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Abstract

Semantic parsing aims at mapping natural lan-
guage utterances into machine-interpretable
meaning representations, facilitating user ac-
cesses to knowledge bases. However, knowl-
edge in real-world scenarios is often duplicated
in multiple storages and different representa-
tions. Although researchers have made great
success by improving neural semantic parsers,
existing works can only handle a specific kind
of meaning representation, i.e., the single-target
semantic parsing. In this paper, we introduce
a multi-target semantic parsing model based
on a collaborative deliberation network, which
can not only decode multiple meaning repre-
sentations simultaneously but also allow mean-
ing representations to make use of information
from each other while decoding. Experiments
show that the proposed model improves the EM
accuracy of four MRs averagely by 2.48% to
5.05% on three public datasets 1.

1 Introduction

Knowledge bases (KBs) (Bollacker et al., 2008;
Lehmann et al., 2015; Weikum et al., 2021) are
fundamental facilities for many AI applications.
The large amount of structural information they
contain is mainly accessed by corresponding for-
mal query language. A variety of query languages
are adopted due to the diversity of implementa-
tions and domains, such as Prolog for expert sys-
tems, and the standardized SQL and SPARQL for
relational databases and RDF stores respectively.
Semantic parsing (Zelle and Mooney, 1996; Dahl
et al., 1994) provides a friendly interface to people
unfamiliar with these formal languages by trans-
ducing the natural language questions into the un-
derlying query language, which has been widely
used in abundant tasks, such as question answer-
ing system (Lan et al., 2021; Hu et al., 2018) and
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1Our implementation can be found on https://

github.com/Xiang-Li-oss/MultiTarget
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Figure 1: Different implementations for multi-target
semantic parsing (MulTSP). (a) Training one parser for
each target. (b) A multi-task parser that independently
decodes different targets with a shared encoder. (c) The
collaborative deliberation network which exploits other
coarse decoding outputs to enhance the decoding of any
target.

robot navigation (Walker et al., 2019). Recently,
neural semantic parsing with the notable sequence-
to-sequence (Seq2Seq) framework has made im-
pressive progress (Jia and Liang, 2016; Yin and
Neubig, 2017; Dong and Lapata, 2018; Peter Shaw
and Altun, 2019).

However, recent parsers only focus on single-
target semantic parsing designed for only one cer-
tain KB and its corresponding query language,
whereas in real-world scenarios, the same fact
is commonly duplicated and stored in many sys-
tems. For example, personnel and financial data are
stored in both tabular and graph structures in some
businesses, which calls for a multi-target semantic
parsing (MulTSP) model with the capability of gen-
erating multiple meaning representations (MRs).

There are two approaches to adopt existing tech-
nologies for MulTSP. Specifically, the first is to

https://github.com/Xiang-Li-oss/MultiTarget
https://github.com/Xiang-Li-oss/MultiTarget
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train N seq2seq models (Dong and Lapata, 2016;
Jia and Liang, 2016) for N target formal languages
independently, which is far from an efficient way
for MulTSP. And the second approach is to resort
to the multi-task learning for all the target for-
mal languages with different decoders, which only
exchange information at the encoder. Figure 1(a)
and Figure 1(b) illustrate their differences. As re-
cent work has shown (Guo et al., 2020), there’s
a significant performance gap between different
MRs, for example, the FunQL is more competitive
than Lambda Calculus and Prolog. This experimen-
tal finding suggests the performance of decoding
one MR might get improved with the help of other
MRs by introducing collaborations among their
decoders.

To implement collaborations among decoders of
different MRs, a straightforward way is to augment
attention mechanism within tokens from all MRs at
each decoding timestep. However, this is less likely
to succeed due to two concerns: 1) The erroneous
alignment problem, in which the tokens of different
MRs could be hardly aligned by position and the
attention mechanism could be even harmful to the
current decoding step, for example, considering
parsing "How large is Texas ?" to Lambda Calculus
and FunQL in Table 1. At 2nd timestep, current
token ’(’ in FunQL is most likely to be useless
for predicting ’size<lo,i>’ in Lambda Calculus. 2)
Holistic information ignorance, in which future
tokens from one MR are invisible for other MRs.
For example, at the 2nd decoding step, ’size’ in
FunQL is valuable yet invisible for ’size<lo,i>’ in
Lambda Calculus.

To address the aforementioned problems,
we present a multi-target semantic parsing
model based on a collaborative deliberation net-
work(CDNParser). As shown in Figure 1(c), each
decoder in CDNParser performs two-stage decod-
ing through its two child decoders. During the first
decoding stage, each first-pass decoder generates a
coarse target formal language sequence for its MR
without teach forcing. After that, each second-pass
decoder will predict final target sequences as well
as collaborate with each other by sharing sequences
of coarse target logical forms, which are almost
complete target sequences for each MR. Through
this design, our method meets the requirements
of MulTSP and avoids the problem of erroneous
alignments and holistic information ignorance.

To evaluate the proposed model in this paper,

we have conducted extensive experiments on three
public benchmarks. Compared with strong base-
lines, the experimental results demonstrate that the
proposed CDNParser can 1) successfully meet the
need for MulTSP, 2) for the EM (exact-match) ac-
curacy of four MRs, CDNParser provides 2.52%
average improvement on Geo dataset, 5.05% on
Job dataset, and 2.48% on ATIS dataset.

To sum up, our contributions are as follows:

1. We propose to perform multi-target semantic
parsing, which supports simultaneous decod-
ing of multiple meaning representations. To
our best knowledge, this is the first work for
MulTSP task.

2. We propose a MulTSP model by design-
ing a collaborative deliberation network (CD-
NParser) which allows the decoding process
of each MR to utilize the assistance of other
MRs.

3. We have conducted detailed experiments on
several open datasets. And the experimental
results demonstrate that CDNParser can not
only decode multiple MRs simultaneously but
also achieves better performance.

2 Related Work

2.1 Semantic Parsing Methods

Various semantic parsing models have been pro-
posed over the past decades, which devotes to
converting natural language utterances into logical
forms that can be easily executed on a knowledge
graph (Kwiatkowski et al., 2011; Andreas et al.,
2013; Zhao and Huang, 2015). These systems typi-
cally learn lexicalized mapping rules and scoring
models to construct a meaning representation for a
given input.

Table 1: Examples of MRs for utterance “How large is
Texas?” in the Geo domain.

MR Logical Form

Prolog answer(A, (size(B, A),
const(B, stateid(texas))))

Lambda
Calculus (size:<lo,i> texas:s)

FunQL answer(size(stateid(’texas’)))

SQL select STATEalias0.AREA from ...
where ... STATE_NAME = "texas"
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With the development of neural networks,
sequence-to-sequence models have been employed
to semantic parsing with remarkable results. The
neural-based parsing models avoid the requirement
for feature engineering and explicit semantic com-
position rules (Dong and Lapata, 2016; Jia and
Liang, 2016; Ling et al., 2016) in previous meth-
ods. Lots of ideas have been explored to improve
the performance of these models, including data
augmentation (Wu et al., 2021) and designing struc-
tural decoders (Dong and Lapata, 2018; Li et al.,
2021). Although there have been some efforts to
use share parameters for multiple languages or
meaning representations, there hasn’t been any
attempts to study multi-target semantic parsing,
which is the main focus of this paper.

2.2 Meaning Representations

We adopt four formal languages (that is Mean-
ing Representations, MRs) in this paper: Prolog,
Lambda Calculus, FunQL, and SQL. Since these
MRs are explored extensively in semantic parsing
task, making it easier to obtain labeled data in these
MRs. Table 1 shows a logical form for each of the
four MRs in the Geo domain.

Prolog is a logic programming language for de-
ductive reasoning. Since its birth, it has been ex-
tended to many application areas, such as relational
databases, mathematical logic, natural language un-
derstanding, etc. Prolog is based on first-order
predicates logic, incorporating higher-order predi-
cates to handle problems such as quantification and
aggregation.

Lambda calculus is a formal system for describ-
ing operations, which can represent all first-order
predicates, and can support some higher-level pred-
icates. Lambda calculus expresses natural language
through constants, quantifiers, logical connectives,
Lambda operators, etc. These advantages promote
the widespread use of Lambda calculus in semantic
parsing tasks.

FunQL is a variable-free language that abstracts
variables away and uses nested structures to repre-
sent compositionality. Unlike languages such as
Prolog and Lambda calculus, predicates in FunQL
take a set of entities as input and return another set
of entities as output.

SQL is short for Structured Query Language
and is a popular relational database query language.
Given that SQL is domain-agnostic and has well-
established execution engines, the subtask of se-

mantic parsing, Text-to-SQL has also sparked a lot
of attention.

2.3 Deliberation Network

Deliberation network (Xia et al., 2017) is inspired
by human behavior. For example, to write a good
document, we usually first create a complete draft
and then polish it based on a global understanding
of the whole draft. Deliberation network lever-
ages the global information with both looking back
and forward in sequence decoding through a de-
liberation process. (Li et al., 2019a) and (Xiong
et al., 2019) apply deliberation network in dialogue
system and machine translation and and adopt a
new simplified training algorithm instead of the
original Monte Carlo based algorithm. In our work,
deliberation network acts as a key technology to im-
plement collaborative multi-target decoding among
different MRs.

3 Proposed Method

Given a dataset D = {(x, y1, ..., yN )} where
x = {x1, x2, ...xTx} is the source natural lan-
guage sequence, for example "How large is Texas
?", and each yi = {yi1, yi2, ...yiTyi

} is a tar-
get logical form sequence for one MR, such as
FunQL sequence "answer(size(stateid(’texas’)))"
or Prolog sequence "answer(A,(size(B,A),const(B,
stateid(texas))))". Tx. and Tyi represent sequence
length. Our model is aimed at learning a parser
which transforms x into (y1, ..., yN ), simultane-
ously.

3.1 Model Overview

Figure 2 visualizes the overall architecture of our
multi-target semantic parsing model. Our model
is based on a collaborative deliberation network.
A collaborative deliberation network consists of
an encoder E and N (N=2 in this example) de-
liberation decoders Di(i = 1, 2, ..., N). In this
example, two deliberation decoders are responsible
for generating Lambda Calculus and FunQL, re-
spectively. Each deliberation decoder is composed
of a first-pass decoder Di

1 and a second-pass de-
coder Di

2, where collaboration happens. Briefly
speaking, E is used to encode the source sequence
into a sequence of vector representations. Each Di

1

reads the encoder representations and generates a
first-pass target sequence as a draft, which further
participates in the collaboration mechanism and is
provided as input to the second-pass decoders to
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Figure 2: The overview of the collaborative deliberation network for MulTSP. For simplicity, we omit the encoder-
decoder attention. The encoder on the left encodes natural language utterances before feeding them to two
deliberation decoders. Each decoder performs two-phase decoding to generate Lambda Calculus and FunQL
respectively. Moreover, during the second decoding phase, the two decoders are supposed to collaborate.

perform second pass decoding.

3.2 Encoder and First-Pass Decoder

When an source sequence x is fed into the encoder
E, it is encoded into a hidden vector sequence
{h1, h2, ..., hTx} with the length of Tx. To be spe-
cific, hi = LSTM(xi, hi−1), where xi is the ith
word embedding and h0 is intialized to zero vector.
For the sake of convenience, in the following part
of this section, we will omit the superscript of yi,
Di

1, and Di
2 and denote them as y, D1, and D2.

Each first-pass decoder D1 will generate a se-
quence of hidden states ŝj(∀ j ∈ [Tŷ]), and the first-
pass target logical form sequence ŷj(∀ j ∈ [Tŷ]).
Next we explain the process in detail.

Identificial to the conventional encoder-decoder
model, an additive attention is included in each D1.
At timestep t, D1 first calculate contextual vector
ctxe as follows:

αi =
exp(vTe tanh(W

e
0hi +W e

1 ŝt−1))
Tx∑
k=1

exp(vTe tanh(W
e
0hk +W e

1 ŝt−1))

ctxe =
Tx∑
i=1

αihi

where vTe , W e
0 , W e

1 are parameters.

After obtaining ctxe, the hidden state ŝti of first-
pass decoder is got by:

ŝt = LSTM([ŷt−1; ctxe], ŝt−1)

After that, the concatenated vector [ŝt, ctxe, ŷt−1]
will be fed into a feedforward network to predict
the probability of ŷt as:

p(ŷt|x, ŷ<t) = softmax(FFN([ŝt, ctxe, ŷt−1]))

Finally, ŷt is predicted by:

ŷt = argmax p(ŷt|x, ŷ<t)

3.3 Second-Pass Decoder
The second-pass decoder is the key component of
our approach since it contains the vital collabora-
tion mechanism. Figure 2 exhibits the behavior of
second-pass decoder.

Once first-pass decoder has generated the first-
pass target logical form sequences ŷ as a draft. It
is fed into the second-pass decoder for further col-
laboration. Besides the sequence ŷ and hidden
state ŝ produced by its corresponding first-pass de-
coder, the second-pass decoder also collaborates
with other second-pass decoders, taking outputs
from other first-pass decoders into consideration.

First, the information from source sequence is
integrated by calculating contextual vector ctx′e,
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the computation detail is similar to ctxe in Section
3.2.

To synthesize information from the first-pass
target logical form sequence, we compute the con-
textual vector ctxc by:

αi =
exp(vTc tanh(W c

0 [ŝi; ŷi] +W c
1st−1))

Ty∑
j=1

exp(vTc tanh(W c
0 [ŝj ; ŷj ] +W c

1st−1))

ctxc =

Ty∑
i=1

αi[ŝi; ŷi]

where vTc , W c
0 , W c

1 are parameters.
Second-pass decoder calculates contextual vec-

tor ctxo to collaborate with other deliberation de-
coders based on ŷo and ŝo, where ŷo = [yj ∀j =
1, 2, ..., N ∧ j ̸= i] represents the concatenation of
first-pass target logical form sequences predicted
by other deliberation decoders. Simmilar for ŝo

and ctxo is defined as follow:

αi =
exp(vTo tanh(W o

0 [ŝ
o
i ; ŷ

o
i ] +W o

1 st−1))
Ty∑
j=1

exp(vTo tanh(W o
0 [ŝ

o
j ; ŷ

o
j ] +W o

1 st−1))

ctxo =

Ty∑
i=1

αi[ŝ
o
i ; ŷ

o
i ]

where vTo , W o
0 , W o

1 are parameters.
After obtaining all of the three contextual vec-

tors, D2 takes the previous hidden state st−1 gen-
erated by itself, previously decoded token yt−1 to
calculate st as:

st = LSTM([yt−1; ctx
′
e; ctxc], st−1)

Finally, the concantenated vector:

at = [st; ctx
′
e; ctxc; ctxo; yt−1]

is fed to a feedforward network followed by a soft-
max layer to predict the probability of yt. As can
be seen from the above computation, the contex-
tual vector ctxo aggregates the global information
extracted from the first-pass logical form sequence
of other MRs, making the most use of assistance
from other MRs.

3.4 Training
Since our model output multiple MRs, we mini-
mize summed training for all MRs:

L =
N∑
i=1

Li

each Li represents a loss for a certain MR. Next,
we explain how Li is calculated in detail.

In contrast to the original deliberation network
(Gu et al., 2019), where they propose a complex
training algorithm based on Monte Carlo Method,
we follow the works of Xiong et al. (2019) and Li
et al. (2019b), maximizing the summed likelihood
of the two generated logical form sequences. And
Li is computed as:

Li = L1
i + L2

i

L1
i = −

∑
D

∑Tyi

j=1 logP (ŷij)

L2
i = −

∑
D

∑Tyi

j=1 logP (yij)

where P (ŷij) is the probability predicted for jth
token in ith MR by first-pass decoder and P (yij) is
the probability predicted for jth token in ith MR
by second-pass decoder.

4 Experiment

4.1 Datasets
We trained our model on the three datasets covering
different domains: Geo, ATIS, and Job, each of
which has been widely used in previous works and
has been labeled with logical forms for four MRs
including Prolog, Lambda Calculus, FunQL and
SQL.

Geo focuses on querying a US geography
database, originally containing 880 (utterance, log-
ical form) pairs annotated by (Zelle and Mooney,
1996) through a Prolog-style MR. Latter, (Popescu
et al., 2003) and (Rohit J. Kate and Mooney, 2005)
proposed to use SQL and FunQL to represent the
meanings, respectively. Furthermore, (Zettlemoyer
and Collins, 2005) proposed to use Lambda Cal-
culus and manually converted the Prolog logical
forms to equivalent expressions in Lambda Calcu-
lus. By convention, we adopt the standard 600/280
training/test split.

ATIS is a standard semantic parsing dataset
about flight booking, consisting of 5410 questions
and their corresponding SQL queries. (Zettlemoyer
and Collins, 2007) use Lambda Calculus to rep-
resent the meanings and automatically map SQL
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queries to equivalent Lambda Calculus. The stan-
dard split has 4480 training instances, 480 develop-
ment instances and 450 test instances.

Job dataset contains 640 utterances and their
corresponding Prolog queries to a dataset of job
listings. Similar to Geo, (Zettlemoyer and Collins,
2005) proposed to represent the meanings with
Lambda Calculus and manually converted Prolog
logical forms to equivalent Lambda Calculus logi-
cal forms.

Since not all the four MRs introduced above
are used in these three domains, following previ-
ous works, (Guo et al., 2020) has annotated the
above three datasets with all the four MRs by semi-
automatically translating logical forms in one MR
into others.

4.2 Baselines
Our models are compared with two baselines:

1. Seq2Seq model: We formulate semantic pars-
ing task as a neural machine translation task
and employ the encoder-decoder architecture
to solve it. To predict N MRs, we need N inde-
pendent Seq2Seq models to generate logical
forms for each MR. Each Seq2Seq model con-
tains a one-layer BI-LSTM (Gers et al., 2000)
encoder and a one-layer LSTM decoder.

2. Multi-task learning model: Applying multi-
task learning to parse multiple MRs. It con-
sists of a one-layer BI-LSTM encoder and
multiple one-layer LSTM decoders. Each
decoder is responsible for generating logical
forms for one MR. The decoders only share
the same encoder and have no communication
with each other. The crucial distinction be-
tween this model and our model is whether to
introduce the help of other MRs.

4.3 Implementations
We adopt AllenNLP (Gardner et al., 2018) and
Pytorch (Paszke et al., 2019) framework to imple-
ment each approach. Due to the limited number
of test data in each dataset, we run each approach
five times and report the mean performance and
standard deviation.

Many neural semantic parsing approaches adopt
data anonymization to replace entities in utterances
with placeholders. However, in this paper, we do
not apply data anonymization to avoid bias.

For parameters, we tune the hyper-parameters of
each approach on the development set or through

cross-validation on the training set. We put the
search space of hyper-parameters in Appendix A.

We initialize all parameters uniformly within the
interval [-0.1, 0.1]. We use Adam algorithm to
update parameters. Gradients are clipped to 5.0
to alleviate the gradient explosion problem. Early
stop is used to determine the number of training
epochs. We use greedy search to generate logical
forms during inference.

4.4 Evaluation Metrics

Following previous work (Guo et al., 2020), we
use EM (exact-match) accuracy as the evaluation
metric, which is defined as the percentage of the
samples that are correctly parsed to their gold stan-
dard meaning representations.

4.5 Experimental Results

At first, we evaluate our model’s performance on
three standard benchmarks along with baseline
models, in performing the MulTSP (multi-target
semantic parsing) task. All approaches are required
to predict four MRs, namely Prolog, Lambda Cal-
culus, FunQL, and SQL.

Table 2 shows our results. By comparing vari-
ous methods, we observe that 1) our model consis-
tently outperforms all other candidates. On the one
hand, our model achieves the best parsing accuracy
among all methods, on the other hand, the perfor-
mance of our model is more steady, making our
method more reliable. For example, on Job dataset,
CDNParser achieves 5.05% absolute improvement
on average compared to the Seq2Seq model with
a lower standard deviation. This justifies the ef-
fectiveness of our approach on MulTSP task. 2)
Both our model and multi-task learning model can
produce all four MRs. However, our model beats
the multi-task learning model substantially, indicat-
ing that incorporating help from other MRs plays a
crucial role in enhancing accuracy.

By comparing the performance of various MRs,
we observe that 1) FunQL tends to outperform
other MRs and our model’s advancement on FunQL
is relatively lesser as compared to the other three
MRs. One possible reason is that FunQL is more
compact than the other MRs due to its elimination
of variables and quantifiers, making it easier to pre-
dict even without the aid of other MRs. 2) SQL
appears to have the poorest performance yet tends
to achieve the highest improvement. For example,
in Geo dataset, the exact-match accuracy of FunQL
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Table 2: Experimental results of our multi-target semantic parsing model and two baseline models. Seq2Seq* reports
the results from (Guo et al., 2020). The results are averaged over 5 random seeds (mean±std). We highlight the
best performance for every MR and our model’s absolute improvement over Seq2Seq*. The poor SQL exact-match
accuracy in ATIS is caused by the different distribution of SQL queries in test set.

Approach Prolog Lambda
Calculus

FunQL SQL

GEO
Seq2Seq* 70.0±2.1 64.7±2.3 76.8±2.4 58.0±2.4
Seq2Seq 66.8±2.9 65.7±2.6 73.5±2.4 57.8±8.0
Multi-Task 67.9±0.6 66.4±1.0 74.8±2.0 63.8±1.8
CDNParser(ours) 69.1(-0.9)±0.7 68.4(+3.8)±1.7 77.1(+0.3)±1.3 64.9(+6.9)±0.8
JOB
Seq2Seq* 68.1±2.3 65.8±1.3 71.4±2.4 68.5±3.0
Seq2Seq 67.8±2.3 65.2±1.5 71.6±2.6 67.9±3.4
Multi-Task 72.7±1.6 70.1±2.2 70.7±2.1 71.4±1.8
CDNParser(ours) 73.0(+4.9)±2.4 73.7(+7.9)±1.1 73.0(+1.6)±1.6 74.3(+5.8)±2.0
ATIS
Seq2Seq* 65.9±1.5 68.7±1.8 70.8±0.6 5.6±0.3
Seq2Seq 65.1±1.6 69.0±1.6 70.0±0.8 5.6±0.3
Multi-Task 65.0±2.7 72.0±1.7 71.4±3.6 5.4±0.4
CDNParser(ours) 68.2(+2.3)±0.7 72.7(+4.0)±0.5 74.3(+3.5)±1.0 5.7(+0.1)±0.3

(a) Geo (b) Job (c) ATIS

Figure 3: Experimental results for ablation studies on three datasets. For each MR, four bars in different colors
stand for four models with varying degrees of collaboration. As the collaboration weakens from left to right, the
EM accuracy of each MR typically displays a declining trend.

is substantially higher than that of SQL in all ap-
proaches. However, SQL gets a remarkable 6.9%
improvement from our model. This is understand-
able, SQL is a domain-general language, unlike
domain-specific MRs (Prolog, Lambda Calculus,
and FunQL), the domain knowledge can not be in-
jected into SQL easily, making it a challenge for
neural networks to generate SQL. Therefore, by
obtaining assistance from the other three domain-
specific MRs, SQL achieves the maximum promo-
tion.

4.6 Ablation Study

We conduct ablation study to explore the effects of
collaboration mechanism in our model. We assess

the performance of several collaboration weakened
models. We denote M as our original multi-target
semantic parsing model, and M2 as collaborative
weakened model, in which each decoder is limited
to randomly collaborate with other two out of three
decoders. Similarly, each decoder in M1 can only
collaborate with one aonther random decoder and
decoders in M0 are not allowed to collaborate with
each other, Figure 3 summarizes the experimental
results.

From the results, we observe that: 1) As the col-
laboration weakens, the EM accuracy of each MR
generally shows a downward trend. 2) When col-
laboration is completely deactivated, there is often
a sudden drop in performance. This implies that
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the collaboration mechanism is a vital component
in our method and the outstanding performance
achieved by our model benefits a lot from the mu-
tual assistance among MRs brought by collabora-
tion mechanism.

4.7 Analysis

Our main experiment has shown that incorporating
information from other MRs can improve seman-
tic parsing performance. We call them auxiliary
MRs. This subsection will dive deeper into this
subject. We hypothesize that auxiliary MRs con-
tribute differently and fewer MRs could even give
better performance according to the results from
Figure 3. This brings up an interesting question: In
the case of generating logical forms for a specific
MR, how do we choose other auxiliary MRs?

Table 3: Empirical Transformation Accuracy, row and
column respectively represents the source and target
MRs.

Prolog Lambda
Calculus FunQL SQL

Prolog – 70.4% 82.3% 71.2%
Lambda
Calculus 59.4% – 73.3% 69.3%

FunQL 71.1% 72.2% – 75.8%
SQL 54.0% 57.0% 60.6% –

We hypothesize that an MR will be enhanced
more by a homogeneous MR than a heterogeneous
one. For example, the Prolog is intuitively closer
to lambda calculus than SQL. A comprehensive
measurement of the similarity is not trivial, and
thus we resort to the approximated similarity based
on empirical results. Specifically, we employ a
Seq2Seq neural network to transform an MR into
another one. The 4-by-4 transformation results
form a matrix (Table 3). We propose a Heuristic
Selection Strategy (HSS) based on this matrix:
For any MR in demand as the target, the source
MRs with higher transformation accuracy are more
preferred. For example, taking Prolog as the tar-
get, the most similar MR is the FunQL (71.1%),
followed by Lambda Calculus (59.4%) and SQL
(54.0%). Note the similarity is not symmetric in
this setting. When the amount of auxiliary MRs is
restricted to 1 (or 2), HSS will choose only FunQL
(or Lambda Calculus in addition).

To evaluate HSS, we respectively pick up 2 and
1 auxiliary MRs for each MR, there are 3 choices
in both cases as marked by letters in parentheses in
Table 4 (or Table 5). P, L, F, and S represent Pro-

Table 4: EM accuracy for each MR when picking up
2 auxiliary MRs.We highlight HSS selection for each
MR.

Target MR Composition
GEO
Prolog 69.6(LF)↑ 68.8(LS)↓ 68.0(FS)↓

Lambda 69.9(PF)↑ 67.9(PS)↓ 67.4(FS)↓
FunQL 77.0(PL)↓ 75.7(PS)↓ 75.5(LS)↓

SQL 65.0(PL)↑ 65.1(PF)↑ 64.0(LF)↑
JOB

Prolog 74.1(LF)↑ 73.3(LS)↑ 73.6(FS)↑
Lambda 74.8(PF)↑ 74.4(PS)↑ 73.8(FS)↑
FunQL 72.9(PL)↓ 73.8(PS)↑ 74.4(LS)↑

SQL 73.2(PL)↓ 74.3(PF)↑ 73.5(LF)↓

Table 5: EM accuracy for each MR when picking up 1
auxiliary MR. We highlight HSS selection for each MR.

Target MR Composition
GEO
Prolog 70.4(L)↑ 72.0(F)↑ 66.3(S)↓

Lambda 71.6(P)↑ 70.0(F)↑ 69.0(S)↑
FunQL 78.0(P)↑ 77.3(L)↑ 78.8(S)↑

SQL 64.9(P)↓ 65.2(L)↑ 65.0(F)↑
JOB

Prolog 74.3(L)↑ 74.1(F)↑ 72.7(S)↓
Lambda 74.7(P)↑ 75.3(F)↑ 75.6(S)↑
FunQL 71.4(P)↓ 73.7(L)↑ 73.6(S)↑

SQL 73.5(P)↑ 73.7(L)↑ 75.0(F)↑

log, Lambda Calculus, FunQL, and SQL is picked
respectively. The "↑" indicates the higher EM ac-
curacy than taking all the other 3 MRs as auxiliary
MRs, while the "↓" indicates the lower EM accu-
racy.

Table 4 and Table 5 shows that: 1) After choos-
ing one or two auxiliary MRs, the EM accuracy
for each MR may either rise or fall, confirming our
assumption that auxiliary MRs do not contribute
equally. 2) After picking one or two auxiliary MRs
following our strategy, the EM accuracy for most
MRs increases, proving that our strategy based
on heuristic features is empirically reasonable and
valuable in practice.

5 Conclusion

In this paper, we propose a multi-target semantic
parsing model based on a collaborative deliberation
network. On the one hand, our model is capable of
predicting multiple MRs simultaneously, success-
fully completing the multi-target semantic parsing
task, on the other hand, each MR in our model can
leverage assistance information from other MRs
thanks to the design of collaboration mechanism in
our model. We believe that our method has good
application prospects in real-world scenarios due
to the diversity of knowledge forms.
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Limitations

Our multi-target semantic parsing model based
on collaborative deliberation network focues on
specific domain, and is unable to handle multi-
domain settings. In the future, we plan to extend
our method to adapt multi-domain scenarios.
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A Appedix

A.1 Preprocess
According to (Jia and Liang, 2016), we preprocess
the Prolog logical forms to the De Brujin index
notation. We standardize the variable naming of
Lambda Calculus based on their occurrence order
in logical forms.

A.2 Hyper-Parameters
For our model, a one-layer bi-directional LSTM
is chosen for encoder and a one-layer LSTM is
selected as decoder. The embedding dimension
of both source and target languages ranges over
{100, 200}. The decoder keeps the same hidden
dimension as encoder, ranging over {32, 64}. As
for the attention model, we apply additive attention.
We employ dropout at training time to alleviate
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over-fitting with rate ranging over {0.1, 0.2, 0.3}.
We select batch size from {16, 32, 64}, and select
learning rate from {0.005, 0.01}.


