.56±0.06 0.55±0.04 0.59±0.06 0.56±0.04 Triplet margin loss
Massive 0.22±0.03 0.41±0.07 0.46±0.04 0.51±0.04 0.55±0.07 0.53±0.08 Triplet margin loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.62±0.06 0.56±0.08 0.64±0.06 0.62±0.03 0.72±0.03 0.69±0.06 Triplet margin loss
CLINC150 0.65±0.07 0.65±0.04 0.7±0.08 0.69±0.08 0.79±0.05 0.83±0.05 Supervised clustering loss
DSTC11 0.57±0.09 0.48±0.17 0.75±0.1 0.73±0.06 0.75±0.15 0.77±0.09 Supervised clustering loss
HWU64 0.73±0.09 0.74±0.1 0.69±0.05 0.67±0.03 0.75±0.07 0.68±0.05 Triplet margin loss
Massive 0.62±0.09 0.61±0.07 0.68±0.05 0.6±0.08 0.67±0.11 0.73±0.08 Supervised clustering loss

All Mpnet
Base

BANKING77 0.7±0.04 0.67±0.05 0.68±0.04 0.71±0.07 0.78±0.04 0.73±0.04 Triplet margin loss
CLINC150 0.75±0.06 0.75±0.06 0.77±0.05 0.78±0.08 0.81±0.03 0.82±0.04 Supervised clustering loss
DSTC11 0.56±0.12 0.67±0.09 0.78±0.16 0.83±0.12 0.78±0.14 0.77±0.14 Cosine similarity loss
HWU64 0.7±0.11 0.69±0.09 0.67±0.05 0.67±0.08 0.74±0.05 0.78±0.08 Supervised clustering loss

XLM
roBERTa

BANKING77 0.32±0.02 0.41±0.03 0.52±0.04 0.5±0.05 0.59±0.08 0.62±0.04 Supervised clustering loss
CLINC150 0.54±0.03 0.6±0.1 0.55±0.03 0.55±0.04 0.71±0.06 0.7±0.04 Triplet margin loss
DSTC11 0.36±0.08 0.68±0.0 0.57±0.19 0.61±0.18 0.74±0.08 0.71±0.09 Triplet margin loss
HWU64 0.42±0.02 0.52±0.12 0.37±0.02 0.44±0.11 0.65±0.08 0.73±0.07 Supervised clustering loss
Massive 0.23±0.02 0.3±0.09 0.26±0.09 0.22±0.02 0.52±0.04 0.61±0.04 Supervised clustering loss

Connected
Components

BERT
Multilingual

Cased

BANKING77 0.13±0.02 0.17±0.04 0.39±0.09 0.36±0.08 0.43±0.09 0.46±0.1 Supervised clustering loss
CLINC150 0.23±0.05 0.25±0.04 0.37±0.04 0.34±0.06 0.49±0.07 0.51±0.02 Supervised clustering loss
DSTC11 0.4±0.11 0.38±0.11 0.52±0.08 0.49±0.1 0.54±0.12 0.46±0.11 Triplet margin loss
HWU64 0.23±0.02 0.23±0.03 0.38±0.08 0.34±0.05 0.45±0.07 0.44±0.11 Triplet margin loss
Massive 0.24±0.02 0.23±0.07 0.27±0.07 0.29±0.06 0.3±0.08 0.32±0.1 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.36±0.03 0.43±0.06 0.51±0.07 0.51±0.05 0.46±0.09 0.45±0.11 Cosine similarity loss
CLINC150 0.51±0.06 0.49±0.08 0.58±0.12 0.57±0.1 0.66±0.08 0.63±0.02 Triplet margin loss
DSTC11 0.44±0.12 0.66±0.09 0.69±0.12 0.7±0.08 0.71±0.13 0.72±0.08 Supervised clustering loss
HWU64 0.48±0.09 0.5±0.09 0.48±0.18 0.52±0.16 0.57±0.11 0.53±0.08 Triplet margin loss
Massive 0.35±0.06 0.39±0.1 0.44±0.05 0.41±0.05 0.41±0.05 0.39±0.08 Contrastive loss

All Mpnet
Base

BANKING77 0.48±0.04 0.5±0.06 0.49±0.08 0.55±0.09 0.55±0.05 0.54±0.06 Cosine similarity loss
CLINC150 0.53±0.08 0.52±0.07 0.71±0.06 0.63±0.06 0.67±0.02 0.62±0.06 Contrastive loss
DSTC11 0.39±0.14 0.67±0.13 0.67±0.12 0.67±0.1 0.77±0.1 0.73±0.1 Triplet margin loss
HWU64 0.47±0.04 0.44±0.09 0.41±0.18 0.43±0.09 0.57±0.09 0.46±0.13 Triplet margin loss

XLM
roBERTa

BANKING77 0.08±0.0 0.11±0.04 0.35±0.07 0.33±0.05 0.39±0.08 0.51±0.07 Supervised clustering loss
CLINC150 0.04±0.0 0.04±0.0 0.26±0.18 0.22±0.22 0.49±0.23 0.48±0.22 Triplet margin loss
DSTC11 0.4±0.11 0.57±0.0 0.55±0.11 0.5±0.12 0.52±0.09 0.46±0.14 binary_classification
HWU64 0.08±0.0 0.13±0.1 0.11±0.06 0.09±0.03 0.36±0.15 0.12±0.09 Triplet margin loss
Massive 0.24±0.02 0.24±0.03 0.23±0.03 0.23±0.03 0.41±0.1 0.39±0.04 Triplet margin loss

DBSCAN

BERT
Multilingual

Cased

BANKING77 0.19±0.02 0.26±0.08 0.45±0.07 0.41±0.09 0.48±0.08 0.49±0.1 Supervised clustering loss
CLINC150 0.25±0.05 0.28±0.04 0.38±0.07 0.4±0.07 0.54±0.05 0.53±0.02 Triplet margin loss
DSTC11 0.39±0.1 0.52±0.06 0.59±0.12 0.5±0.11 0.54±0.17 0.57±0.1 Contrastive loss
HWU64 0.29±0.05 0.37±0.06 0.42±0.09 0.46±0.06 0.51±0.05 0.44±0.09 Triplet margin loss
Massive 0.25±0.03 0.39±0.08 0.43±0.07 0.47±0.08 0.5±0.07 0.45±0.05 Triplet margin loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.42±0.06 0.42±0.07 0.55±0.06 0.48±0.06 0.53±0.03 0.49±0.13 Contrastive loss
CLINC150 0.5±0.09 0.5±0.07 0.57±0.13 0.61±0.1 0.65±0.1 0.64±0.03 Triplet margin loss
DSTC11 0.56±0.07 0.69±0.06 0.7±0.13 0.78±0.07 0.64±0.06 0.71±0.07 Cosine similarity loss
HWU64 0.52±0.12 0.5±0.15 0.61±0.12 0.59±0.14 0.66±0.1 0.53±0.04 Triplet margin loss
Massive 0.5±0.05 0.45±0.09 0.52±0.05 0.55±0.08 0.47±0.09 0.54±0.07 Cosine similarity loss

All Mpnet
Base

BANKING77 0.47±0.05 0.49±0.07 0.58±0.08 0.57±0.09 0.61±0.06 0.55±0.08 Triplet margin loss
CLINC150 0.5±0.05 0.54±0.08 0.71±0.07 0.67±0.04 0.67±0.02 0.64±0.05 Contrastive loss
DSTC11 0.61±0.04 0.62±0.09 0.71±0.1 0.69±0.1 0.75±0.07 0.68±0.12 Triplet margin loss
HWU64 0.41±0.07 0.47±0.11 0.53±0.14 0.58±0.11 0.62±0.09 0.52±0.11 Triplet margin loss

XLM
roBERTa

BANKING77 0.11±0.01 0.3±0.04 0.39±0.07 0.44±0.05 0.53±0.04 0.49±0.05 Triplet margin loss
CLINC150 0.14±0.03 0.28±0.05 0.32±0.14 0.26±0.18 0.5±0.15 0.5±0.21 Supervised clustering loss
DSTC11 0.39±0.1 0.41±0.0 0.58±0.1 0.56±0.13 0.52±0.07 0.59±0.09 Supervised clustering loss
HWU64 0.24±0.02 0.28±0.05 0.19±0.05 0.24±0.16 0.58±0.1 0.39±0.06 Triplet margin loss
Massive 0.23±0.02 0.27±0.05 0.27±0.04 0.24±0.03 0.52±0.05 0.47±0.06 Triplet margin loss

Table 9: Average clustering accuracy on test set for all combinations of datasets, base sentence encoders and
clustering algorithms when optimizing wrt the clustering accuracy. It is worth mentioning that gaps in performance
between the Supervised Clustering Loss and the Triplet Margin Loss are quite narrow, with confidence intervals
often overlapping. On the contrary, all other losses clearly lag behind in terms of performance. Nevertheless, in
all cases, fine-tuning any of the base sentence encoders with any of the losses proved beneficial - regardless of the
dataset or clustering algorithm adopted.
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Average adjusted mutual information score on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the adjusted mutual information score

Clustering
algorithm

Base
sentence
encoder

Dataset No Fine-Tuning
Binary

classification
loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.53±0.02 0.55±0.05 0.67±0.03 0.66±0.04 0.76±0.03 0.77±0.05 Supervised clustering loss
CLINC150 0.73±0.02 0.76±0.03 0.77±0.04 0.77±0.04 0.84±0.03 0.85±0.02 Supervised clustering loss
DSTC11 0.29±0.05 0.52±0.1 0.47±0.14 0.5±0.1 0.6±0.06 0.63±0.1 Supervised clustering loss
HWU64 0.61±0.02 0.63±0.02 0.67±0.04 0.67±0.04 0.72±0.05 0.72±0.04 Triplet margin loss
Massive 0.27±0.01 0.36±0.05 0.45±0.04 0.46±0.04 0.51±0.04 0.51±0.06 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.74±0.02 0.72±0.07 0.76±0.06 0.75±0.05 0.83±0.02 0.81±0.03 Triplet margin loss
CLINC150 0.86±0.03 0.87±0.02 0.88±0.03 0.87±0.03 0.92±0.02 0.93±0.01 Supervised clustering loss
DSTC11 0.52±0.15 0.36±0.34 0.65±0.08 0.72±0.06 0.73±0.11 0.75±0.11 Supervised clustering loss
HWU64 0.79±0.05 0.76±0.01 0.79±0.03 0.79±0.01 0.79±0.04 0.81±0.04 Supervised clustering loss
Massive 0.6±0.09 0.6±0.06 0.65±0.06 0.64±0.06 0.71±0.06 0.7±0.05 Triplet margin loss

All Mpnet Base

BANKING77 0.84±0.01 0.83±0.01 0.83±0.02 0.83±0.03 0.88±0.02 0.86±0.02 Triplet margin loss
CLINC150 0.91±0.02 0.9±0.02 0.92±0.02 0.92±0.02 0.94±0.01 0.94±0.01 Supervised clustering loss
DSTC11 0.49±0.17 0.63±0.16 0.75±0.14 0.71±0.12 0.78±0.11 0.7±0.1 Triplet margin loss
HWU64 0.81±0.05 0.81±0.05 0.79±0.03 0.8±0.01 0.79±0.05 0.85±0.03 Supervised clustering loss

XLM roBERTa

BANKING77 0.48±0.01 0.6±0.04 0.66±0.06 0.66±0.04 0.73±0.06 0.75±0.03 Supervised clustering loss
CLINC150 0.66±0.02 0.72±0.07 0.74±0.05 0.71±0.07 0.86±0.03 0.86±0.01 Supervised clustering loss
DSTC11 0.28±0.02 0.42±0.0 0.53±0.04 0.53±0.04 0.68±0.05 0.65±0.1 Triplet margin loss
HWU64 0.52±0.04 0.61±0.09 0.56±0.05 0.55±0.07 0.73±0.05 0.77±0.04 Supervised clustering loss
Massive 0.2±0.01 0.28±0.12 0.23±0.11 0.19±0.02 0.51±0.06 0.58±0.04 Supervised clustering loss

Connected
Components

BERT
Multilingual

Cased

BANKING77 0.23±0.02 0.26±0.09 0.52±0.07 0.52±0.05 0.58±0.08 0.6±0.09 Supervised clustering loss
CLINC150 0.38±0.04 0.43±0.05 0.51±0.15 0.58±0.06 0.72±0.04 0.72±0.03 Triplet margin loss
DSTC11 0.13±0.03 0.37±0.13 0.43±0.12 0.44±0.15 0.5±0.11 0.33±0.15 Triplet margin loss
HWU64 0.31±0.04 0.32±0.07 0.45±0.1 0.41±0.11 0.57±0.07 0.54±0.13 Triplet margin loss
Massive 0.14±0.03 0.18±0.07 0.22±0.08 0.22±0.11 0.25±0.14 0.32±0.1 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.54±0.05 0.45±0.16 0.66±0.06 0.65±0.04 0.59±0.12 0.49±0.2 contrastive_learning
CLINC150 0.69±0.05 0.7±0.06 0.72±0.18 0.76±0.08 0.83±0.04 0.78±0.08 Triplet margin loss
DSTC11 0.37±0.12 0.58±0.02 0.6±0.15 0.61±0.11 0.65±0.12 0.65±0.11 Supervised clustering loss
HWU64 0.55±0.1 0.52±0.1 0.58±0.18 0.57±0.13 0.64±0.12 0.62±0.08 Triplet margin loss
Massive 0.32±0.08 0.33±0.15 0.45±0.08 0.39±0.13 0.41±0.06 0.4±0.08 contrastive_learning

All Mpnet
Base

BANKING77 0.59±0.07 0.67±0.04 0.69±0.07 0.71±0.06 0.69±0.02 0.63±0.13 Cosine similarity loss
CLINC150 0.72±0.07 0.69±0.07 0.82±0.06 0.8±0.07 0.82±0.05 0.82±0.01 Supervised clustering loss
DSTC11 0.19±0.17 0.5±0.11 0.47±0.29 0.55±0.22 0.65±0.17 0.67±0.13 Supervised clustering loss
HWU64 0.49±0.14 0.46±0.15 0.5±0.15 0.62±0.11 0.68±0.08 0.62±0.07 Triplet margin loss

XLM
roBERTa

BANKING77 0.01±0.0 0.15±0.13 0.46±0.08 0.49±0.08 0.53±0.09 0.63±0.06 Supervised clustering loss
CLINC150 0.0±0.0 0.0±0.0 0.37±0.31 0.28±0.34 0.62±0.31 0.63±0.32 Supervised clustering loss
DSTC11 0.04±0.01 0.03±0.0 0.45±0.11 0.39±0.09 0.46±0.09 0.33±0.19 Triplet margin loss
HWU64 0.0±0.0 0.08±0.16 0.09±0.18 0.03±0.06 0.51±0.26 0.08±0.16 Triplet margin loss
Massive 0.0±0.0 0.08±0.1 0.04±0.08 0.0±0.0 0.34±0.09 0.36±0.08 Supervised clustering loss

DBSCAN

BERT
Multilingual

Cased

BANKING77 0.27±0.06 0.32±0.08 0.58±0.05 0.55±0.06 0.57±0.11 0.64±0.07 Supervised clustering loss
CLINC150 0.4±0.04 0.45±0.05 0.58±0.08 0.57±0.08 0.71±0.05 0.71±0.04 Supervised clustering loss
DSTC11 0.2±0.05 0.38±0.13 0.49±0.13 0.5±0.14 0.59±0.11 0.39±0.11 Triplet margin loss
HWU64 0.41±0.04 0.49±0.06 0.55±0.1 0.61±0.04 0.58±0.13 0.57±0.11 Cosine similarity loss
Massive 0.12±0.03 0.29±0.11 0.34±0.07 0.36±0.07 0.4±0.08 0.42±0.09 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.56±0.06 0.55±0.09 0.66±0.04 0.61±0.07 0.53±0.23 0.58±0.15 contrastive_learning
CLINC150 0.64±0.1 0.71±0.05 0.77±0.08 0.69±0.24 0.82±0.04 0.8±0.03 Triplet margin loss
DSTC11 0.39±0.18 0.63±0.04 0.71±0.09 0.75±0.06 0.71±0.07 0.72±0.09 Cosine similarity loss
HWU64 0.52±0.14 0.59±0.09 0.66±0.2 0.71±0.09 0.75±0.07 0.66±0.05 Triplet margin loss
Massive 0.44±0.08 0.52±0.13 0.51±0.06 0.5±0.05 0.46±0.13 0.57±0.06 Supervised clustering loss

All Mpnet
Base

BANKING77 0.63±0.03 0.66±0.03 0.66±0.08 0.65±0.09 0.64±0.14 0.63±0.16 contrastive_learning
CLINC150 0.73±0.04 0.71±0.06 0.81±0.06 0.78±0.1 0.79±0.06 0.77±0.04 contrastive_learning
DSTC11 0.5±0.13 0.56±0.2 0.71±0.09 0.73±0.07 0.76±0.1 0.73±0.11 Triplet margin loss
HWU64 0.51±0.09 0.52±0.13 0.62±0.08 0.62±0.12 0.65±0.09 0.6±0.07 Triplet margin loss

XLM
roBERTa

BANKING77 0.03±0.02 0.42±0.08 0.5±0.13 0.52±0.1 0.66±0.03 0.65±0.06 Triplet margin loss
CLINC150 0.21±0.04 0.45±0.06 0.46±0.2 0.39±0.24 0.7±0.13 0.67±0.25 Triplet margin loss
DSTC11 0.06±0.04 0.24±0.0 0.49±0.14 0.47±0.11 0.56±0.13 0.46±0.16 Triplet margin loss
HWU64 0.31±0.05 0.38±0.07 0.28±0.14 0.19±0.07 0.62±0.13 0.51±0.07 Triplet margin loss
Massive 0.08±0.03 0.13±0.1 0.08±0.1 0.02±0.01 0.43±0.06 0.32±0.1 Triplet margin loss

Table 10: Average adjusted mutual information score on test set for all combinations of datasets, base sentence
encoders and clustering algorithms when optimizing wrt the adjusted mutual information score. It is worth
mentioning that gaps in performance between the Supervised Clustering Loss and the Triplet Margin Loss are quite
narrow, with confidence intervals often overlapping. On the contrary, all other losses clearly lag behind in terms of
performance. Nevertheless, in all cases, fine-tuning any of the base sentence encoders with any of the losses proved
beneficial - regardless of the dataset or clustering algorithm adopted.
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Figure 3: tSNE plots of BANKING77 test utterances when xml-RoBERTa is used to extract the embeddings.

Figure 4: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the binary classification
loss - is used to extract the embeddings.
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Figure 5: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the cosine similarity
loss - is used to extract the embeddings.

Figure 6: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the contrastive learning
loss - is used to extract the embeddings.
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Figure 7: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the triplet margin loss -
is used to extract the embeddings.

Figure 8: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the supervised clustering
loss - is used to extract the embeddings.


