
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 14935–14956
December 6-10, 2023 ©2023 Association for Computational Linguistics

Enhancing Text-to-SQL Capabilities of Large Language Models:
A Study on Prompt Design Strategies

Linyong Nan1 Yilun Zhao1 Weijin Zou1 Narutatsu Ri2 Jaesung Tae1
Ellen Zhang1 Arman Cohan1,3 Dragomir Radev1

1Yale University 2Columbia University 3Allen Institute for AI
{linyong.nan, yilun.zhao}@yale.edu

Abstract

In-context learning (ICL) has emerged as a
new approach to various natural language pro-
cessing tasks, utilizing large language models
(LLMs) to make predictions based on context
that has been supplemented with a few exam-
ples or task-specific instructions. In this paper,
we aim to extend this method to question an-
swering tasks that utilize structured knowledge
sources, and improve Text-to-SQL systems by
exploring various prompt design strategies for
employing LLMs. We conduct a systematic
investigation into different demonstration se-
lection methods and optimal instruction for-
mats for prompting LLMs in the Text-to-SQL
task. Our approach involves leveraging the syn-
tactic structure of an example’s SQL query to
retrieve demonstrations, and we demonstrate
that pursuing both diversity and similarity in
demonstration selection leads to enhanced per-
formance. Furthermore, we show that LLMs
benefit from database-related knowledge aug-
mentations. Our most effective strategy outper-
forms the state-of-the-art system by 2.5 points
(Execution Accuracy) and the best fine-tuned
system by 5.1 points on the Spider dataset.
These results highlight the effectiveness of our
approach in adapting LLMs to the Text-to-SQL
task, and we present an analysis of the factors
contributing to the success of our strategy.

1 Introduction

Question answering using structured knowledge
source is a critical function of information retrieval
systems that act as an interface between humans
and vast structured data repositories. Extracting
and aggregating information accurately is a funda-
mental requirement of these systems and is thus
a primary goal in their design. In recent years,
the neural symbolic design approach (Berant et al.,
2013; Yao and Van Durme, 2014; Liang et al., 2017;
Gardner et al., 2018; Yu et al., 2018; Cheng et al.,
2023) has become the preferred choice for such

systems for two main reasons. First, neural mod-
els have inherent limitations, including a limited
working memory that is costly to access during in-
ference and a long-term memory that is unreliable
to read from or write to, making it impractical to
have them directly read from large-scale knowl-
edge sources. Second, understanding how a system
decides which information to retrieve and how to
aggregate it is crucial for assessing its reliability
and robustness.

Recent investigations have demonstrated the ef-
fectiveness of the neural symbolic approach in pro-
ducing transparent reasoning process in formal lan-
guage sequence (such as Text-to-SQL) for question
answering tasks based on databases or knowledge
graphs (Berant et al., 2013; Zhong et al., 2017; Yu
et al., 2018; Yin and Neubig, 2018; Yu et al., 2019;
Ren et al., 2021; Cheng et al., 2023). A typical sys-
tem comprises a neural semantic parsing module
that translates user queries in natural language to
formal language sequences (e.g., logical forms or
executable code) and a symbolic reasoner module,
such as database management system (DBMS), that
executes the code on structured knowledge sources
to extract the result. The primary objective of this
work is to improve the semantic parsing module, as
it is essential in extracting answers from relational
databases using SQL as the formal language.

Current semantic parsing modules can be
broadly categorized based on their learning strate-
gies. State-of-the-art systems involve fine-tuning
a pretrained language models on a large corpus
of {question, SQL} pairs, enabling the model to
generate code (Wang et al., 2020; Yin et al., 2020;
Scholak et al., 2021; Xie et al., 2022; Li et al.,
2023). Alternatively, the in-context learning (ICL)
approach exploits the inherent capabilities of large
language models (LLMs) to directly produce SQL
code by providing a well-defined task prompt (Xie
et al., 2022; Chen et al., 2022; Rajkumar et al.,
2022; Ni et al., 2023). Existing research indicates

14935



that LLMs using prompt-based semantic parsing
underperform their fine-tuned counterparts (Liu
et al., 2023), while recent studies also suggest that
performance of ICL-trained LLMs is significantly
affected by the structure of the prompt (Liu et al.,
2022; Rubin et al., 2022; Lu et al., 2022; Wei et al.,
2022; Fu et al., 2023; Ye et al., 2023). This moti-
vates us to examine various prompt configurations
for semantic parsing tasks, taking advantage of the
latest advancements of LLMs pertaining to our do-
main of interest.

Our study focused on exploring various prompt
design strategies for semantic parsing tasks in the
Text-to-SQL domain. We conducted a systematic
investigation into different demonstration example
selection criteria and instruction formats on Text-to-
SQL datasets. Specifically, we propose to employ
an example’s SQL syntactic structure as the basis
for retrieving demonstrations, thereby facilitating a
more accurate representation of the problem struc-
ture. Our approach revealed that selecting demon-
stration examples with a dual emphasis on diversity
and similarity objectives yields maximized gain in
performance. Our study also showed that LLMs
benefit from database-related knowledge augmen-
tation in certain circumstances. Through experi-
ments, we identified the most effective strategy,
which resulted in an Execution Accuracy score of
84.4 on the Spider dataset (Yu et al., 2018). This
score is 2.5 points higher than the state-of-the-art
system (Ni et al., 2023) and 5.1 points higher than
the best fine-tuned system (Scholak et al., 2021)
at the time of writing.1 These results demonstrate
the effectiveness of our in-context learning scheme
in adapting LLMs to our target task. Furthermore,
we present the empirical findings and analysis on
the factors that contributed to the success of our
strategy.2

2 Methods

To design prompts for in-context learning in zero-
shot or few-shot settings, it is important to find an
optimal way to represent, augment, and arrange all
resources in the input-output mapping. Addition-
ally, the task instructions should be formulated to
align with these resources. When few-shot learning
is employed, the selection of a subset of demon-

1Our comparison focuses on fine-tuning studies that em-
ployed the standard Transformer architecture without any layer
modifications or the inclusion of additional modules.

2We will open source our code for experiments: https:
//anonymous.url

strations from a pool of annotated examples for
each test instance is another critical design choice
that can impact the ICL performance. We proposed
enhancements for each of these components and
evaluated them against existing methods.

2.1 Demonstration Selection

The goal is to select a subset of annotated examples
from a pool that offers the best context for solving
the test problem. While random selection from
the pool is one option, Liu et al. (2022) proposed
kNN-augmented example selection (KATE), which
retrieves k nearest neighbors from the pool based
on the input of the compared instances. To achieve
this, all the pool instances are first transformed
into continuous vectors using a sentence encoder.
During inference, the input of a test instance is
projected into a latent space using the same encoder
and then compared to the pool of vectors using
a similarity measure, such as negative Euclidean
distance or cosine similarity. Finally, the top k most
similar annotated examples are selected from the
pool.

Structured Prediction as Basis for Retrieval
We propose utilizing the output SQL queries to
select the demonstration examples, rather than us-
ing the input questions. This is because, unlike
many tasks where the output is a classification la-
bel or extracted entity with little information about
the problem structure, Text-to-SQL demands struc-
tured prediction which contains more explicit in-
formation about the problem structure than that
provided in the input question. Furthermore, un-
like natural language questions that can only be
converted into continuous semantic vectors, SQL
queries can be easily transformed into discrete fea-
ture vectors based on their syntax, making their
comparison more efficient and transparent. To im-
plement our proposal, we begin by converting the
SQL queries of all pool instances into discrete syn-
tax vectors. This is done by parsing the queries and
identifying their syntactic elements, including key-
words, operators, and identifiers. Each SQL query
is then mapped to a "Bag-of-Syntactic-Elements"
feature vector, each entry of which indicates the
presence of a syntactic element in the query, i.e.,
we assign 1 (instead of the count) if an element
is present in the SQL query. During inference,
we first generate a draft of the SQL query using
a preliminary predictor. We then apply the same
process to convert this draft query into a discrete

14936

https://anonymous.url
https://anonymous.url


vector, which is used to represent the test instance
for retrieving demonstration examples.

Balancing Diversity and Similarity We propose
a new demonstration selection strategy that differs
from Liu et al. (2022), which retrieves the most
similar examples with continuous-valued measure-
ments for each test instance. In contrast, our strat-
egy seeks to balance similarity and diversity of
the demonstrations. This is achieved by chang-
ing the representation of the given example from
a continuous-valued vector denoting the question
semantics to a discrete-valued vector that captures
the SQL syntax. To obtain demonstration examples
that are similar to the given example, we first split
the pool of annotated examples into disjoint par-
titions that represent different categories. Specifi-
cally, we use the difficulty-level based categoriza-
tion derived from the Spider dataset (Yu et al.,
2018), because it is developed strictly based on
syntactic coverage and structure of a SQL query,
ensuring that queries satisfying the same condi-
tions are grouped into the same category. While
alternative categorization options may exist, we
leave this for exploration in future work. Given
a test instance, we use a preliminary predictor to
generate a draft SQL query and, based on its cat-
egory, retrieve candidate examples that belong to
the relevant partition. Next, to select diverse exam-
ples from the candidate partitions, we implement
k-means clustering on the discrete vectors of exam-
ples, selecting k diverse examples that are closest
to each centroid of the cluster. The resulting ex-
amples exhibit similarity to the test example by
sharing the same category, yet maintain diversity
in problem structures. These demonstrations are
then used to construct the prompt. The procedure
for our demonstration selection strategy is outlined
in Algorithm 1 of the appendix.

2.2 Schema Representation in Instruction
Instructions are crucial to designing prompts, as
they define the task by clarifying how provided re-
sources can aid the inference process (Dong et al.,
2023). Our primary focus lies in determining the
optimal way to represent a structured knowledge
source within the instruction and identifying sup-
plementary resources that can enhance the infer-
ence process.

Linearization of Structured Knowledge We be-
gin by altering the linearization of structured knowl-
edge. In prior research (Xie et al., 2022), structured

knowledge sources such as databases or tables have
been linearized into a “text” sequence. Building on
previous methods (Rajkumar et al., 2022), we adopt
a representation of the database using a “code” se-
quence, specifically the CREATE query employed to
construct the table initially, as illustrated in listing 1
and 2 of the Appendix. This linearization approach
provides data type information for each column
and encompasses all foreign key constraint details
within the database. Moreover, we modify other
resources in the instructions, such as the question
and example entries in the database, to conform
to the code sequence style by appending them as
comments.

Schema-related Knowledge Augmentation
The ontology of a database delineates the structure
and semantics of the database by offering defini-
tions for a set of classes (tables), their attributes
(columns), and the relationships among them. We
initially enhance the semantics of each class and
attribute by elaborating on their meanings within
the context of the entire database. Specifically,
we employ OpenAI’s gpt-3.5-turbo engine3 to
generate a natural language definition for each
column in every table, considering all its values
and other columns. We then incorporate these
definitions into the input either by appending
them as a block comment or inserting them
within the CREATE query as inline comments.
Furthermore, we suggest augmenting the repre-
sentation of the database structure by providing
an Entity-Relationship summary that outlines the
connections between tables and specifies how
they can be joined. As depicted in Figure 9 of
the Appendix, an Entity-Relationship diagram of
a database is utilized to enumerate all possible
paths between distinct tables. These paths are
subsequently arranged in descending order based
on their respective lengths. The resulting summary
has shown to be useful in our experiments for
test instances where multiple tables need to be
combined. Listing 5 further demonstrates our
augmentations and how we arrange them to
construct the prompt.

2.3 Integrated Strategy for Text-to-SQL
Upon examination, we found that models trained
with ICL exhibit sensitivity to the number of
demonstration examples, resulting in noticeable
variance in performance across models provided

3Public API available at https://openai.com/api/.

14937

https://openai.com/api/


with various numbers of demonstrations. To estab-
lish substantial conclusions when comparing dis-
tinct prompting approaches, we present the mean
and standard deviation for models sharing identi-
cal configurations except for the varying number
of demonstrations. In addition, we employ a ma-
jority vote on these models exhibiting diverse per-
formances. Specifically, we obtain the execution
results of different models’ greedy decoding predic-
tions, eliminate those with execution errors by de-
terministic database management system (DBMS),
and choose the prediction that receives the major-
ity vote. Alternative integration methods, such as
the self-consistency sampling (Wang et al., 2023),
are also available, but we reserve their exploration
for future research. The comprehensive results are
available in Figures 10, 11, 12 of the Appendix for
reader’s perusal.

We propose the following procedure for con-
structing prompts for the Text-to-SQL task. Given
a set A of annotated examples, we first establish
a categorization that divides the pool into disjoint
partitions Aα, Aβ, . . . ,, with each partition contain-
ing examples whose SQL queries share a relatively
similar syntax structure. Next, we apply the k-
Means strategy detailed in Section 2.1 to obtain
diverse demonstration examples Dj for partition
Aj . For each example, the demonstration is con-
structed by transforming the database into multi-
ple CREATE queries and augmenting with schema-
related knowledge. During inference, we employ a
preliminary model to generate a draft SQL query,
which is used to determine the problem category
and thus the corresponding Dj for building the
prompt. We obtain multiple predictions using vari-
ous numbers of shots in Dj and perform majority
voting to arrive at the final prediction. Details of
this approach are shown in Algorithm 2 of the ap-
pendix.

3 Experiments

3.1 Experimental Settings

Dataset We conduct comprehensive experiments
on the following four semantic parsing datasets:

• Spider (Yu et al., 2018) is a cross-domain se-
mantic parsing dataset that contains complex
Text-to-SQL problems. The data originates
from 200 databases covering 138 different do-
mains. We use the 7,000 training data as our
pool of annotated examples.

• Spider-Syn (Gan et al., 2021a) replaced
schema-related words in the questions of Spi-
der examples with manually selected syn-
onyms that reflect real-world question para-
phrases to evaluate the robustness of systems.

• Spider-DK (Gan et al., 2021b) defined five
types of domain knowledge and modified
some Spider examples by adding domain
knowledge to evaluate the cross-domain gen-
eralization capability of a given system.

• Spider-Realistic (Deng et al., 2021) removed
explicit mentions of column names from Spi-
der examples to reflect more realistic text-
table alignment settings, and selected eight ex-
isting Text-to-SQL datasets for cross-domain
evaluation.

Model We evaluate different ICL strategies with
Codex (Chen et al., 2021), a GPT-3 variant that was
finetuned on code data on the web and has demon-
strated state-of-the-art performance as the time of
writing (Ni et al., 2023). Specifically, we use the
code-davinci-002 engine and present the results
of systems with prompts ranging from 1 to 10-shot.
Additionally, we report the few-shot results utiliz-
ing the ChatGPT (gpt-3.5-turbo) model. How-
ever, due to its maximum context length limitation
of 4096, we only obtain results for systems pro-
vided with prompts ranging from 1 to 5-shot.4

Evaluation Metric We use execution accuracy
as the evaluation metric for all experiments, which
measures the percentage of system predictions lead-
ing to the gold execution result.

Baselines We compare the following prompting
strategies for generating SQL queries in few-shot
and zero-shot settings.

Few-shot

• Random sampling (R): Select demonstration ex-
amples randomly from the pool.

• Similarity sampling (S)
• Diversity sampling (D): Select diverse examples

from k-Means clusters of the pool.
• Similarity-Diversity sampling (SD): Select ex-

amples based on Algorithm 1.
• SD + schema augmentation (SA): Enhance in-

structions with schema knowledge (semantic aug-
mentation or structure augmentation).

4Public API available at https://openai.com/api/.

14938

https://openai.com/api/


(a) Few-shot results

(b) Zero-shot results

Figure 1: Few-shot and zero-shot results of Codex for all datasets. In the few-shot setting, error bars indicate
means and standard deviations over performances of systems provided with prompts ranging from 4-shot to 10-shot.
To obtain the error bars for the random sampling approach, we conducted 3 independent runs using different
random seeds. Schema augmentation utilized for the reported results in (a) is structure augmentation - add ontology
summary. In the zero-shot setting, the error bars indicate means and standard deviations over 3 independent runs.
Our results suggest that 1) using similarity and diversity objectives in the sampling process, 2) including schema
representation in instructions, and 3) employing model voting with different shot outcomes both contribute to the
improvement of ICL performance.

• SD + SA + Voting: Integrated strategy described
in Algorithm 2.

Zero-shot

• Baseline - DB as text-seq: Standard prompt for
Text-to-SQL task, where structured knowledge is
linearized as text sequence.

• Baseline - DB as code-seq: Improve instructions
by linearizing structured knowledge source as
multiple SQL CREATE queries.

• Baseline - DB as code-seq + SA: Enhance in-
structions with schema knowledge.

3.2 Main Results

In this section, we present a comprehensive analy-
sis of various prompting strategies, assessing their

efficacy across multiple datasets. The evaluation
of demonstration sampling strategies in a few-
shot setting testing on code-davinci-002 is illus-
trated in Figure 1a, and more few-shot results of
gpt-3.5-turbo are shown in Figure 2. We com-
pared different demonstration selection strategies,
including random selection, k-nearest neighbors
selection (similarity sampling)5, k-means selec-
tion (diversity sampling), and our proposed ap-
proach, which combines both similarity and di-
versity. Moreover, we examined the impact of
augmenting schema representation within the task
instructions and assessed the performance of our

5Due to the deprecation of the Codex API in March 2023,
similarity sampling experiments were only conducted on the
Spider dataset.

14939



integrated strategy. Our findings indicate that em-
ploying similarity and diversity objectives in the
sampling process leads to better performance on
average across all datasets. Furthermore, incorpo-
rating schema representation within the instructions
enhances performance, and the implementation of
voting of models with different shot results in a
marked improvement in overall performance.

Figure 2: Few-shot results of gpt-3.5-turbo for Spi-
der. Error bars indicate means and standard deviations
over performances of systems provided with 1-shot to
5-shot prompts. Schema augmentation utilized for the
reported results is semantic augmentation - add column
summary as block-comment.

The efficacy of schema augmentation is fur-
ther supported by experiments in a zero-shot set-
ting, as illustrated in Figure 1b. We compared
systems using different linearization methods for
prompts: one that transforms the database into
a text sequence, and another that uses multiple
CREATE queries to represent the database. The
latter method shows noticeable improvement in
performance. We also contrasted two separate
techniques for augmenting schema representation:
one that adds semantic information to each col-
umn within each table, and another that incorpo-
rates entity-relationship knowledge into the schema.
The results suggest that structural augmentation
(adding ontology summary) brings a slight greater
improvement in the few-shot setting for Codex
(shown in Figure 5), while semantic augmenta-
tion (adding column summary as block comments)
proves more beneficial in the zero-shot setting for
Codex and also the few-shot setting for ChatGPT
(gpt-3.5-turbo). We hypothesize that this dif-
ference may arise from the less descriptive nature
of structural augmentation, which calls for more

demonstrations in order to effectively understand
and utilize the provided information. In future
study, we will explore better structural schema aug-
mentation that aligns to the zero-shot setting.

4 Analysis

4.1 Prediction-Syntax based Retrieval

The existing method for selecting demonstrations
relies on the semantic representations of the ques-
tion and the database. We propose an alterna-
tive method specifically for code generation tasks,
which focuses on the syntax of the solution code.
We examined syntax coverage and syntax similarity
of the prompts produced with different strategies.
Syntax coverage is computed by counting the occur-
rence of syntactic elements (keywords, operators,
and identifiers), and dividing it by the total number
of all syntactic elements. Syntax similarity, on the
other hand, is measured by the mean Euclidean
distance between the discrete vector representation
of the predicted SQL and vectors that represent
the gold SQLs of the demonstrations selected. As
indicated in Table 1 of the appendix, both of these
metrics contribute to the quality of the examples
selected. Furthermore, a simple summation of the
two measurements suggests a correlation with the
system’s performance, as illustrated in Figure 6 of
the appendix. We argue the efficacy of our strat-
egy through the following rationale: (1) in cases
where the pool of annotated examples is limited
in diversity of the problem structures, certain test
problems may lack similar examples available for
retrieval; and (2) neither the semantic represen-
tation of the question/database nor the distance
metric inherently support encapsulation and com-
parison of different problem structures, whereas
SQL syntax provides direct measurement of the
problem structures. Given these constraints, the
optimal strategy is to select similar examples while
ensuring the coverage of as many syntax demon-
strations as feasible to mitigate potential failures in
similarity-based retrieval.

4.2 Comparative Analysis of Retrieval
Methods

We conducted an examination of various similarity-
based retrieval methods and presented a compar-
ative analysis of their performance in Figure 3.
The primary variable in this investigation was the
representation extracted for each example, with a
focus on extracting and comparing the following

14940



Figure 3: Comparison between various similarity based demonstration selection methods. Q indicates the embedding
model employed to extract representation for the question; D stands for database, and S stands for SQL query.

Figure 4: Comparison between various diversity based
demonstration selection methods.

Figure 5: Comparison between various schema augmen-
tations in few-shot and zero-shot settings.

embedding types: (1) question embeddings gener-
ated by Sentence-BERT (Reimers and Gurevych,
2019)6 , RoBERTa-base (Liu et al., 2020), and Ope-
nAI’s text-embedding-ada-002; (2) combined
question and database embeddings obtained by
(i) employing a single model (i.e., T5-base (Raf-
fel et al., 2020) finetuned on the Spider train-
ing split and text-embedding-ada-002) with the
database linearized as a text sequence or CREATE
queries, and (ii) utilizing separate models, specif-
ically RoBERTa-base for encoding questions and

6HuggingFace model name: all-MiniLM-L6-V2

CodeT5-base (Wang et al., 2021) or CodeBERT-
base (Feng et al., 2020) for encoding databases; (3)
syntactic embeddings of predicted SQL, generated
by either binary coding to indicate the presence
of SQL syntactic elements or by quantifying their
occurrences; and finally, (4) embeddings that en-
code questions, databases and predicted SQL using
text-embedding-ada-002.

The following conclusions can be drawn
about the similarity-based retrieval methods
for Text-to-SQL task: (1) questions alone ef-
fectively represent distinct examples for re-
trieval purposes; (2) RoBERTa-base provides
better embeddings for comparisons relative to
text-embedding-ada-002; (3) it is feasible to
employ models that have not been fine-tuned
on Text-to-SQL examples for similarity-based re-
trieval, while still achieving comparable perfor-
mance to fine-tuned models; (4) the linearization of
databases as SQL queries facilitates the extraction
of enhanced embeddings.

Additionally, we conducted a comparison be-
tween multiple embeddings utilized for diversity-
based demonstration selection, encompassing em-
beddings that encode the semantics of questions,
databases and predicted SQL, as well as embed-
dings that capture the syntactic features of pre-
dicted SQL. As depicted in Figure 4, the syntactic
embeddings of predicted SQL serve as the most
effective basis for contrasting different examples
for diversity-based retrieval purposes.

4.3 Schema Augmentation

Figure 5 presents the outcomes of various schema
augmentations applied to the instruction. It is ob-
served that improvement is not apparent in the few-
shot setting; however, in the zero-shot setting, the

14941



semantic augmentation incorporating descriptions
of all table columns proves to be beneficial.

4.4 Effectiveness Analysis

In order to determine the problem types that ben-
efit most or least from our proposed methods, we
also evaluate the performance of different mod-
els across various problem categories within the
Spider dataset. As indicated in Figure 7 of the
appendix, our similarity-diversity strategy proves
beneficial for most problem types, with the excep-
tion of the medium split, which includes the most
diverse problems. This is the case where similarity-
based retrieval fails and syntax coverage becomes
more crucial. Furthermore, we observe that aug-
menting schema semantics is more effective for
the easy and medium splits (albeit with high vari-
ance), while augmenting schema structure is more
effective for more complex problems. This ob-
vervation leads us to hypothesize that challenging
problems necessitate addressing a higher number
of tables, thus requiring a more comprehensive un-
derstanding of the entire database structure. Lastly,
the integrated approach is effective across all ex-
amples, offering increased benefits especially for
those difficult problems.

4.5 Preliminary Models

To assess the impact of the choice of preliminary
model used to generate the draft SQL on our ap-
proach, we conducted tests involving our methods
for preliminary models with varying performance
levels. Figure 8 of the appendix reveals that the
preliminary models have a relatively minor effect
on the performance of the similarity-diversity or
integrated approaches, exhibiting gradual improve-
ments as better preliminary models are utilized.

5 Related Work

Existing literature indicates the ability of large lan-
guage models to adapt to new tasks at inference
time by learning from a few example demonstra-
tions (Brown et al., 2020; Radford et al., 2019).
This new capability has been referred to as in-
context learning. In this paper, we expand on pre-
vious works that investigate the optimal representa-
tions for prompt inputs.

5.1 Prompt Organization

Prompt organization investigates the task of select-
ing and organizing in-context examples, a critical

aspect of enhancing model performance. Several
studies (Sorensen et al., 2022; Gonen et al., 2022;
Wu et al., 2022; Hu et al., 2022; Lu et al., 2022)
have proposed metrics to measure the suitability of
examples with respect to the target objective and to
determine the optimal ordering of them. Liu et al.
(2022) suggest selecting examples that are seman-
tically similar to the test example by employing
a k-NN approach in the embedding space. Rubin
et al. (2022) train a prompt retriever based on con-
trastive learning, wherein examples are classified as
either positive or negative if they are ranked among
the top-k or bottom-k probabilities of a language
model generating the target output, conditioned on
the retrieved example and the input. Zhang et al.
(2022) suggests to actively select demonstrations
using Q-Learning. Su et al. (2023) introduces the
Vote-k approach to selectively annotate diverse and
representative examples for pool construction, then
retrieve based on the similarity. In contrast, our
approach retrieve a diverse set of examples given a
pre-established pool. As the authors demonstrate
that having a diverse and representative pool is im-
portant for the success of ICL, we posit that a sim-
ilar characteristic is equally important when com-
posing the prompt, as this approach increases the
likelihood of including various syntactical usages
or similar problem structures within the prompt.

5.2 Prompt Formatting

Prompt engineering is concerned with investigat-
ing the impact of prompt structure on downstream
task performance. For tasks that involve multi-step
reasoning and higher complexity, Chain-of-thought
prompting has been developed (Wei et al., 2023;
Kojima et al., 2023). This approach involves lay-
ing out the generation process over multiple steps
and using the model’s own intermediate process as
input. Wang et al. (2023) proposes to sample mul-
tiple different chain-of-thoughts then selects the
most consistent answer through marginalization of
all possible reasoning paths. Press et al. (2023)
suggests that prompting LLMs to ask follow-up
questions is an effective way to construct the chain-
of-thoughts process. Zhou et al. (2023) proposes an
automatic approach to identify the optimal prompt
by searching over a pool of model generated in-
structions, assigning scores to them, and selecting
the prompt with the highest score.

14942



6 Conclusions

In this study, we investigated various prompt de-
sign approaches for semantic parsing tasks in the
Text-to-SQL domain. We proposed an approach
that leverages an example’s SQL syntactic structure
for demonstration examples selection, emphasising
both diversity and similarity as the sampling ob-
jectives. Additionally, We found that LLMs gain
benefits from database-related knowledge augmen-
tations. Future research can build upon our findings
to examine the transferability of our approach to
other domains. Through ongoing improvement of
LLMs’ capabilities in semantic parsing, we aim to
contribute to the development of QA systems that
are more accurate, robust and comprehensible.

Limitations

One of the main limitations of this study is the re-
producibility problem. The experiments presented
in this paper relied on the use of OpenAI APIs,
which were available at the time of our research
but have since been or will be deprecated. This
means that the results of our experiments cannot
be replicated using the same APIs, which hinders
the reproducibility of our findings. To address this
limitation, we will focus on providing experiments
results that are based on open-sourced LLMs (Tou-
vron et al., 2023; Taori et al., 2023; Chiang et al.,
2023) for greater transparency and reproducibility.

Another limitation is that it is not clear how our
approach will benefit LLMs given smaller or more
constrained pools of annotated examples. Although
we postulate that our approach offers the advantage
of providing a prompt with maximal coverage of
similar problem structures when identically struc-
tured problems cannot be found in the pool, we
could not substantiate this due to our limited bud-
get and access to the OpenAI APIs.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337–1350, Online. As-
sociation for Computational Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.

14943

https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
http://arxiv.org/abs/2301.00234


Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505–
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8926–8931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Matt Gardner, Pradeep Dasigi, Srinivasan Iyer, Alane
Suhr, and Luke Zettlemoyer. 2018. Neural semantic
parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics: Tu-
torial Abstracts, pages 17–18, Melbourne, Australia.
Association for Computational Linguistics.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith,
and Luke Zettlemoyer. 2022. Demystifying prompts
in language models via perplexity estimation.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A. Smith, and Mari Ostendorf. 2022. In-
context learning for few-shot dialogue state tracking.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2627–2643, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In AAAI.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. For-
bus, and Ni Lao. 2017. Neural symbolic machines:
Learning semantic parsers on Freebase with weak
supervision. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 23–33, Vancouver,
Canada. Association for Computational Linguistics.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023. A comprehensive evaluation of chatgpt’s zero-
shot text-to-sql capability.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023.
Lever: Learning to verify language-to-code genera-
tion with execution.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

14944

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=yf1icZHC-l9
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/P18-5006
https://doi.org/10.18653/v1/P18-5006
http://arxiv.org/abs/2212.04037
http://arxiv.org/abs/2212.04037
https://aclanthology.org/2022.findings-emnlp.193
https://aclanthology.org/2022.findings-emnlp.193
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2303.13547
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
http://arxiv.org/abs/2302.08468
http://arxiv.org/abs/2302.08468
https://openreview.net/forum?id=PUwbwZJz9dO
https://openreview.net/forum?id=PUwbwZJz9dO
https://openreview.net/forum?id=PUwbwZJz9dO
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410


Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michi-
hiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure
Leskovec, and Denny Zhou. 2021. Lego: Latent
execution-guided reasoning for multi-hop question
answering on knowledge graphs. In Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 8959–8970. PMLR.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Taylor Sorensen, Joshua Robinson, Christopher Ryt-
ting, Alexander Shaw, Kyle Rogers, Alexia Delorey,
Mahmoud Khalil, Nancy Fulda, and David Wingate.
2022. An information-theoretic approach to prompt
engineering without ground truth labels. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 819–862, Dublin, Ireland. Association
for Computational Linguistics.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023.
Selective annotation makes language models better
few-shot learners. In The Eleventh International Con-
ference on Learning Representations.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,

and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2022. Self-adaptive in-context learning.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 602–631,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with Freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 956–966,
Baltimore, Maryland. Association for Computational
Linguistics.

Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang,
Hyeongu Yun, Yireun Kim, and Minjoon Seo. 2023.
In-context instruction learning.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association

14945

https://proceedings.mlr.press/v139/ren21a.html
https://proceedings.mlr.press/v139/ren21a.html
https://proceedings.mlr.press/v139/ren21a.html
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2022.acl-long.60
https://doi.org/10.18653/v1/2022.acl-long.60
https://openreview.net/forum?id=qY1hlv7gwg
https://openreview.net/forum?id=qY1hlv7gwg
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2212.10375
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
https://doi.org/10.3115/v1/P14-1090
http://arxiv.org/abs/2302.14691
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745


for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

14946

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/2022.emnlp-main.622
https://aclanthology.org/2022.emnlp-main.622
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-


Appendix

Algorithm 1: Similarity-Diversity Demonstration Selection
Input: Set of annotated examples A, test examples T , # demonstrations k, categorization

{α, β, ...}
Result: Set of prompts P , where Pi is the prompt for test example Ti

/* Split A into disjoint partitions Aα,β,... */
for Ai in annotated set A do

ci = get_category(Ai.SQL);
Aci .append(Ai);
Vi = get_syntax_vectors(Ai.SQL);

end
/* Prepare demonstrations Dj for each partition Aj */

for partition Aj in Aα,β,... do
M = k-Means_clustering(V j , k);
/* V j is set of discrete vectors for examples in Aj, M has k centroids

µ1, ..., µk */
for µi in M do

Dj .append(get_nearest(A,µi));
end

end
/* Build test prompts */
for Ti in test set T do

Ti.SQL = initial_predictor(Ti);
ci = get_category(Ti.SQL);
Pi = build_prompt(Dci , Ti);

end
return P

14947



Algorithm 2: Integrated Strategy
Input: Set of annotated examples A, test examples T , # demonstrations k, categorization

{α, β, ...}, and from Algorithm 1: disjoint partitions {Aα, Aβ, ...} and corresponding
demonstrations {Dα, Dβ, ...}

Result: Set of SQL predictions SP, where SPi is the final prediction for test example Ti

for Ti in test set T do
Ti.SQL = initial_predictor(Ti);
ci = get_category(Ti.SQL);
for n = 4 to k do

Pn
i = build_prompt(Dci [: n], Ti);

Pn∗
i = augment_schema(Pn

i );
SPn

i = Model(Pn∗
i );

ERn
i = DBMS(SPn

i );
end
ER∗

i = Remove_Exec_Errors(ERi);
SPi = Majority_Vote(ER∗

i );
end
return SP

Coverage Similarity Execution Accuracy

Random 0.38 0.24 76.03
Similarity 0.35 0.30 78.33
Diversity 0.43 0.23 78.64
Similarity-Diversity 0.50 0.26 80.32

Table 1: Average syntax coverage and similarity measures of the prompt for different demonstration selection
strategies and the corresponding execution accuracies.

14948



Figure 6: Correlation between syntax coverage and similarity measures of prompts and execution accuracy.

Figure 7: Effects of various prompting strategies on Text-to-SQL problems of different difficulty levels.

Figure 8: Effects of preliminary model on proposed strategies.

14949



1 Given the following database schema:
2 gymnast : gymnast_id , floor_exercise_points , pommel_horse_points , rings_points ,

vault_points , parallel_bars_points , horizontal_bar_points , total_points |
people : people_id , name , age , height , hometown

3

4 Answer the following: Return the total points of the gymnast with the lowest
age.

5

6 select t1.total_points from gymnast as t1 join people as t2 on t1.gymnast_id =
t2.people_id order by t2.age asc limit 1

Listing 1: Baseline prompt with text representation of the database.

1 /* Given the following database schema: */
2 CREATE TABLE IF NOT EXISTS "gymnast" (
3 "Gymnast_ID" int ,
4 "Floor_Exercise_Points" real ,
5 "Pommel_Horse_Points" real ,
6 "Rings_Points" real ,
7 "Vault_Points" real ,
8 "Parallel_Bars_Points" real ,
9 "Horizontal_Bar_Points" real ,

10 "Total_Points" real ,
11 PRIMARY KEY ("Gymnast_ID"),
12 FOREIGN KEY ("Gymnast_ID") REFERENCES "people"("People_ID")
13 );
14 CREATE TABLE IF NOT EXISTS "people" (
15 "People_ID" int ,
16 "Name" text ,
17 "Age" real ,
18 "Height" real ,
19 "Hometown" text ,
20 PRIMARY KEY ("People_ID")
21 );
22

23 /* Answer the following: Return the total points of the gymnast with the lowest
age. */

24

25 select t1.total_points from gymnast as t1 join people as t2 on t1.gymnast_id =
t2.people_id order by t2.age asc limit 1

Listing 2: Baseline prompt with code representation of the database.

14950



1 /* Given the following database schema: */
2 CREATE TABLE IF NOT EXISTS "department" (
3 "Department_ID" int , -- a unique identifier for a department
4 "Name" text , -- the name of the department
5 "Creation" text , -- the date the department was created
6 "Ranking" int , -- the ranking of the department within the organization
7 "Budget_in_Billions" real , -- the department 's budget in billions of

dollars
8 "Num_Employees" real , -- the number of employees in the department
9 PRIMARY KEY ("Department_ID")

10 );
11 CREATE TABLE IF NOT EXISTS "head" (
12 "head_ID" int , -- a unique identifier for the head of a department
13 "name" text , -- the name of the head of the department
14 "born_state" text , -- the state where the head of the department was born
15 "age" real , -- the age of the head of the department
16 PRIMARY KEY ("head_ID")
17 );
18 CREATE TABLE IF NOT EXISTS "management" (
19 "department_ID" int , -- the unique identifier for the department being

managed
20 "head_ID" int , -- the unique identifier for the head of the department
21 "temporary_acting" text , -- whether the head of the department is serving

in a temporary or acting capacity
22 PRIMARY KEY ("Department_ID", "head_ID")
23 FOREIGN KEY ("Department_ID") REFERENCES `department `("Department_ID")
24 FOREIGN KEY ("head_ID") REFERENCES `head `("head_ID")
25 );
26

27 /* Answer the following: What are the distinct creation years of the
departments managed by a secretary born in state 'Alabama '? */

28

29 select distinct t1.creation from department as t1 join management as t2 on t1.
department_id = t2.department_id join head as t3 on t2.head_id = t3.head_id
where t3.born_state = 'Alabama '

Listing 3: Prompt with semantic augmentation of the schema as inline comment.

14951



1 /* Given the following database schema: */
2 CREATE TABLE IF NOT EXISTS "department" (
3 "Department_ID" int ,
4 "Name" text ,
5 "Creation" text ,
6 "Ranking" int ,
7 "Budget_in_Billions" real ,
8 "Num_Employees" real ,
9 PRIMARY KEY ("Department_ID")

10 );
11 CREATE TABLE IF NOT EXISTS "head" (
12 "head_ID" int ,
13 "name" text ,
14 "born_state" text ,
15 "age" real ,
16 PRIMARY KEY ("head_ID")
17 );
18 CREATE TABLE IF NOT EXISTS "management" (
19 "department_ID" int ,
20 "head_ID" int ,
21 "temporary_acting" text ,
22 PRIMARY KEY ("Department_ID","head_ID"),
23 FOREIGN KEY ("Department_ID") REFERENCES `department `("Department_ID"),
24 FOREIGN KEY ("head_ID") REFERENCES `head `("head_ID")
25 );
26

27 /* Table column descriptions:
28 {'department ': {'Department_ID ': 'a unique identifier for a department ', 'Name

': 'the name of the department ', 'Creation ': 'the date the department was
created ', 'Ranking ': 'the ranking of the department within the organization
', 'Budget_in_Billions ': "the department 's budget in billions of dollars",
'Num_Employees ': 'the number of employees in the department '}, 'head ': {'
head_ID ': 'a unique identifier for the head of a department ', 'name ': 'the
name of the head of the department ', 'born_state ': 'the state where the
head of the department was born ', 'age ': 'the age of the head of the
department '}, 'management ': {'department_ID ': 'the unique identifier for
the department being managed ', 'head_ID ': 'the unique identifier for the
head of the department ', 'temporary_acting ': 'whether the head of the
department is serving in a temporary or acting capacity '}} */

29 /* Answer the following: What are the distinct creation years of the
departments managed by a secretary born in state 'Alabama '? */

30

31 select distinct t1.creation from department as t1 join management as t2 on t1.
department_id = t2.department_id join head as t3 on t2.head_id = t3.head_id
where t3.born_state = 'Alabama '

Listing 4: Prompt with semantic augmentation of the schema as block comment.

14952



continents.contid -> countries.continent, countries.countryid -> 
car_makers.country, car_makers.id -> model_list.maker, model_list.model -> 
car_names.model, car_names.makeid -> cars_data.id

employee.emp_num -> department.emp_num, department.dept_code -> course.dept_code, 
course.crs_code -> class.crs_code, class.class_code -> enroll.class_code
department.dept_code -> student.dept_code, student.stu_num -> enroll.stu_num
employee.emp_num -> class.prof_num
employee.emp_num -> professor.emp_num
department.dept_code -> professor.dept_code

Figure 9: Examples of schema structure representation construction.

14953



1 /* Given the following database schema: */
2 CREATE TABLE IF NOT EXISTS "continents" (
3 "ContId" INTEGER PRIMARY KEY ,
4 "Continent" TEXT
5 );
6 CREATE TABLE IF NOT EXISTS "countries" (
7 "CountryId" INTEGER PRIMARY KEY ,
8 "CountryName" TEXT ,
9 "Continent" INTEGER ,

10 FOREIGN KEY (Continent) REFERENCES continents(ContId)
11 );
12 CREATE TABLE IF NOT EXISTS "car_makers" (
13 "Id" INTEGER PRIMARY KEY ,
14 "Maker" TEXT ,
15 "FullName" TEXT ,
16 "Country" TEXT ,
17 FOREIGN KEY (Country) REFERENCES countries(CountryId)
18 );
19 CREATE TABLE IF NOT EXISTS "model_list" (
20 "ModelId" INTEGER PRIMARY KEY ,
21 "Maker" INTEGER ,
22 "Model" TEXT UNIQUE ,
23 FOREIGN KEY (Maker) REFERENCES car_makers (Id)
24

25 );
26 CREATE TABLE IF NOT EXISTS "car_names" (
27 "MakeId" INTEGER PRIMARY KEY ,
28 "Model" TEXT ,
29 "Make" TEXT ,
30 FOREIGN KEY (Model) REFERENCES model_list (Model)
31 );
32 CREATE TABLE IF NOT EXISTS "cars_data" (
33 "Id" INTEGER PRIMARY KEY ,
34 "MPG" TEXT ,
35 "Cylinders" INTEGER ,
36 "Edispl" REAL ,
37 "Horsepower" TEXT ,
38 "Weight" INTEGER ,
39 "Accelerate" REAL ,
40 "Year" INTEGER ,
41 FOREIGN KEY (Id) REFERENCES car_names (MakeId)
42 );
43

44 /*
45 Database ontology:
46 continents.contid -> countries.continent , countries.countryid -> car_makers.

country , car_makers.id -> model_list.maker , model_list.model -> car_names.
model , car_names.makeid -> cars_data.id

47 */
48 /* Answer the following: How many continents are there? */
49

50 select count (*) from continents;

Listing 5: Prompt with structure augmentation of the schema.

14954



Figure 10: Few-shot results for comparing different sampling strategies with different number of demonstra-
tion examples selected for the prompt.

Figure 11: Few-shot results for comparing different schema representation augmentation methods with
different number of demonstration examples selected for the prompt.

14955



Figure 12: Few-shot results for comparing different sampling strategies on Text-to-SQL problems of different
difficulty levels, with different number of demonstration examples selected for the prompt.

14956


