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Abstract

Transfer learning is frequently utilized in sce-
narios with limited labeled examples, where a
crucial step is to identify a related task to the tar-
get task. CogTaskonomy (Luo et al., 2022) was
proposed to acquire a taxonomy of NLP tasks,
specifically focusing on assessing the similar-
ities between tasks. This method, inspired by
cognitive processes, exhibits notable time effi-
ciency. Nevertheless, it does not fully exploit
the task-related information present in cogni-
tive data and lacks a comprehensive evaluation
of various types of cognitive data. To address
these limitations, this paper proposes a compre-
hensive neural and behavioral method to inves-
tigate the relationship among NLP tasks. Our
approach utilizes cognitive data, encompassing
both neural data such as fMRI and EEG, as well
as behavioral data including eye-tracking and
semantic feature ratings. Each data modality is
employed to establish a common representation
space with Representation Similarity Analysis
for projecting task-related representations. To
fully leverage the cognitive information, we
effectively extract the task-relevant informa-
tion extracted from neural data through feature
ranking. Experimental results on 12 NLP tasks
demonstrate that our proposed method outper-
forms state-of-the-art methods on evaluating
task similarity.

1 Introduction

Pre-trained Language Models (PLMs) achieve
remarkable performance on downstream tasks
through fine-tuning on abundant labeled data (De-
vlin et al., 2019; Radford et al., 2019; Peters et al.,
2018). However, their performance tends to de-
grade when facing with limited labeled data (Chen
et al., 2023; Hedderich et al., 2021). To overcome
this challenge, researchers employ transfer learn-
ing by initially fine-tuning a PLM on a related task
with ample labeled data, followed by fine-tuning

†Equal Contribution.

on the target task (Dwivedi and Roig, 2019; Song
et al., 2019). Nevertheless, devising an effective
method to identify a suitable similar task remains a
challenging endeavor (Ramirez et al., 2023).

To evaluate the relatedness between tasks, dif-
ferent methods have been employed. The first cat-
egory of method is task embedding, which learns
a dedicated high-dimensional representation for
each task using a task encoder (James et al., 2018;
Lan et al., 2019; Achille et al., 2019; Vu et al.,
2020). Despite the low time complexity, mod-
ulating the model to adapt for a new task using
this method is challenging. Another approach is
Taskonomy method (Zamir et al., 2018), which
fine-tunes a model on each task, and transfers each
fine-tuned model to other tasks in a fully super-
vised manner. This process can effectively capture
task similarity, while it is demanding and time-
consuming. The third category encompasses the
cognitively inspired CogTaskonomy proposed by
Luo et al. (2022). This method projects task-related
representations into a shared space based on fMRI
and subsequently evaluates the similarity between
tasks. It only needs to fine-tune a model for each
task separately, which exhibits notable time effi-
ciency. However, shared spaces in CogTaskonomy
are not strict shared spaces, and this method does
not effectively leverage task-related information
from neural data. Our study falls under the third
category and improves upon the existing approach
by fully utilizing cognitive information to generate
an enhanced shared space.

This paper proposes a method, called NBT
(A Comprehensive Neural and Behavioral Task
Taxonomy Method), integrating both neural data
(i.e., fMRI, EEG) and behavioral data (i.e., Eye-
tracking, Semantic feature ratings) to investigate
the relationship among NLP tasks. We employ each
data modality to establish a common representa-
tion space with Representation Similarity Analysis
(RSA) (Kriegeskorte et al., 2008) for projecting
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task-related representations. Moreover, to fully
exploit cognitive information, we employ feature
ranking to effectively extract the task-relevant infor-
mation extracted from neural data. Results on 12
NLP tasks show that NBT outperforms the previous
cognitive-inspired method, and achieves compara-
ble performance to state-of-the-art methods with
lower computational time complexity on evaluating
task similarity.

2 Methods

To evaluate task similarity, we propose NBT as
demonstrated in Figure 1, which involves three
steps: 1) calculating task-specific representations,
2) generating a shared space from cognitive data,
and 3) mapping task-specific representations to cog-
nitive data in a shared space to calculate the task
similarity. Each step in Figure 1 is described as
follows.

Ri
dg
e

Re
gr
es
si
on

EEG

Eye-Tracking

Semantic
feature 
rating

Feature
ranking ⋯

RSA

Generating a shared space from cognitive data

fMRI

Fine-tune

Task-specific Word or Sentence Representations

NLP 
Tasks PLM

Figure 1: Architecture of NBT.

2.1 Extracting Task-Specific Representations

We take task-specific representations through the
last layer of PLMs fine-tuned on various NLP tasks.
For word-level stimuli, following the method in
previous studies (Wang et al., 2022, 2023), we
randomly sample a maximum of 1,000 sentences
for each target word from Xinhua News corpus1,
and feed sentences into fine-tuned PLMs, with vec-
tors extracted from the last layer. Subsequently,
we average vectors of each target word to obtain
a task-related representation. For sentence-level
stimuli, the sentence representation is obtained by
extracting the hidden state of [CLS] token from
each sequence in the last layer.

1http://www.xinhuanet.com/whxw.htm

2.2 Generating a Shared Space from
Cognitive Data

To fully extract task-relevant information from
high-dimensional fMRI, we select a certain number
of voxels by scoring them with their relevance to
PLMs. Specifically, regression models are trained
for each voxel to predict each dimension of repre-
sentations of PLMs with this voxel and its adjacent
three-dimensional neighbors. The correlation be-
tween the true and the predicted representations is
regarded as the informative score of each voxel.

Subsequently, we utilize RSA, a widely em-
ployed technique for discerning correlations be-
tween neuronal responses derived from brain data
and models. This facilitates the mapping of cogni-
tive data originating from distinct subject-specific
spaces into a unified representational space. It
can also help to mitigate the inherent noise in
cognitive data. To be more precise, we extract
a group of word or sentence cognitive representa-
tions E = {e1, e2, ..., en} from cognitive data. For
each pair of representations (ei, ej), its similarity is
measured by the Pearson correlation (ρ). Thus, we
obtain cognitive data in the representational simi-
larity space M ∈ Rn×n, where Mij = ρ(ei, ej).

2.3 Mapping Task-specific Representations to
the Shared Space

Finally, we use ridge regression2 to learn a map-
ping function between cognitive data M and task-
specific representations Pu ∈ Rn×w obtained by
the PLM f(θu) fine-tuned on the u-th task, where
n is the number of words or sentences as well as
the dimensionality of M , and w is the dimension-
ality of representations of f(θu). The regression
coefficients l, which is a n-dimension vector, and
l0 are learned by minimizing

loss(l, l0) = ∥Pul + l0 −m∥22 + λ∥l∥22 (1)

for each column m ∈ Rn×1 which is a single di-
mension of the M matrix. The regularization pa-
rameter λ for each dimension is set by the nested
cross-validation. Each dimension of M and Pu is
standardized across training stimuli.

After mapping, we obtain the final predict matrix
M̂u by averaging predict matrices over all partici-
pants for the u-th task, and calculate the correlation
coefficients between M̂u and M across each dimen-
sion to obtain task-specific representation CogPu

in the shared space, defined as follows:
2Compared to Multi-layer Perception, ridge regression has

fewer parameters and lower time complexity.
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CogPu =[c (m̂u0,m0) , . . . , c (m̂uh,mh)

. . . , c (m̂uv,mv)] , 0 ≤ h ≤ v
(2)

where m̂hu and mh are respectively the predicted
and ground-truth vectors of the h-th dimension, n
is the number of dimensions, and c(·) is the cor-
relation function for vector pairs, e.g., ρ and the
coefficient of determination (R2).

We then utilize s(·) involving three different sim-
ilarity functions (Cosine similarity (cos), R2 and
ρ) to calculate pairwise task similarity as follows:

Simuu′ = s (Cog Pu,CogPu′) (3)

3 Experimental settings

3.1 Neural datasets

fMRI We utilize the fMRI dataset from Pereira
et al. (2018), collecting functional activation data of
627 natural language sentences from 5 participants.
EEG We adopt the EEG dataset comprising 1100
sentences and 4384 words obtained from 12 partic-
ipants, as published by Hollenstein et al. (2018).

3.2 Behavioral datasets

Semantic feature ratings We use the semantic
dataset published by Binder et al. (2016), which
includes 535 concepts with 65 semantic features.
Each semantic feature of a word has a rating that is
the average of annotations from 30 participants.
Eye-Tracking The Eye-Tracking dataset in our
experiments comes from Hollenstein et al. (2018),
which is collected with EEG simultaneously.

3.3 Transfer Learning Tasks

Twelve NLP tasks are involved in our experi-
ments, covering sentence/token-level classification,
information extraction, and passage ranking tasks
(Tjong Kim Sang and De Meulder, 2003; Hen-
drickx et al., 2010; Nguyen et al., 2016; Rajpurkar
et al., 2018; Wang et al., 2019). Task details are
shown in Table 1.

3.4 Baseline Methods

Direct Similarity Estimation (DSE) DSE ap-
proximates the similarity of task pairs using the
average similarity of sentence representations from
PLMs fine-tuned on the corresponding task.

Analytic Hierarchy Process (AHP) On the
other hand, the similarity of task pairs can be esti-
mated from the pair-wise transfer learning results
(Zamir et al., 2018). Given a target task, PLMs

Task Dataset #Train

Acceptability CoLA 8,551
Natural Language Inference MNLI 392,702

Paraphrase QQP 363,846
Paraphrase MRPC 3,668

Question Answering QNLI 104,743
Sentiment Analysis SST-2 67,349

Entailment RTE 2,490
Textual Similarity STS-B 5,749

Extractive Question Answering SQuAD-2.0 129,941
Relation Extraction Semeval-2010 8,000

Named Entity Recognition CoNLL-2003 14,042
Passage Reranking MS MARCO 3,213,835

Table 1: Statistic of tasks used.

transferred from different source tasks are com-
pared on a hold-out dataset to determine the trans-
ferability of the target task, which is further used
to approximate the similarity between tasks.

Cognitive Representation Analytics (CRA)
CRA first calculates the Representation Dissimilar-
ity Matrix (RDM) by the dissimilarity of sentence
representations, then approximates the similarity
between tasks by the similarity between the corre-
sponding RDMs (Luo et al., 2022).

Cognitive-Neural Mapping (CNM) CNM cal-
culates the task similarity by mapping sentence
representations from multiple fine-tuned PLMs to
the same fMRI data (Luo et al., 2022).

3.5 Hyperparameters
Most of the hyperparameters used in our transfer-
learning and baseline experiments are in line with
the ones in Luo et al. (2022). The only exception
is that the source model of TinyBERT is distilled
from our fine-tuned BERT, rather than initialized
from the public models of Jiao et al. (2020) whose
download links are missing now.

The hyperparameter λ in ridge regression for
each dimension is set utilizing nested cross-
validation within the training set, respectively.
Each voxel is normalized across training stimuli,
as is the dimension of representations of PLMs.
More formally, the nested cross-validation frame-
work is applied to make sure that the data utilized
for the regularization parameter tuning and the data
employed to test the model is firmly independent.
The interior 10-fold cross-validation is utilized to
choose the optimal regularization parameter, and
the extrinsic 10-fold nested cross-validation is ap-
plied to predict the values using the model with the
optimal regularization parameter.
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3.6 Evaluation Metric

To empirically evaluate the similarity between NLP
tasks, we conducted pair-wise transfer learning ex-
periments for each task in Table 1, and quantify it
with the actual transfer learning performance (Re-
sults are reported in Appendix B). In other words,
the more similar the source task is, the better per-
formance on the target task the model gets.

Task Ranking Score (TRS) is used to assess the
distance between the task similarity estimated from
different methods mentioned before, e.g., DSE, and
the empirical task similarity in the transfer learning
experiments. Specifically, the task ranking score
is obtained from the average ranking of the best
source task estimated by the method in the real
transfer learning experiment for all target tasks.
Then, the random guess leads to N

2 in the task
ranking score, while the best one always gets 1
under the N tasks setting.

4 Results and Analysis

Method Complexity TRS ↓

TinyBERT BERT

Baselines

Random O(1) 6.0 6.0
DSE O(n) 4.9 4.8
CRA O(n) 5.0 4.4
CNM O(n) 4.1 4.6
AHP∗ O(n2) 1.4 2.5

Ours

NBTeeg O(n) 4.0 4.2
NBTeye O(n) 3.6 3.8
NBTsem O(n) 3.3 3.9
NBTfmri O(n) 2.4 2.9

Table 2: Task ranking scores (TRS) for different task
similarity estimation methods. Results denoted by ∗

come from Luo et al. (2022).

Main result Table 2 displays the task ranking
scores obtained from various methods. It is evi-
dent that NBT outperforms CogTaskonmoy (CNM
and CRA), with NBTfmri exhibiting an average
improvement of 41.13% over them. Additionally,
NBTeeg, NBTeye and NBTsem separately exceed
them by 8.93%, 24.40%, and 20.02%. These re-
sults suggest that NBT is superior to CogTaskon-
omy in capturing the relation among NLP tasks by
utilizing distinct neural and behavioral data. Al-
though NBT has the same time complexity with
CNM, NBT is more efficient than CNM in prac-

tice3. Moreover, NBT has comparable performance
to AHP with lower computational time and less
memory.

Corr. Coef. Task Sim. Method TRS ↓

TinyBERT BERT

cos

R2 CNM 4.3 4.8
NBTfmri 2.7 3.3

ρ
CNM 4.1 4.6
NBTfmri 2.9 3.0

cos CNM 4.2 4.4
NBTfmri 2.9 3.2

ρ

R2 CNM 4.4 4.4
NBTfmri 2.6 2.7

ρ
CNM 4.2 4.6
NBTfmri 2.4 2.9

cos CNM 4.2 4.8
NBTfmri 3.0 3.0

Table 3: TRS of NBTfmri and CNM for BERT and
TinyBERT with different measures of task similarity
and correlation coefficients.

Evaluating NBT with different similarity mea-
sure combinations There are multiple options to
calculate correlation coefficients of mapping per-
formance (e.g., ρ, R2) and task similarity (e.g.,
cos, R2, ρ). To demonstrate the robustness of the
proposed method, we evaluate the performance of
NBT across various measure combinations. As
the CNM utilizes fMRI to measure task relations,
we compare it with NBT using identical cognitive
data. It can be seen from Table 3 that NBTfmri has
better performance than CNM in all cases. Specifi-
cally, NBTfmri outperforms CNM by 35.39% on
average. In addition, TinyBERT and BERT show
minimal performance difference using NBTfmri,
while TinyBERT is more resilient to different cases
compared to BERT with CNM, which indicates that
the proposed method has greater generalization for
different models.

Figure 2: TRS of NBTfmri and CNM with TinyBERT
(left) and BERT (right) predicting different numbers of
voxels.

3To map a fine-tuned model to fMRI data, NBT only costs
23.3s (for BERT), which is 2.7% of time spent with CNM
(879.3s) when the voxel number is 30K
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Evaluating NBT with numbers of voxels The
number of voxels is a critical parameter in the pro-
posed method. In this part, we further evaluate
the stability of our proposed method by compar-
ing it with CNM across voxel numbers. Figure 2
shows that NBTfmri exhibits superior performance
to CNM across various numbers of voxels. More-
over, it’s hard to predict the number of voxels when
achieving the best ranking score using CNM, while
NBTfmri can achieve relatively optimal results in
the 2000-10000 voxel range.

Figure 3: Distribution of informative voxels of NBTfmri

and CNM with TinyBERT (left) and BERT (right) across
the brain (averaged over 5 participants).

Analysis on the spatial distribution of informa-
tive voxels In this section, we explore the distri-
bution of voxels selected by NBTfmri and CNM
across brain networks associated with semantic
processing. As can be obtained from Figure 3,
NBTfmri selects a obviously larger proportion of
voxels within areas relating to semantic process-
ing compared to CNM, including languagePC, lan-
guageP, semantic and languageLH, which suggests
the proposed method can effectively extract the
task-relevant information from neural signal. More-
over, voxels selected using NBTfmri also distribute
in areas relating to visual semantics, indicating that
the method can effectively utilize semantic informa-
tion from each brain functional area to accurately
separate task presentations from neural data.

Figure 4: Voxel prediction results of NBTfmri and CNM
with TinyBERT (left) and BERT (right) (averaged over 5
participants and 30K voxels).

Analysis on the voxel prediction evaluation In
this part, we compare results of the proposed
method and CNM on voxel prediction. It can be
noticed from Figure 4 that NBTfmri obtains higher

correlation than CNM, suggesting that the pro-
posed method can better establish the connection
between neural signals and task-representations of
fine-tuned PLMs, and can better isolate task pre-
sentations from neural signals.

Figure 5: Task similarity matrix from the results of
NBTfmri (left) and taxonomy tree (right).

Analysis on taxonomy tree of 12 NLP tasks In
this section, we explore the task similarity ma-
trix and the taxonomy tree of 12 NLP tasks from
NBTfmri. Compared with the taxonomy tree from
CogTaskonomy, "QA, STS-B" and "QNLI, SST-
2" are both found to be put in one cluster in two
taxonomies. Furthermore, the proposed method
clusters three tasks that need to infer semantic rela-
tionships (MNLI, STS-B and RTE) in one cluster,
while CogTaskonomy divides STS-B into other
clusters.

5 Conclusion

We propose a comprehensive neural and behavioral
method to investigate the similarity between vari-
ous NLP tasks. This method can fully extract task-
relevant information from neural data thus capture
task taxonomy and effectively guide transfer learn-
ing across diverse NLP tasks, which also can be
beneficial for other cross-task learning paradigms,
including multi-task learning (Zhang et al., 2021;
Chen et al., 2021), meta learning (Yin, 2020) and
lifelong learning (Biesialska et al., 2020). Results
on 12 tasks show that the proposed method out-
performs the previous cognitive-inspired method,
and reaches comparable performance to the state-
of-the-art method with O(n) computational time
complexity on evaluating task similarity.

Limitations

The proposed method utilizes cognitive data, in-
cluding neural data such as fMRI and EEG, along
with behavioral data such as eye-tracking and se-
mantic feature ratings, to efficiently capture the
inter-task relationships in NLP with reduced com-
putational time complexity. Although existing
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work has proven that human brain contains infor-
mation about NLP tasks (Oota et al., 2022), it is un-
clear what kind of task-relevant information human
brain contains (i.e., sentence/token-level classifica-
tion, information extraction, and passage ranking
tasks). Moreover, pre-trained models are fine-tuned
on downstream tasks in a fully supervised manner,
which is different from how human learn and un-
derstand new knowledge (Kühl et al., 2022). There-
fore, the task similarity based on cognitive data
may show different pattern from the real task simi-
larity. Finally, since the proposed method currently
exhibits effective performance on NLP, it will be
extended to vision and multi-modal domains in our
future work.
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A Correlation selection in NBTfmri

There are three options for us to calculate the corre-
lation coefficient (R2, ρ, cos) on all voxels between
predicted values and ground-truth values. We cal-
culate task ranking scores using these options for
NBTfmri with TinyBERT and BERT, as shown in
Figure 6. Our findings suggest that ρ outperforms
R2 in almost all cases.

B Oracle Task Ranking

After pair-wise transfer learning, we evaluate the
performance of models on the validation set of
target tasks and report them in Table 4 and Table 5
for BERT and TinyBERT, respectively.
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Figure 6: Task ranking scores with different correlation coefficients in NBTfmri based on TinyBERT (left) and
BERT (right).

Target Task

Source Task CoLA
Mcc

QNLI
Acc

RTE
Acc

MNLI
Acc

SST-2
Acc

MRPC
F1

STS-B
rs

QQP
F1

NER
F1

RE
F1

QA
F1

PR
MRR@10

CoLA - 91.40(4) 64.98(6) 83.95(8) 92.55(5) 90.82(1) 87.94(7) 88.04(1) 93.70(3) 90.73(4) 76.02(6) 65.84(2)

QNLI 55.57(5) - 70.40(2) 84.37(5) 92.78(3) 90.16(3) 88.71(2) 87.25(10) 93.53(6) 89.98(8) 77.20(1) 63.21(9)

RTE 55.47(6) 91.73(1) - 84.03(7) 92.43(6) 88.04(8) 88.65(4) 87.66(7) 93.48(7) 90.94(1) 76.39(3) 63.47(7)

MNLI 54.84(7) 91.12(6) 77.26(1) - 93.12(1) 89.64(6) 88.65(4) 87.74(4) 93.44(8) 89.20(10) 75.88(7) 64.47(4)

SST-2 56.76(2) 91.07(7) 61.73(10) 84.39(4) - 87.78(9) 87.90(8) 87.64(8) 93.60(4) 90.32(5) 76.24(5) 62.75(10)

MRPC 56.77(1) 91.58(2) 65.34(4) 84.51(3) 92.78(3) - 88.18(6) 87.96(2) 93.79(2) 90.84(2) 75.20(9) 66.66(1)

STS-B 56.25(4) 90.39(10) 65.34(4) 83.74(10) 92.89(2) 90.24(2) - 87.59(9) 93.60(4) 90.83(3) 75.04(10) 61.20(11)

QQP 54.69(8) 90.55(9) 63.90(7) 84.66(1) 92.43(6) 89.01(7) 88.70(3) - 93.22(10) 89.59(9) 76.93(2) 64.44(5)

NER 56.50(3) 91.36(5) 63.54(8) 84.32(6) 92.43(6) 89.93(4) 87.73(9) 87.72(6) - 90.02(7) 74.04(11) 63.81(6)

RE 53.93(9) 91.07(7) 62.09(9) 83.92(9) 91.97(9) 87.46(10) 87.17(11) 87.82(3) 93.85(1) - 76.35(4) 63.31(8)

QA 52.59(10) 91.47(3) 67.15(3) 84.65(2) 91.86(10) 89.72(5) 89.18(1) 87.74(4) 93.41(9) 90.11(6) - 65.44(3)

PR 5.20(11) 89.44(11) 61.01(11) 82.49(11) 91.40(11) 82.98(11) 87.44(10) 87.13(11) 90.53(11) 86.75(11) 75.68(8) -

Table 4: Transfer learning results of BERT. Mcc denotes the Matthews correlation coefficient, rs is the Spearman’s
rank correlation coefficient, and MRR@10 denotes the Mean Reciprocal Rank for the top 10. The ranking for the
source task to the target task is denoted in the right parenthesis.
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Target Task

Source Task CoLA
Mcc

QNLI
Acc

RTE
Acc

MNLI
Acc

SST-2
Acc

MRPC
F1

STS-B
rs

QQP
F1

NER
F1

RE
F1

QA
F1

PR
MRR@10

CoLA - 78.89(9) 55.23(9) 74.65(9) 86.12(9) 76.4(11) 25.15(9) 82.73(9) 74.98(10) 85.46(8) 47.31(9) 58.57(9)

QNLI 16.57(8) - 61.01(4) 77.74(8) 85.67(10) 87.80(4) 84.44(7) 84.94(8) 85.71(8) 86.04(6) 68.44(3) 62.70(8)

RTE 16.11(9) 87.55(4) - 79.30(5) 87.84(5) 87.80(4) 85.96(3) 85.40(6) 87.63(3) 87.13(2) 64.25(7) 63.94(6)

MNLI 28.19(1) 89.27(2) 74.01(1) - 91.28(1) 90.36(1) 87.51(2) 86.67(1) 87.18(5) 88.19(1) 70.24(1) 63.99(5)

SST-2 9.91(10) 75.93(10) 55.23(9) 72.57(10) - 80.45(8) 14.99(11) 81.78(10) 70.07(11) 78.29(10) 47.03(10) 55.55(10)

MRPC 19.69(7) 87.46(5) 62.82(3) 79.67(4) 88.42(4) - 85.57(4) 85.80(3) 87.20(4) 85.18(9) 63.86(8) 63.31(7)

STS-B 25.86(2) 85.54(8) 59.57(6) 78.93(7) 86.93(7) 89.45(2) - 85.65(4) 87.06(6) 86.78(3) 64.64(6) 64.66(2)

QQP 22.29(3) 86.82(6) 59.57(6) 79.92(3) 87.16(6) 87.83(3) 85.42(6) - 84.81(9) 86.08(5) 67.01(5) 64.13(4)

NER 5.66(11) 63.04(11) 58.12(8) 68.93(11) 81.65(11) 79.60(10) 19.01(10) 79.82(11) - 76.14(11) 42.93(11) 55.34(11)

RE 21.79(4) 86.45(7) 55.23(9) 82.95(1) 89.56(3) 80.14(9) 83.19(8) 85.49(5) 88.86(1) - 68.14(4) 65.30(1)

QA 19.81(6) 88.72(3) 64.26(2) 79.01(6) 86.93(7) 86.72(7) 85.53(5) 85.32(7) 86.41(7) 85.79(7) - 64.60(3)

PR 20.31(5) 89.77(1) 61.01(4) 82.72(2) 90.83(2) 87.69(6) 87.90(1) 86.29(2) 87.89(2) 86.70(4) 70.19(2) -

Table 5: Transfer learning results of TinyBERT. Mcc denotes the Matthews correlation coefficient, rs is the
Spearman’s rank correlation coefficient, and MRR@10 denotes the Mean Reciprocal Rank for the top 10. The
ranking for the source task to the target task is denoted in the right parenthesis.


