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Abstract
Asking for clarification is fundamental to ef-
fective collaboration. An interactive artificial
agent must know when to ask a human instruc-
tor for more information in order to ascertain
their goals. Previous work bases the timing of
questions on supervised models learned from
interactions between humans. Instead of a su-
pervised classification task, we wish to ground
the need for questions in the acting agent’s pre-
dictive uncertainty. In this work, we investi-
gate if ambiguous linguistic instructions can be
aligned with uncertainty in neural models. We
train an agent using the T5 encoder-decoder
architecture to solve the Minecraft Collabo-
rative Building Task and identify uncertainty
metrics that achieve better distributional separa-
tion between clear and ambiguous instructions.
We further show that well-calibrated prediction
probabilities benefit the detection of ambiguous
instructions. Lastly, we provide a novel empiri-
cal analysis on the relationship between uncer-
tainty and dialog history length and highlight
an important property that poses a difficulty for
detection.

1 Introduction

Human language offers a natural interface between
machine and human when solving a collaborative
task. We wish to build an artificial agent that can
not only ground natural language in its environ-
ment, but can also solicit more information when
communication fails or the human’s instruction
was ambiguous. Asking questions establishes two-
way collaborative communication instead of silent
following of instructions. Endowing an instruction-
following agent with the ability to prompt questions
poses two related but different problems: when to
initiate asking a question and what the content of
the question should be. In this work, we focus on
the first problem.

The problem of deciding if a system should
be asking clarification questions has been previ-
ously discussed in the context of conversational

search and dialog systems. Past approaches can
be grouped into two paradigms, where a separate
model decides if a follow-up is necessary (Kim
et al., 2021; Song et al., 2009), and where the
need for clarification is based on a model that
would eventually generate the response (Arabzadeh
et al., 2022). In the former, a separate training set
is needed with annotations that indicate ambigu-
ity (Aliannejadi et al., 2021). In the latter, no such
signal is needed – the system uses an estimate of
quality of its own predictive performance to decide.

The same problem can be posed in the context
of visually grounded dialog. The domain of task-
oriented communication in a visual environment
is less mature, and the need for questions is of-
ten hard-coded in these systems (Das et al., 2017;
Greco et al., 2022; Lee et al., 2018). Neverthe-
less, we can already find examples of both afore-
mentioned paradigms, where a binary classifier is
learned based on human-demonstrations (Shekhar
et al., 2019), and systems that decide on the for
questions based on its own uncertainty (Abbasne-
jad et al., 2019; Chi et al., 2020).

Previous works argued that a model that gener-
ates information-seeking questions should not be
decoupled from the model that makes the final pre-
diction for the task (Testoni and Bernardi, 2021;
Abbasnejad et al., 2019). The model uncertainty
over class labels can be used to decide on the con-
tent of the clarification question.

We use the same reasoning in our work, since
the acting agent’s uncertainty, used to decide when
to ask a question, is more interpretable than a black-
box model that is trained to make a positive predic-
tion if a human decided to ask a question.

Our setup involves a human architect agent and
an artificial builder agent situated in a 3D Grid-
world environment. The human architect agent
has access to a target structure and can direct the
artificial builder agent with natural language.

A natural way of evaluating if an instruction-
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following agent is asking questions at the right
time is to use human evaluation, which is labor-
intensive. In this work, we perform evaluation us-
ing already existing datasets (Narayan-Chen et al.,
2019; Kiseleva et al., 2022a). We investigate if the
builder model’s uncertainty is higher for instruc-
tions that precede questions in these human-human
dialogues.

Our contributions are:

1. We identify the uncertainty metrics that
achieve the largest distributional separation
between ambiguous and non-ambiguous in-
structions.

2. We show that calibration helps increase the
statistical separation between the uncertainty
metrics of ambiguous and non-ambiguous in-
structions.

3. We provide a novel empirical analysis on the
relationship between uncertainty and dialog
history length. We show uncertainty increases
as length increases, confounding the statistical
separation that is important for detecting the
need for questions. This poses an inherent
difficulty as in collaborative dialogues, the
history grows over the course of interaction.

2 Methodology

We begin by defining ambiguous instructions and
propose casting them as out-of-domain input in
our modelling effort. We then describe our proba-
bilistic model and the uncertainty metrics used for
detecting the need for questions.

In this study, we use unsupervised methods for
uncertainty estimation: We do not use examples
of human questions in order to create a model for
uncertainty. Instead, we obtain our measures from
statistics that are obtained from the predictive prob-
ability distribution of our model.

2.1 What are ambiguous instructions?
Ambiguous sentences allow for multiple distinct in-
terpretations. Depending on the domain, previous
research has further refined this notion by contrast-
ing "under-specification" with "ambiguity" (Clarke
et al., 2009) or "ambiguity" with "inaccuracy" (Zuk-
erman et al., 2015).

Our definition of ambiguity is based on utter-
ances that prompted instruction-level clarification
questions during a collaborative building game be-
tween humans in a grid-world environment. A

dominant source of communication errors in this
task is under-specification, e.g., the architect does
not specify the color 3, or number of blocks. Other
errors stem from mistakes in referring expressions
that apply to multiple structures on grid, or none
of them, e.g., using the wrong color. We subsume
all of these cases that lead to clarification requests
under “ambiguity”.

Ambiguous instructions are out-of domain data.
In our model, we cast ambiguous instructions as
out-of-domain data and treat clear instructions
as in-domain. To achieve this, our agent learns
from demonstrations where the linguistic input was
deemed actionable by humans. At test time, we
present the agent with both clear and ambiguous
utterances and measure its predictive uncertainty
over the action space (Arora et al., 2021). Section 4
discusses a simple single-word messaging-game to
illustrate how ambiguous messages can be viewed
as out-of-domain examples in a grounded commu-
nicative setting.

2.2 Instruction following as prediction

In our first experimental setting (Section 4), we
model our agent using a binary classification model.
We use negative log-likelihood (NLL) and the prob-
ability of the predicted label (one-best probability)
as uncertainty metrics.

In our second experimental setting (Section 5),
we model our agent using a structured prediction
(autoregressive) model. Using beam-decoding, the
builder agent produces a sequence of actions that
involves placing and removing colored blocks.

After each sequence prediction, we have access
to multiple statistics from the beam: the likelihood
of all the hypothesis in the beam, the likelihood
of each token and the probability distribution over
the whole vocabulary for each token in the beam.
Previous work has investigated a number of ways
to compute uncertainty measures from these beam-
statistics (Malinin and Gales, 2021).

We formulate an ensemble-based uncertainty es-
timation framework which produces ensemble joint
probabilities that tend to be well-calibrated (Lak-
shminarayanan et al., 2017). We consider an en-
semble of M models {Pr (y ∣ x;θ(m))}M

m=1 where
each model θ(m) captures the mapping between
variable-length instruction x ∈ X and sequence of
actions y ∈ Y . The ensemble joint probabilities are
obtained via a token-level ensemble:
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Pr(y ∣ x;θ) = L∏
l=1

1

M

M∑
m=1Pr (yl ∣ y<l,x;θ(m)) , (1)

where L is the length of the output sequence
and θ = (θ(1), . . . ,θ(m)). Our agent learns from
demonstrations where linguistic input was acted on
by humans. At test time, we evaluate the model
on ambiguous instructions that are not present dur-
ing training. We quantify predictive uncertainty
over the action space Y and investigate the distribu-
tional separation between the predictive uncertainty
of ambiguous and non-ambiguous instructions. We
use beam-search in the inference stage to provide
high-quality hypotheses and compute uncertainty
metrics based on the top hypotheses. We indicate
the number of hypotheses used by the metrics be-
low by the designation N-best, where N ∈ {1,2,5}.
We next present the uncertainty measures used in
our second experiment.

Likelihood-based metrics (LL). Negative log-
likelihood (NLL), − logPr(y ∣ x;θ), is a proper
scoring rule (Gneiting and Raftery, 2007), where
an optimal score corresponds to perfect prediction.
We compute two metrics based on NLL:

1. NLL of the top hypothesis (1-best).

2. NLL difference between the top two hypothe-
ses (2-best). This has been used to guide
question-asking for agents in Chi et al. (2020).

Entropy-based metrics (ENT). Following Ma-
linin and Gales (2021), we compute a sequence-
level Monte-Carlo approximations of entropy (5-
best):

HS(Pr(y ∣ x;θ)) ≈ − B∑
b=1

πb
L(b) logPr(y(b) ∣ x;θ),

(2)

where the log conditional is scaled by:

πb = exp 1
T logPr(y(b) ∣ x;θ)

∑B
k=1 exp 1

T logPr(y(k) ∣ x;θ) . (3)

The hyperparameter T is a calibration tempera-
ture that is useful to adjust the contribution of lower-
probability hypotheses to the entropy estimate. We
also compute a token-level approximation (5-best):

HT (Pr(y ∣ x;θ)) ≈ (4)

− B∑
b=1

L(b)∑
l=1

πb
L(b)H (Pr(yl ∣ y<l,x;θ)) . (5)

KL-divergence-based metrics. Following Lak-
shminarayanan et al. (2017), we compute the fol-
lowing “disagreement” metric (1-best):

1

M

M∑
m=1KL (Pr(y ∣ x;θ(m)) ∣∣ Pr(y ∣ x;θ)) .

(6)

We compute LL and ENT metrics for the en-
semble model Pr(y ∣ x;θ) and the most accurate
member of the ensemble.

3 Related Work

The need for clarification has received a lot of
interest in the field of conversational search and
dialog-systems. In spoken dialog-system, the confi-
dence of the speech-recognition system is a popular
starting point for prompting clarifications (Ayan
et al., 2013; Bohus and Rudnicky, 2005). The
ASR-confidence is often further refined by in-
put from downstream processing such as the out-
put of a natural language understanding module
(Stoyanchev and Johnston, 2015; Komatani and
Kawahara, 2000) or structured discourse-modeling
(Schlangen, 2004). These more structured seman-
tic representations often allow for custom notions
of ambiguity, such as too many possible referents
(Zukerman et al., 2015), or contradictions in the
discourse representation (Skantze, 2008).

In recent years, we have witnessed a rising pop-
ularity of neural sequence-to-sequence implemen-
tations of conversational (OpenAI, 2023) and situ-
ated agents (Padmakumar et al., 2022; Wang et al.,
2023). Given their end-to-end nature, more ap-
proaches model the need for clarification in these
systems as a separate neural model, that is trained
on data labelled with ambiguity tags (Kim et al.,
2021; Aliannejadi et al., 2019, 2021). Closest to
our domain, the model for timing clarification ques-
tions introduced by (Shi et al., 2022) also consists
of a neural binary classifier trained using the occur-
rences of human clarification questions in dialog.
They use the same 3D grid world and human data
collection that we utilize in this work.

4 Ambiguous Messages in a Lewis’
Signaling Game

We start our analysis with a simple speaker-listener
game. We use this setup to illustrate the relation
between calibration and detection of ambiguous
instructions. In this referential task, the speaker and
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"triangle"

FFN 1
0

(a) Clear message "triangle"

"yellow" 

FFN 1
0

(b) Ambiguous message "yel-
low"

Figure 1: Examples of a clear and an ambiguous mes-
sage in the referential game. The two possible referents
are a yellow circle and a yellow triangle

the listener observe an ordered set of objects. The
speaker chooses a message to refer to one of these
objects and the listener has to correctly identify the
referential target based on the message.

In our setup, only the listener agent is learned,
and we restrict the task to a choice between two
objects: O1 and O2. Each object is described by c =
2 properties and each property is a one-hot vector
of f = 4 different values. In our visualization,
the properties correspond to color and shape. The
vocabulary is the set of all v = c × f = 8 properties.
During training, the speaker sends a single word
that identifies the target object, and the listener is
rewarded if it picks the correct one. See Figure 1
for an illustration of the setting.

The listening agent estimates the following bi-
nary probability distribution of identification I:

P (I ∣⟨O1,O2⟩,M), (7)

where message M is a one-hot vector of size v and
each object is described by the concatenation of
two one-hot vectors O = ⟨C,S⟩, where C and S
are both of size f .

Implementation details of the listener In this
simple simulated data experiment, we uniformly
sample shapes, colors, and messages, rejecting
cases where the message is ambiguous. The dataset
has 960 unique unambiguous examples and we re-
serve 50 of these for evaluation.

The listener is parameterized with a feed-
forward neural network that makes a binary de-
cision over the indices of the two potential target
objects. We train ten models with different random
seeds in order to create a deep-ensemble model.
As baseline (BASE), we randomly pick one of the
ensemble member models since all models achieve
perfect accuracy on an unseen combination of prop-
erties and instructions.

clear ambiguous
NLL Accuracy NLL Accuracy

BASE 0.005 1.0 1.71 0.5
ENS 0.006 1.0 0.71 0.5

Table 1: Average negative log-likelihood (NLL) and ac-
curacy of the baseline model (BASE) and the ensemble
model (ENS) evaluated on the in-domain clear instruc-
tions and the out-of-domain ambiguous instructions

Evaluating ambiguous instructions We create
ambiguous instructions for the listener by choosing
a message describing a property that is shared by
both possible referents. See Figure 1 for an exam-
ple of a clear (a) and an example of an ambiguous
(b) message. The desired model behaviour for am-
biguous instructions is to have maximum predictive
uncertainty. In this case, this means that the model
should predict a probability of 0.5 for both possible
outcomes.

We evaluate the baseline (BASE) and the en-
semble model (ENS) on both the clear in-domain
and the ambiguous examples. The ambiguous in-
structions should be considered out-of-domain, as
no such examples were presented during training.
As shown in Table 1, both models have the same
accuracy under both conditions, but the ensemble
model (ENS) has a lower negative log-likelihood
than the baseline (BASE) on the ambiguous ex-
amples, indicating an improvement in uncertainty
quantification. In Figure 2, we observe that the
ensemble model achieves a much better statistical
separation (blue vs orange) between the one-best
predicted probabilities of the in- and out-domain-
data. The ensemble model’s predicted probabilities
also lie much closer to the expected value of 0.5.

This indicates that the well-calibrated uncer-
tainty estimates of the ensemble model increases
the efficacy of using uncertainty metrics to detect
ambiguity in the message.

5 Ambiguous Instructions in Grounded
Collaborative Dialog

For our grounded dialog setting, we focus on agents
trained to build structures in 3D environments
based natural language instructions from a human
partner. The corresponding data was collected dur-
ing a series of collaborative building tasks where a
human architect was giving directions to a human
builder in order to build a target structure. During
training, we present the builder agent with: (a) the
relevant dialog history, including utterances from
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Figure 2: One-best probabilities of the predicted class
for the ambiguous and non-ambiguous cases for each
model (ensemble vs single model baseline).

both the architect and the builder, and (b) the state
of the grid built in previous steps. The builder is
trained to place and remove colored blocks using
supervised signals from action sequences recorded
from human-human interactions.

5.1 Datasets

We conduct our experiments on three existing
datasets, and create a novel evaluation set that al-
lows for a fine-grained analysis of ambiguity detec-
tion performance.

The Minecraft Dialogue Corpus (MDC)
(Narayan-Chen et al., 2019) is a collection of 509
game-plays between two humans. This dataset
was released with standard splits. We use the train
portion of the data to train our builder agent and
the test portion for evaluation. The test-set contains
1,827 clear dialog-turns and 177 questions.

The 2022 IGLU NLP task data collection
(IGLU-NLP) (Mohanty et al., 2022) contains
single-turn interactions between two humans. The
architect is presented with an already built grid
state and can add a single instruction to modify the
grid which is then implemented by the builder. As
we are interested in dialog-phenomena, we use this
collection only for training.

IGLU-MULTI (Kiseleva et al., 2022a) is also
a multi-turn data-collection similar to MDC. As it
is a smaller dataset with a total of 667 dialog- and
building turns across 120 game-plays, we reserve
it for evaluation. The dataset contains 584 dialog
turns for building and 83 clarification questions.

Creating ambiguous instructions
Both IGLU-MULTI and MDC (Shi et al., 2022)
have been annotated in previous work with labels

for instruction-level clarification questions. While
these annotations are helpful for evaluating overall
ambiguity detection performance, they preclude a
fine-grained analysis of agent uncertainty.

To this end, we create a new artificial dataset
(IGLU-MINI) by manipulating the clear portion
of the IGLU-MULTI dataset. We construct am-
biguous examples using three main categories that
we identified as reasons for questions in the origi-
nal dataset: The color is not specified, the number
of blocks is not specified, or there is an error when
referencing the already built blocks.

For the first two categories, we manipulate the
instruction by removing the color or the number
of blocks. The third type of ambiguity is created
by corrupting the intended referent of referring ex-
pressions by changing the color of the referenced
blocks. We identify instructions that contain a ref-
erence to the already built grid by matching strings
containing referring expressions starting with a def-
inite article followed by a color in the first sentence
of the instruction ("the red ones" in Figure 4).

We present examples of the resulting minimal
pairs with their corresponding model output in Fig-
ure 4. This way we can generate pairs of clear and
ambiguous instructions: We start with a clear in-
struction then perform the minimal edit to make it
defective. We manually checked the generated ex-
amples to make sure that they remain grammatical.

5.2 Implementation

The builder’s task is formulated as a sequence-to-
sequence prediction task. This is achieved by con-
verting the grid-state into a textual description. The
grid is described by the sequence of actions that are
necessary to build it. For example, building two
green blocks diagonally corresponds to the string
"put initial green block. put green 1 left and 2 be-
fore.". Actions are separated by a dot. All locations
are expressed by their relative distance to the first
building block. There are 6 tokens corresponding
to moving in the negative or positive direction on
x (left, right), y (lower,upper) and z (before, af-
ter) axes. This parameterization of grid traversal is
based on the approach of in Kiseleva et al. (2022b)
1.

We train a 10-member ensemble model using the
T5-small (Raffel et al., 2020) transformer architec-

1See https://gitlab.aicrowd.com/aicrowd/challenges/iglu-
challenge-2022/iglu-2022-rl-mhb-baseline for the starter code
and the GridWorld environment (Zholus et al., 2022).
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Figure 3: Example interaction from the IGLU-MULTI dataset with clarification question.

F1 NLL
ENS Single ENS Single

IGLU-MULTI 0.34 0.35 0.35 0.4
MDC 0.36 0.34 0.30 0.359

Table 2: F1 defined using block accuracy and recall of
the ensemble (ENS) and its strongest member (Single).
While performance is comparable for both models, ENS
achieves lower negative log-likelihood on both datasets.

ture. Five members of the ensemble are fine-tuned
from a pretrained T5-small with different random
seeds. In order to create higher diversity within the
ensemble, we train five further T5-small models
from scratch with different random initialization.
Fine-tuned models achieve better accuracy, while
randomly initialized models introduce greater vari-
ance within the ensemble, which in turn leads to
better calibration on the evaluation set. All models
are trained for ten epochs, and we select the check-
points with the best performance on the validation
portion of the MDC dataset. We pick the best per-
forming single and ensemble model respectively
for further analysis 2.

5.3 Experiments
5.3.1 Performance on clear instructions
Table 2 shows the performance of the ensemble and
the baseline model. The performance on the block
accuracy and recall matches F1 scores reported in
previous work (Shekhar et al., 2019; Kiseleva et al.,
2022b). We observe a similar picture as in the
messaging game in Section 4:

5.3.2 Detecting ambiguity at a dataset level
To compare the builder’s predictive uncertainty in
the clear and ambiguous conditions, we evaluate

2The implementation for the builder agents in this paper is
available at https://github.com/naszka/uncertain_builder.

(a) Original example from the dataset.

(b) The color of the blocks is removed from the
instruction.

(c) The referenced structure is recolored from red
to purple.

(d) The size of the column is removed from the
instruction.

Figure 4: Three ambiguous instructions created with
minimal edits. The starting grid is presented on the left
and the corresponding model output is on the right.
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IGLU MDC
Measure Level Aggr. N-best ENS Single ENS Single

0 ENT SEQ - 5-best 0.57∗∗ 0.54∗∗ 0.54 0.49
1 ENT TOK avg 5-best 0.56∗ 0.50 0.65∗∗ 0.59∗∗
2 KL TOK avg 5-best 0.63∗∗ - 0.59∗∗ -
3 LL SEQ - 1-best 0.56∗∗ 0.53 0.62∗∗ 0.55∗
4 LL SEQ diff 2-best 0.53 0.51 0.59 0.57

Table 3: Area under the ROC curve on the IGLU-
MULTI and MDC datasets.

the model on all builder-turns: when the builder de-
cided to build a sequence of blocks in the original
dataset, and also when the builder asked a ques-
tion. We compute the area under the receiver oper-
ating characteristic curve to show how well each
uncertainty measure separates the clear from the
ambiguous architect instructions. The significance
thresholds (* for p < 0.05, ** for p < 0.01) were
computed with a permutation test. The null hypoth-
esis associated with this test is that the observed
uncertainties come from the same distribution for
the ambiguous and non-ambiguous examples. Ta-
ble 3 shows that while the ensemble model achieves
slightly better separation across all uncertainty mea-
sures, both models struggle to separate cases where
the human participants asked a question and where
they decided to carry out the instruction.

5.3.3 Inducing ambiguity via minimal edits
We would like to gain a better understanding what
drives the changes in predictive uncertainty of our
builder. The IGLU-MINI dataset offers a con-
trolled environment to investigate this question.
Here we have pairs of instructions: the original one
can be found in the human-human recordings and
the builder deemed it clear enough to act upon it.
The corresponding instruction has been minimally
edited to increase linguistic confusion. In Figure 4
we illustrate each group of minimal changes we in-
troduced. In this setup, we can ask a more targeted
question: Does higher linguistic ambiguity trans-
late to higher uncertainty in the builder? Instead of
comparing all clear instruction with all ambiguous
ones, here we can examine the uncertainty changes
within each pair. In this setting, both the number of
prior dialog turns and the size of the already built
structure are kept constant.

We expect each type of minimal-edit to translate
differently in the predictive uncertainties. We in-
troduce some new features to better capture these
effects. Where we omit the color for the original
instruction, we expect the change of uncertainty to
concentrate on the predicted color tokens. Hence,

Position Measure Level Aggr. N-best First act. ENS Single
0 all ENT TOK avg 5-best No 0.92** 0.83**
1 all ENT SEQ - 5-best No 0.92** 0.80**
2 all LL SEQ - 1-best No 0.89** 0.79**
3 color ENT TOK max 5-best No 0.95** 0.90**
4 color ENT TOK avg 5-best No 0.94** 0.92**
5 color LL TOK min 5-best No 0.94** 0.89**

(a) Color-ambiguity pairs.
Position Measure Level Aggr. N-best First act. ENS Single

0 all ENT TOK avg 5-best No 0.79** 0.62**
1 all ENT SEQ - 5-best No 0.79** 0.53
2 all LL SEQ - 1-best No 0.78** 0.60**
3 eos ENT TOK - 1-best Yes 0.88** 0.63**
4 eos ENT TOK avg 5-best No 0.84** 0.63**
5 eos LL TOK avg 5-best No 0.84** 0.64**

(b) Number-ambiguity pairs.
Position Measure Level Aggr. N-best First act. ENS Single

0 all ENT TOK avg 5-best No 0.66* 0.70**
1 all ENT SEQ - 5-best No 0.72* 0.72**
2 all LL SEQ - 1-best No 0.66* 0.67**
3 color ENT TOK avg 5-best No 0.83** 0.56
4 all ENT TOK avg 5-best Yes 0.72** 0.65*
5 color LL TOK avg 5-best No 0.72* 0.53

(c) History-ambiguity pairs.

Table 4: Proportion of examples in the IGLU-MINI
dataset where the ambiguous instruction has higher un-
certainty than the corresponding pair according to the
more calibrated ENS and the baseline Single models.
Rows 0-2 show the most commonly used structured pre-
diction metrics. In rows 3-5, the three best performing
metrics are displayed. The ensemble model outperforms
the uncalibrated single model in detecting the hike in
semantic difficulty.

we compute different statistics only considering
these positions of the sequence.

When we leave out the number of blocks to
be used, we expect the model to struggle with
deciding if it should start a new action after the
end-of-action symbol. To detect this, we focus the
measurements on positions where there could be
an end-of-sequence token, namely positions right
after each end-of-action token.

We also compute all our measurements limited
to only the first action of the predicted action-
sequence. We expect that where the main reference
point on the grid has been altered (history), most of
the uncertainty change will be observed on where
to place the first block.

In Table 4, we compare how many times the
utterance with increased semantic difficulty has re-
sulted in higher uncertainty. The table also shows
the result for paired permutation test, which indi-
cates if the change in the uncertainty measurements
is significant.

For each category of semantic error, different
measures of uncertainty perform best. For color-
ambiguity, the top performing measures only con-
sider the color-predictions. In case of number-
obfuscation, all best performing metrics consider
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positions where the end of sentence (EOS) could
be predicted (after each action). The best perform-
ing measure is the entropy of the token-level dis-
tribution after the very first action in each 5-best
hypothesis. This shows that the models struggle to
decide if a second action should be started. When
we alter the color of the referenced structure, the
best performing metric considers the entropy of
all the color-predictions. This is explained by the
model’s reliance on the color of built structures to
decide on the color.

6 Analysis
While for ambiguity minimal-pairs, the ensemble
model can confidently differentiate between the
corresponding instructions in terms of uncertainty,
the within-class variance remains high, rendering
it very difficult to find an overall threshold that
separates clear- from ambiguous cases (Fig. 5).

Figure 5: Uncertainty of the original (blue) and the
corresponding ambiguous instruction (orange) for the
ensemble model. While uncertainty is higher than the
corresponding baseline utterance within pairs, within-
class variance is very high.

The main driver of predictive uncertainty is the
length of the input sequence. Figure 7 illustrates the
correlation between input length and uncertainty
for both models. The input length consists of the
token length of the dialog history and the size of the
already built structures in the grid. As a result, the
uncertainty of the builder steadily increases over
the dialog, even if each step was understood well
by the builder and no questions were asked.

For significantly longer input sequences, the per-
formance of the builder model decreases, for these
cases, it is expected that uncertainty of the model
rises. In Figure 6, we focus our attention on in-
put sequences under the length of 250. While the
performance is close to constant in this range, the

Figure 6: Correlation of the input length with the F1
score (left) and the entropy of the prediction (right)
for all sequences under a length of 250. While the
performance is constant, the entropy of the predictions
increases with the input length.

entropy still increases with the input length.

Figure 7: Correlation of input length with the prediction
entropy in ensemble (left) and the baseline model (right).
The input length consists of the token length of the
dialog history and the size of the already built structures.

7 Conclusion and Future Work

In this work, we have investigated the alignment
between predictive uncertainty and ambiguous in-
structions in visually grounded communication.
We show that calibration can help increase the effi-
cacy of unsupervised uncertainty metrics. However,
our empirical analysis on the relationship between
uncertainty and dialog history length also shows
that varying input lengths can pose a problem for
using uncertainty metrics for detection. At the
same time, these metrics do exhibit the expected
rise in uncertainty when applied to detecting tar-
geted ambiguity changes.

The task of detecting the need for questions in
this environment has been posed in the frame of the
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2022 IGLU NLP challenge (Kiseleva et al., 2022b).
Crucially, the evaluations of the builder agent and
question asking module have been separated into
two tracks. For future work, we can use the uncer-
tainty metrics generated by the builder to detect the
need for asking questions, removing the need for a
bespoke model for the latter.

Highly varying input-lengths is an inherent fea-
ture of dialogue. The uncertainty measures that we
utilised in this paper, have been previously shown
to be effective in detecting out-of-domain samples
in POS-tagging (Ulmer et al., 2022), ASR (Tu et al.,
2022) and NMT (Malinin and Gales, 2021). These
applications do not exhibit the same magnitude of
variance in the length of the model’s input.

8 Limitations

We examined one specific way of presenting the
IGLU builder task data to a sequence-to-sequence
transformer, introduced in prior work. There are
potentially many alternative methods for casting
this data as a sequence-to-sequence problem, and
our observations might not hold for other data-
transformations or architectures.

The data-collections for our considered tasks are
very small compared to the scale of data used for
state-of-the art conversational systems (OpenAI,
2023). It has been pointed out in related work that
the calibration properties of large DNNs improve
greatly with higher in-domain accuracy and more
training data (Desai and Durrett, 2020).
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