
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023, pages 348–360
November 1–4, 2023. ©2023 Asian Federation of Natural Language Processing

348

Few-Shot Adaptation for Parsing Contextual Utterances with LLMs

Kevin Lin †∗ Patrick Xia ‡ Hao Fang ‡

† UC Berkeley ‡ Microsoft Semantic Machines
k-lin@berkeley.edu {patrickxia, hao.fang}@microsoft.com

Abstract

We evaluate the ability of semantic parsers
based on large language models (LLMs) to
handle contextual utterances. In real-world set-
tings, there typically exists only a limited num-
ber of annotated contextual utterances due to
annotation cost, resulting in an imbalance com-
pared to non-contextual utterances. Therefore,
parsers must adapt to contextual utterances with
a few training examples. We examine four ma-
jor paradigms for doing so in conversational
semantic parsing i.e., Parse-with-Utterance-
History, Parse-with-Reference-Program, Parse-
then-Resolve, and Rewrite-then-Parse. To fa-
cilitate such cross-paradigm comparisons, we
construct SMCalFlow-EventQueries, a sub-
set of contextual examples from SMCalFlow
with additional annotations. Experiments with
in-context learning and fine-tuning suggest
that Rewrite-then-Parse is the most promising
paradigm when holistically considering parsing
accuracy, annotation cost, and error types.

1 Introduction

A key challenge in conversational semantic parsing
(CSP) is handling contextual utterances (i.e., utter-
ances that can only be understood with its context)
by mapping them to non-contextual programs that
can be fulfilled by an executor without relying on
the dialogue state. Many approaches have been
proposed, e.g., directly mapping the contextual ut-
terance with utterance history to a non-contextual
program (Suhr et al., 2018), or mapping to an in-
termediate contextual program which is then re-
solved (usually in a deterministic manner) to a
non-contextual program (Semantic Machines et al.,
2020; Cheng et al., 2020). In these prior works,
there is often an assumption of having a substantial
corpus of annotated data encompassing both non-
contextual utterances and contextual utterances for
training a parser. However, in practice, it is more

∗Work done at Microsoft Semantic Machines.

expensive to collect and annotate contextual ut-
terances compared to non-contextual utterances,
due to the dependency on the conversation history.
Furthermore, annotating non-contextual utterances
usually precedes annotating contextual utterances.
To reflect such real-world settings, we study few-
shot adaptation for parsing contextual utterances,
where we first build a parser using a large number
of annotated non-contextual utterances, and then
adapt it for parsing contextual utterances using a
few (or even zero) annotated contextual utterances.

Recent work has shown that large language mod-
els (LLMs) are capable of semantic parsing us-
ing a few examples (Shin et al., 2021; Shin and
Van Durme, 2022). Hence, in this work, we con-
duct a focused study on few-shot adaptation using
LLMs for CSP. Specifically, we consider four major
paradigms: Parse-with-Utterance-History, Parse-
with-Reference-Program, Parse-then-Resolve, and
Rewrite-then-Parse. One challenge of carrying out
a comparative study on these paradigms is the lack
of annotated data, since existing CSP datasets such
as SMCalFlow (Semantic Machines et al., 2020)
and CoSQL (Yu et al., 2019) are often annotated
based on a single paradigm. Therefore, we con-
struct a new dataset, SMCalFlow-EQ , derived from
a subset of SMCalFlow dialogues with annotations
for all four paradigms.

Our experiments consider both in-context learn-
ing (ICL) using GPT-3.5 and fine-tuning (FT) using
T5-base 220M (Raffel et al., 2020) for building and
adapting parsers. ICL typically has lower accuracy
compared to FT, although the two are not strictly
comparable as they use different models. The only
exception is Parse-with-Reference-Program, sug-
gesting that GPT-3.5 is effective at editing pro-
grams using natural language. Overall, we find
Rewrite-then-Parse to be the most promising ap-
proach, as it achieves similar accuracy to other
paradigms in both ICL and FT experiments, while
requiring only a few annotated examples for to de-

mailto:k-lin@berkeley.edu
mailto:patrickxia@microsoft.com
mailto:hao.fang@microsoft.com

349

Dialogue State

Parse-with-
Utterance-History

Rewritten Utterance
What do I have with Beth
this morning?

Contextual Program
RedoWith(

WithAttendeeNamed(“Beth“))

Reference Program
FindEvent(&(
Event.attendees_?(WithAttendeeNamed(“Sarah”)),
Event.duringTimeRange_?(Morning)))

Parse-with-
Reference-Program

Parse

Resolve

Rewrite

Parse

Contextual Utterance
What about Beth?

Utterance History
What do I have with Sarah this morning?

Contextual Utterance
What about Beth?

Contextual Utterance
What about Beth?

Utterance History
What do I have with Sarah
this morning?

Contextual Utterance
What about Beth?

Figure 1: Four canonical paradigms of conversational semantic parsing for contextual utterances.

velop a query rewriter and no additional program
annotations. We release code and data to facilitate
future work on parsing contextual utterances.1

2 Background: LLM-Based Parsing

Following Shin et al. (2021) and Roy et al. (2022),
we formulate parsing as a constrained decoding
problem, where an LLM is used to predict the
next token and a context-free grammar (CFG) is
used to validate the predicted token. A program is
represented as a sequence of S-expression tokens
y1y2 . . . yL. The space of all valid S-expressions
is governed by a CFG denoted by G, which can
be automatically derived from function definitions
and types used in the domain (see Appendix A).

To generate the program for a user utterance, we
first feed the LLM with the user utterance and nec-
essary context information as a sequence of tokens.
Then the S-expression of the program is generated
incrementally. At each decoding step l, we only
keep the partial prefix sequence y1y2 . . . yl if it is
allowed by G. This validation can be efficiently
performed via Earley’s parsing algorithm (Earley,
1970) using the parsing state of the partial sequence
y1y2 . . . yl−1.

In this paper, we consider both ICL and FT for
constructing LLM-based parsers. For ICL, we
prompt the pre-trained LLM with KICL demon-
stration examples retrieved via BM25 (Robertson
and Walker, 1994; Robertson and Zaragoza, 2009),
following Rubin et al. (2022) and Roy et al. (2022).
For FT, we continue training the LLM on KFT
demonstration examples, producing a new model
to be used during constrained decoding.

3 Few-Shot Adaptation

In this paper, we assume there are a large num-
ber (M) of annotated non-contextual utterances,

1https://github.com/microsoft/few_
shot_adaptation_for_parsing_contextual_
utterances_with_llms

D = {(x(1),y(1)), . . . , (x(M),y(M))}, where x(i)

denotes the i-th non-contextual utterance in the
dataset, y(i) is the corresponding non-contextual
program, and M is the number of annotated exam-
ples. These examples are used to derive a grammar
G1 and build the parser P1 for non-contextual utter-
ances via either ICL or FT.

For a contextual utterance ut at the t-th turn of
a dialogue, the goal is to obtain the non-contextual
program yt using the utterance history ht = [u<t],
the corresponding programs y<t, and/or other in-
formation recorded in the dialogue state. Figure 1
illustrates four canonical paradigms for parsing
contextual utterances. For each of these paradigms,
we would like to obtain a new parser by adapting
from the base parser P1 using N demonstration
examples, where N ≪ M .

3.1 Parsing Paradigms

Parse-with-Utterance-History: In this paradigm,
the parser directly predicts yt by conditioning on
the contextual utterance ut and its history ht. This
paradigm has been used in contextual semantic
parsing (Zettlemoyer and Collins, 2009; Suhr et al.,
2018) and belief state tracking (Mrkšić et al., 2017).
Parse-with-Reference-Program: This paradigm
assumes that the salient additional context to parse
ut is captured by a reference program, which is
a non-contextual program to be revised and typi-
cally that from the preceding turn, yt−1. The pars-
ing process can be viewed as editing the reference
program based on the contextual utterance which
directly yields yt. Zhang et al. (2019) employs a
similar strategy by using a copy operation during
parsing to copy tokens from the reference program
for text-to-SQL.
Parse-then-Resolve: This paradigm divides the
task into two steps, leading to a modularized sys-
tem with a parser followed by a resolver. ut is first
mapped to an intermediate program ỹt which con-
tains specialized contextual symbols. These contex-

https://github.com/microsoft/few_shot_adaptation_for_parsing_contextual_utterances_with_llms
https://github.com/microsoft/few_shot_adaptation_for_parsing_contextual_utterances_with_llms
https://github.com/microsoft/few_shot_adaptation_for_parsing_contextual_utterances_with_llms

350

tual symbols (marking ellipsis or coreference) are
resolved deterministically using the dialogue state
determined from y<t, resulting in the final non-
contextual prediction yt. Several recent datasets
for CSP have adopted this paradigm (Semantic Ma-
chines et al., 2020; Cheng et al., 2020).
Rewrite-then-Parse: This paradigm modularizes
the system using a rewriter followed by a parser.
The history ht and contextual utterance ut are first
rewritten into a single non-contextual utterance u′

t

Then, u′
t is parsed to yt by a single-turn semantic

parser. This paradigm is closely related to incom-
plete utterance rewriting (Liu et al., 2020) and con-
versational query rewriting (Rastogi et al., 2019;
Yu et al., 2020; Chen et al., 2020; Song et al., 2020;
Inoue et al., 2022; Mao et al., 2023) though the
parsing step is usually unnecessary or overlooked
in these related studies. Using this paradigm, the
rewriter and the parser can be independently devel-
oped and maintained.

3.2 Adaptation via ICL

For ICL, we use GPT-3.5 and the following prompt
template provided by Shin et al. (2021) and Roy
et al. (2022), where placeholders {X1}, {X2}, . . .
are demonstrations input, {Y1}, {Y2}, . . . are
demonstrations output, and {X′} is the test input.

Let’s translate what a human user says into what
a computer might say.

Human: {X1}
Computer: {Y1}

Human: {X2}
Computer: {Y2}

...

Human: {X’}
Computer:

For Parse-with-Utterance-History, Parse-with-
Reference-Program, and Parse-then-Resolve, the
input placeholders are respectively instantiated as
h | u, r | u, and u, where the character | is used
as the separator. The output placeholders are all
instantiated by non-contextual programs y, except
for Parse-then-Resolve which uses ỹ instead. The
test input placeholder follows the same form as
demonstration input placeholders. New CFG rules
are derived from the program annotations of con-
textual utterances, i.e., ỹ and y, yielding two new
grammars Gα and Gβ , respectively. During con-
strained decoding, the joint grammar G1 ∪ Gα is
used for Parse-then-Resolve, whereas G1 ∪ Gβ is

used for the other three paradigms. In other words,
the adaptation only changes the set of demonstra-
tion examples used during prompt instantiation and
augments the CFG used during constrained decod-
ing.

For Rewrite-then-Parse, we can re-use the same
grammar G1 and parser P1 used for non-contextual
utterances, without any annotated programs for con-
textual utterances.

3.3 Adaptation via FT

For FT, the parser P1 for non-contextual utter-
ances uses an LLM M1 fine-tuned from T5-base
220M (Raffel et al., 2020). To adapt this parser
for contextual utterances, we continue fine-tuning
M1 on annotated contextual utterances, except for
Rewrite-then-Parse which uses P1 itself. Similar
to ICL, different forms of token sequences are
used for different paradigms, i.e., h | u | y for
Parse-with-Utterance-History, r | u | y for Parse-
with-Utterance-History, and u | ỹ for Parse-then-
Resolve. The new grammar is constructed identi-
cally to ICL as well.

3.4 Data Annotation Effort

An important axis when comparing different pars-
ing paradigms is the data annotation effort. For
Parse-with-Utterance-History, annotating the non-
contextual program for a contextual utterance can
be a cognitively demanding task, as it needs to ac-
count for the full utterance history. Data annotation
for Parse-with-Reference paradigm is similar to
the Parse-with-Utterance-History, though it may be
less cognitively intensive because the human anno-
tator only needs to make a a few edits as opposed
to performing a full parse. Compared with Parse-
with-Utterance-History, annotations of intermedi-
ate programs in the Parse-then-Resolve paradigm
are much less context-dependent and more con-
cise, which potentially makes the parser more data
efficient. However, this comes at a cost of plac-
ing a greater burden on the resolver, which uses
custom-designed contextual symbols based on the
domain; their expressiveness can greatly affect the
quality of the annotations and the complexity of
the resolver. Finally, collecting annotations for the
the utterance rewriting task is relatively easy and
domain independent compared to collecting anno-
tations for parsers which often requires learning a
domain-specific language.

351

4 Experiments

4.1 Data

Existing CSP datasets are often annotated based
on only one or two paradigms, making it difficult
to compare across different paradigms comprehen-
sively. To address this challenge, we construct a
dataset SMCalFlow-EventQueries (SMCalFlow-
EQ) derived from a subset of SMCalFlow (Seman-
tic Machines et al., 2020). It contains 31 training
and 100 test instances in total. Each instance con-
sists of a contextual user utterance u during an
event-related query (e.g., “what about Tuesday?”),
the corresponding contextual/intermediate program
ỹ and non-contextual program y, the utterance his-
tory h, the reference program r, and the rewritten
non-contextual utterance u′. The programs (y, ỹ,
r) are semi-automatically derived from the orig-
inal SMCalFlow annotations. The rewritten non-
contextual utterances u′ are manually annotated by
domain experts. See Appendix B for details of the
dataset construction and examples.

We additionally use 8892 training and 100
test instances of non-contextual utterances (e.g.,
“do I have any meetings scheduled after Thurs-
day?”), each paired with their corresponding non-
contextual programs, semi-automatically derived
from SMCalFlow as well. These instances are used
to construct and evaluate the base parser P1 for
non-contextual utterances.

4.2 Experimental Results

For Parse-with-Reference-Program, we use the ora-
cle reference program, which is the non-contextual
program of the preceding turn.2 For Parse-then-
Resolve, we assume an oracle resolver is available,
which in practice can be implemented as a rule-
based system. The rewriter used for Rewrite-then-
Parse is implemented via GPT-3.5, and details are
provided in Appendix D. We also consider using
the oracle rewritten utterances annotated in the con-
textual subset of SMCalFlow-EQ .

We evaluate the program exact match accuracy
on the SMCalFlow-EQ test set for all paradigms.
Table 1 presents the experimental results. Across
all paradigms, FT achieves higher exact match than
ICL by 7.9% to 29.4% absolute gain. For FT,
Rewrite-then-Parse with oracle rewritten utterances
performs the best. There is no significant difference

2It is possible that the reference program is from an earlier
turn or does not appear in the history, though the contextual
subset does not contain such examples.

Paradigm ICL FT

Parse-with-Utterance-History 51.8 81.2
Parse-with-Reference-Program 86.1⋆ 78.2
Parse-then-Resolve 70.5⋆ 82.4
Rewrite-then-Parse 65.3⋆ 75.2
Rewrite-then-Parse (oracle) 76.2⋆ 94.0⋆

Table 1: Exact match accuracy on SMCalFlow-EQ test
set. For both ICL and FT, we test each paradigm against
the corresponding Parse-with-Utterance-History predic-
tions using McNemar’s test and show statistically sig-
nificant (p < 0.05) results with ⋆.

among other approaches, including Rewrite-then-
Parse using the GPT-3.5 rewriter which does not
require additional fine-tuning. For ICL, Parse-with-
Reference-Program performs the best, suggesting
it is easier for GPT-3.5 to softly edit a program than
parsing directly from natural language. Rewrite-
then-Parse using oracle rewritten utterances is still
better than the remaining approaches. By compar-
ing the results of Rewrite-then-Parse, it is clear that
improving the rewriter can lead to a corresponding
improvement in parsing accuracy.

We manually examine incorrect predictions
made by parsers for contextual utterances and iden-
tify common error categories: incorrect top-level
program types, alternative parses for the input, ex-
tra constraints, missing constraints, and constraints
with incorrect arguments/functions (see Table A5
for examples).

For ICL, the most common error type is incorrect
function calls. 30% of the errors made by Parse-
with-Reference-Program are due to incorrect func-
tion use. In particular, the model struggles with pre-
dicting rare functions such as negations, potentially
because the only knowledge of the target language
is from the contextual subset of SMCalFlow-EQ .

For FT, 33% of the errors in Parse-then-Resolve
are from incorrect top-level program types. Intro-
ducing new symbols increases the program space,
especially different intermediate programs that
have similar functions, suggesting that the design
of these specialized contextual symbols is crucial.
For Parse-with-Utterance-History, we find that 40%
of the errors come from missing constraints, indi-
cating that jointly learn parsing and consolidating
constraints from multiple turns is challenging for
the parsing model. For Rewrite-then-Parse, 55% of
the errors are due to incorrect arguments, and 45%
are due to differences in capitalization (e.g., the

352

Paradigm ICL FT

Parse-with-Utterance-History 63.5 84.5
Parse-with-Reference-Program 79.5⋆ 83.0
Parse-then-Resolve 73.5⋆ 85.5
Rewrite-then-Parse 69.5⋆ 82.0
Rewrite-then-Parse (oracle) 75.0⋆ 90.5⋆

Table 2: Exact match accuracy on SMCalFlow-EQ test
set combined with non-contextual utterances. For both
ICL and FT, we test each paradigm against the corre-
sponding Parse-with-Utterance-History predictions us-
ing McNemar’s test and show statistically significant
(p < 0.05) results indicated with ⋆.

rewriter converts a lowercase name to uppercase)
which is arguably less critical.

We also examine the overall parsing accuracy on
the joint test set of contextual and non-contextual
utterances. We use a binary classifier which takes
the user utterance as input and determines whether
to use the parser for non-contextual utterances or
the parser for contextual utterances. The classi-
fier is obtained by fine-tuning the RoBERTa-base
(Liu et al., 2019) to on SMCalFlow-EQ utterances.
The overall classification accuracy is 95.5%. The
results are summarized in Table 2. We use exact
match accuracy as the evaluation metric, where the
prediction is treated as correct only when classifi-
cation and parsing are both correct.

5 Conclusion

We study a real-world CSP setting, i.e., few-shot
adaptation for parsing contextual utterances with
LLMs, and compare four different paradigms us-
ing both ICL and FT. To facilitate the study, we
construct a new dataset, SMCalFlow-EQ with an-
notations for all paradigms. Experiments show that
ICL with GPT-3.5 usually underperforms FT with
T5-base except for Parse-with-Reference-Program,
suggesting GPT-3.5 is good at editing programs via
natural language in these data conditions. Over-
all, Rewrite-then-Parse stands out as a promising
approach for future development of LLM-based
CSP, as it performs as well as other paradigms
but require only a few annotated exampels for the
rewriter and no additional program annotation.

6 Limitations

Due to the cost of collecting program annotations
for all paradigms, the size of the SMCalFlow-EQ

test set is relatively small and we only study dia-
logues from SMCalFlow. While the experiments
results are informative under significance test, it
would be useful for future work to conduct a similar
study on larger and diverse datasets.

The LLMs used in this work are pre-trained pri-
marily on English, and the SMCalFlow-EQ also
only contains English utterances. It would be inter-
esting to study the few-shot adaptation problem on
other languages.

Acknowledgements

We would like to thank Benjamin Van Durme, Matt
Gardner, Adam Pauls, and Jason Wolfe for valuable
discussions on this paper.

References
Zheng Chen, Xing Fan, and Yuan Ling. 2020. Pre-

training for query rewriting in a spoken language
understanding system. In Proceedings of 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7969–7973.

Jianpeng Cheng, Devang Agrawal, Héctor
Martínez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid Ó Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107–8117,
Online. Association for Computational Linguistics.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Shumpei Inoue, Tsungwei Liu, Son Nguyen, and Minh-
Tien Nguyen. 2022. Enhance incomplete utterance
restoration by joint learning token extraction and text
generation. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3149–3158, Seattle, United States.
Association for Computational Linguistics.

Qian Liu, Bei Chen, Jian-Guang Lou, Bin Zhou, and
Dongmei Zhang. 2020. Incomplete utterance rewrit-
ing as semantic segmentation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2846–2857,
Online. Association for Computational Linguistics.

https://doi.org/10.1109/ICASSP40776.2020.9053531
https://doi.org/10.1109/ICASSP40776.2020.9053531
https://doi.org/10.1109/ICASSP40776.2020.9053531
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/2022.naacl-main.229
https://doi.org/10.18653/v1/2022.naacl-main.229
https://doi.org/10.18653/v1/2022.naacl-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.227
https://doi.org/10.18653/v1/2020.emnlp-main.227

353

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692.

Kelong Mao, Zhicheng Dou, Haonan Chen, Fen-
gran Mo, and Hongjin Qian. 2023. Large lan-
guage models know your contextual search intent:
A prompting framework for conversational search.
arXiv:2303.06573.

Joram Meron. 2022. Simplifying semantic annotations
of SMCalFlow. In Proceedings of the 18th Joint
ACL - ISO Workshop on Interoperable Semantic An-
notation within LREC2022, pages 81–85, Marseille,
France. European Language Resources Association.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state tracking.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1777–1788, Vancouver, Canada.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and
Mathias Lambert. 2019. Scaling multi-domain dia-
logue state tracking via query reformulation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Industry Papers), pages 97–105, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Stephen E. Robertson and Stephen Walker. 1994. Some
simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In Pro-
ceedings of the 17th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 232–241, Dublin, Ire-
land.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin
Van Durme. 2022. BenchCLAMP: A benchmark
for evaluating language models on semantic parsing.
arXiv:2206.10668.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin
Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo Lan-
man, Percy Liang, Christopher H. Lin, Ilya Lints-
bakh, Andy McGovern, Aleksandr Nisnevich, Adam
Pauls, Dmitrij Petters, Brent Read, Dan Roth, Subhro
Roy, Jesse Rusak, Beth Short, Div Slomin, Ben Sny-
der, Stephon Striplin, Yu Su, Zachary Tellman, Sam
Thomson, Andrei Vorobev, Izabela Witoszko, Jason
Wolfe, Abby Wray, Yuchen Zhang, and Alexander
Zotov. 2020. Task-oriented dialogue as dataflow syn-
thesis. Transactions of the Association for Computa-
tional Linguistics, 8:556–571.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Richard Shin and Benjamin Van Durme. 2022. Few-
shot semantic parsing with language models trained
on code. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5417–5425, Seattle, United States.
Association for Computational Linguistics.

Shuangyong Song, Chao Wang, Qianqian Xie, Xinx-
ing Zu, Huan Chen, and Haiqing Chen. 2020. A
two-stage conversational query rewriting model with
multi-task learning. In Companion Proceedings of
the Web Conference 2020, WWW ’20, page 6–7,
New York, NY, USA. Association for Computing
Machinery.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to exe-
cutable formal queries. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2238–2249, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul
Bennett, Jianfeng Gao, and Zhiyuan Liu. 2020. Few-
shot generative conversational query rewriting. In

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2303.06573
https://arxiv.org/abs/2303.06573
https://arxiv.org/abs/2303.06573
https://aclanthology.org/2022.isa-1.11
https://aclanthology.org/2022.isa-1.11
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://doi.org/10.18653/v1/N19-2013
https://doi.org/10.18653/v1/N19-2013
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://dl.acm.org/doi/pdf/10.5555/188490.188561
https://dl.acm.org/doi/pdf/10.5555/188490.188561
https://dl.acm.org/doi/pdf/10.5555/188490.188561
https://arxiv.org/abs/2206.10668
https://arxiv.org/abs/2206.10668
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
https://proceedings.mlr.press/v80/shazeer18a/shazeer18a.pdf
https://proceedings.mlr.press/v80/shazeer18a/shazeer18a.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.18653/v1/2022.naacl-main.396
https://doi.org/10.1145/3366424.3382671
https://doi.org/10.1145/3366424.3382671
https://doi.org/10.1145/3366424.3382671
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.1145/3397271.3401323
https://doi.org/10.1145/3397271.3401323

354

Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’20, page 1933–1936, New
York, NY, USA.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Luke Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 976–984, Suntec,
Singapore. Association for Computational Linguis-
tics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong,
China. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://aclanthology.org/P09-1110
https://aclanthology.org/P09-1110
https://aclanthology.org/P09-1110
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537

355

A CFG for Constrained Decoding

The CFG used for constrained decoding can be au-
tomatically derived from function definitions and
types used in the domain. For example, given
a function FN(arg1, · · · , argN) with correspond-
ing argument types τ1, · · · , τN and output type τO,
we can automatically derive a CFG rule NTτO →
(FN (NTτ1 · · ·NTτN)) where NTτi denotes the
non-terminal symbol for the type τi, and the func-
tion name FN and the parentheses are terminal sym-
bols in G. For each primitive type (e.g., “string”,
“number”), we additionally define CFG rules to
expand the non-terminal of the primitive type to
terminals representing acceptable values of the type
(sometimes using regular expressions).

B Dataset Construction and Examples

The original SMCalFlow data only provide
annotations of contextual programs for indi-
vidual utterances. We develop a heuristic-
based implementation of NewClobber and
ReviseConstraint to propose candidates
of the corresponding non-contextual programs.
Specifically, given the non-contextual program

(NewClobber (
(intension)
(slotConstraint)
(value)))

we modify the non-contextual program of the pre-
ceding turn by replacing its fragment satisfying
the slotConstraint with the new fragment
value. Similarly, given the non-contextual pro-
gram

(ReviseConstraint (
(rootLocation)
(oldLocation)
(newConstraint)))

we modify the non-contextual program of
the preceding turn by replacing a frag-
ment oldConstraint which satisfies the
oldLocation and is governed by a bigger
fragment satisfying the rootLocation with a
new fragment

(& ((oldConstraint) (newConstraint)))

i.e., conjoining the two constraints regardless
whether they conflicts with each other. For
both cases, when there are multiple possible
replacements, all resulting candidates are pro-

posed. These candidates are manually re-
viewed and edited by the authors to finalize non-
contextual program annotations. For example,
if newConstraint contradicts with a part of
oldConstraint, we drop the such conflicting
parts in the oldConstraint.

Furthermore, as noted by Meron (2022), the orig-
inal annotations of SMCalFlow can be complex and
contain many boilerplate segments. Therefore, we
use heuristics to simplify the original annotations
to obtain programs that are shorter and potentially
easier to read and predict. Similar to Meron (2022),
the simplification was implemented via a set of
tree transformation rules, which convert specific
sub-trees of the original program into simplified
sub-trees. The list of sub-tree transformations are
provided in Table A2–Table A4.

Two data specialists are asked to produce the
annotations for the rewritten non-contextual utter-
ances in the contextual subset. They are provided
with instructions and training materials, which
explains how to rewrite a contextual user utter-
ance with its preceding utterance into a single non-
contextual utterance. Each example takes 10 to
30 seconds to annotate. Additionally, annotators
were asked to provide a confidence from 0 (least
confident) to 3 (most confident) in the rewritten
utterance. The average confidence was 2.9. Then
they are asked to review the each other’s annota-
tions and answer whether they agree with each
other. In our pilot data collection, the agreement
rate between the two data specialists was 93.3%.

Table A1 provides some examples from in
SMCalFlow-EQ .

C Fine-tuning Experiment
Hyperparameters

For fine-tuning, we employ the Adafactor optimizer
(Shazeer and Stern, 2018) and set the batch size to
32. The slanted triangular learning rate scheduler
(Howard and Ruder, 2018) is used with a max-
imum learning rate of 10−5 and 1000 warmup
steps. We fine-tune M0 for 10000 steps on the
non-contextual subset to obtain M1, and another
10000 steps on the corresponding data to obtain the
models for individual paradigms. For constrained
decoding, the maximum output sequence length is
1000.

356

Utterance Last Ut-
terance

Oracle
Rewrit-
ten
Utter-
ance

Non-Contextual Program Contextual Program

What
about
later next
week?

Did I
have any
meetings
early next
week?

Did I
have any
meetings
later next
week?

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults

(Event.duringDateRangeConstraint_?
(LateDateRange

(NextWeekList)))))

(Execute (ReviseConstraint
(DefaultRootLocation)
(^(Event)
ConstraintTypeIntension)

(Event.duringDateRangeConstraint_?
(LateDateRange
(NextWeekList)))))

Actual I
meant the
day after
tomor-
row.

Is there
any
appoint-
ments
tomor-
row?

Is there
any
appoint-
ments the
day after
tomor-
row?

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults
(Event.onDate_?
(adjustByPeriod (Tomorrow)
(toDays 1)))))

(Execute (ReviseConstraint
(DefaultRootLocation)
(^(Event)
ConstraintTypeIntension)

(Event.onDate_? (adjustByPeriod
(Tomorrow) (toDays 1)))))

What
about
training?

Is there a
vacation
sched-
uled for
me?

Is there a
training
sched-
uled for
me?

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults
(Event.subject_? (?~=
\"training\"))))

(Execute (ReviseConstraint
(DefaultRootLocation)
(^(Event)
ConstraintTypeIntension)
(Event.subject_? (?~=
\"training\"))))

Table A1: Dataset examples.

D Rewriter Implementation

The rewriter used for Rewrite-then-Parse is im-
plemented via GPT-3.5 (text-davinci-003).
The prompt template is shown below, where place-
holders {H1}, {H2}, . . . are for the utterance his-
tory (i.e., the preceding utterances), {X1}, {X2},
. . . are for contextual user utterances, {Z1}, {Z2},
. . . are for rewritten non-contextual utterances, and
{H’} and {X’} are for test input.

Combine the utterances into a single utterance
with the meaning of the last utterance.

Last Utterance: {H1}
Current Utterance: {X1}
Rewritten Utterance: {Z1}

Last Utterance: {H2}
Current Utterance: {X2}
Rewritten Utterance: {Z2}

...

Last Utterance: {H’}
Current Utterance: {X’}
Rewritten Utterance:

We sample 8 demonstration examples are sam-
pled uniformly from the contextual subset training

instances. Greedy decoding is used with 50 maxi-
mum tokens and no frequency or presence penalty.
The BLEU score using the oracle rewritten utter-
ances as reference is 93.6.

357

Original Simplified

(& (^($type) EmptyStructConstraint) ($c)) ($c)

(& ($c) (^($type) EmptyStructConstraint)) ($c)

(> (size (QueryResponse.results
($response))), 0L)

(QueryEventResponseIsNonEmpty ($response))

(AttendeeListHasRecipientConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
$name)))

(WithAttendeeNamed ($name))

(AttendeeListHasRecipient (Execute (refer
(extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
$name))))))

(WithAttendeeNamed ($name))

(AttendeeListExcludeRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
$name))))))

(WithoutAttendeeNamed ($name))

Table A2: List of sub-tree transformations for simplifying SMCalFlow programs (part 1).

358

Original Simplified

(EventAtTime ($event) ($time)) (& ($event) (Event.atTime_? ($time)))

(EventDuringRangeTime ($event)
($timeRange))))

(& ($event)
(Event.duringTimeRangeConstraint_?
($timeRange)))

(EventOnDate ($date) ($event)) (& ($event) (Event.onDate_? ($date)))

(EventDuringDateRange ($event)
($dateRange))))

(& ($event)
(Event.duringDateRangeConstraint_?
($dateRange)))

(EventOnDateTime (DateAtTimeWithDefaults
(($date) ($time)) ($event)))

(& ($event) (& (Event.onDate_? ($date))
(Event.atTime_? ($time))))

(EventOnDateAfterTime (($date) ($event)
($time)))

(& ($event) (& (Event.onDate_? ($date))
(Event.afterTime_? ($time))))

(EventOnDateBeforeTime (($date) ($event)
($time)))

(& ($event) (& (Event.onDate_? ($date))
(Event.beforeTime_? ($time))))

(EventOnDateFromTimeToTime (($date) ($event)
($time1) ($time2)))

(& ($event) (& (Event.onDate_? ($date))
(Event.betweenTimeAndTime_? ($time1)
($time2))))

Table A3: List of sub-tree transformations for simplifying SMCalFlow programs (part 2).

359

Original Simplified

(EventAfterDateTime (($event) ($dateTime))) (& ($event) (Event.afterDateTime_?
($dateTime)))

(EventBeforeDateTime (($event) ($dateTime))) (& ($event) (Event.beforeDateTime_?
($dateTime)))

(EventOnDateWithTimeRange (EventOnDate
($date) ($event)) ($timeRange))

(& ($event) (& (Event.onDate_? ($date))
(Event.duringTimeRangeConstraint_?
($timeRange))))

(EventOnDateWithTimeRange (EventDuringRange
($event) ($dateRange) ($timeRange)))

(& ($event) (&
(Event.duringDateRangeConstraint_?
($dateRange))
(Event.duringTimeRangeConstraint_?
($timeRange))))

(EventDuringRangeDateTime ($event)
($dateTimeRange))

(& ($event)
(Event.duringDateTimeRangeConstraint_?
($dateTimeRange)))

Table A4: List of sub-tree transformations for simplifying SMCalFlow programs (part 3).

360

Error Type Gold Predicted
Top-level
Incorrect

(Execute (ReviseConstraint
(DefaultRootLocation) (^(Event)
ConstraintTypeIntension) (&
(Event.attendees_?
(WithAttendeeNamed "kim")) (&
(Event.onDate_? (Tomorrow))
(Event.subject_? (?~= "lunch
meeting"))))))

(Execute (NewClobber (DefaultIntension)
(^(Recipient)
ConstraintTypeIntension) (intension
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint)
(PersonName.apply "kim")))))

Alternate
parse

(FindEventWrapperWithDefaults (&
(Event.attendees_?
(WithAttendeeNamed "Barry"))
(Event.start_? (DateTime.date_? (?=
(Tomorrow))))))

(FindEventWrapperWithDefaults (&
(Event.attendees_?
(WithAttendeeNamed "Barry"))
(Event.onDate_? (Tomorrow))))

Extra Con-
straint

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults
(Event.attendees_? (&
(WithAttendeeNamed "Marco")
(WithAttendeeNamed "Peyton")))))

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults (&
(Event.attendees_?
(WithAttendeeNamed "Peyton")) (&
(Event.attendees_?
(WithAttendeeNamed "Marco"))
(Event.duringDateRangeConstraint_?
(FullMonthofMonth (Date.month
(Today))))))))

Missing
Constraint

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults (&
(Event.attendees_?
(WithAttendeeNamed "Bob")) (&
(Event.duringTimeRangeConstraint_?
(Afternoon)) (Event.onDate_?
(Tomorrow))))))

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults (&
(Event.attendees_?
(WithAttendeeNamed "Bob"))
(Event.duringTimeRangeConstraint_?
(Afternoon)))))

Constraint
With In-
correct
Function

(Execute (NewClobber (DefaultIntension)
(extensionConstraint
(^(LocationKeyphrase)
AlwaysTrueConstraint)) (intension
(LocationKeyphrase.apply "EVO"))))

(Execute (NewClobber (DefaultIntension)
(^(Recipient)
ConstraintTypeIntension) (intension
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint)
(PersonName.apply "EVO")))))

Constraint
With In-
correct
Argument

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults
(Event.onDate_? (adjustByPeriod
(Tomorrow) (toDays 1)))))

(QueryEventResponseIsNonEmpty
(FindEventWrapperWithDefaults
(Event.onDate_? (adjustByPeriod
(Tomorrow) (toDays 2)))))

Table A5: Error examples with gold parses.

	Introduction
	Background: LLM-Based Parsing
	Few-Shot Adaptation
	Parsing Paradigms
	Adaptation via ICL
	Adaptation via FT
	Data Annotation Effort

	Experiments
	Data
	Experimental Results

	Conclusion
	Limitations
	CFG for Constrained Decoding
	Dataset Construction and Examples
	Fine-tuning Experiment Hyperparameters
	Rewriter Implementation

