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Abstract

Many-to-many multimodal summarization
(M3S) task aims to generate summaries in any
language with document inputs in any lan-
guage and the corresponding image sequence,
which essentially comprises multimodal mono-
lingual summarization (MMS) and multimodal
cross-lingual summarization (MXLS) tasks. Al-
though much work has been devoted to either
MMS or MXLS and has obtained increasing
attention in recent years, little research pays
attention to the M3S task. Besides, existing
studies mainly focus on 1) utilizing MMS to
enhance MXLS via knowledge distillation with-
out considering the performance of MMS or 2)
improving MMS models by filtering summary-
unrelated visual features with implicit learn-
ing or explicitly complex training objectives.
In this paper, we first introduce a general and
practical task, i.e., M3S. Further, we propose a
dual knowledge distillation and target-oriented
vision modeling framework for the M3S task.
Specifically, the dual knowledge distillation
method guarantees that the knowledge of MMS
and MXLS can be transferred to each other and
thus mutually prompt both of them. To offer
target-oriented visual features, a simple yet ef-
fective target-oriented contrastive objective is
designed and responsible for discarding need-
less visual information. Extensive experiments
on the many-to-many setting show the effective-
ness of the proposed approach. Additionally,
we will contribute a many-to-many multimodal
summarization (M3Sum) dataset.1

1 Introduction

Given a document input in the source language
(e.g., English) and its corresponding image se-
quence, multimodal monolingual summarization
(MMS) aims to generate a summary in the same

∗Work was done when Liang and Wang was interning at
Pattern Recognition Center, WeChat AI, Tencent Inc, China.

† Jinan Xu is the corresponding author.
1The code and data are publicly available at https://

github.com/XL2248/D2TV.

Figure 1: An example of our M3Sum dataset. Inputs:
an article and corresponding image sequence; Output:
summaries in different languages. MMS: the summary
in the same language as the input article; MXLS: the
summary in a different language from the input article.
The M3S setting covers both MMS and MXLS.

language (i.e., English) while the goal of multi-
modal cross-lingual summarization (MXLS) is to
produce a summary in a different language (e.g.,
Chinese). With the rapid increase of multimedia
data, the MMS (Tjondronegoro et al., 2011; Evan-
gelopoulos et al., 2013; Erol et al., 2003; Li et al.,
2017, 2018a; Sanabria et al., 2018; Zhu et al., 2018;
Chen and Zhuge, 2018; Li et al., 2020a; Fu et al.,
2021; Zhao et al., 2022) and MXLS (Liu et al.,
2022) tasks have attracted much attention in the
research community because both tasks can help
users quickly master the core idea from the cum-
bersome multimodal data. Essentially, the many-to-
many multimodal summarization (M3S) consists of
MMS and MXLS tasks, which generate summaries
in any language given the multimodal inputs (in
any language), as Fig. 1 shows. Intuitively, the
many-to-many setup should be more general and
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practical for its application in the multilingual and
multimodal world (Wang et al., 2023b).

In the literature, although plenty of studies have
been carried out on MMS or MXLS, there is only
one study that involves both of them, i.e., Liu
et al. (2022) devise a triple-stage training frame-
work and distill the knowledge from MMS to en-
hance MXLS while ignoring the performance of
MMS. Despite their effectiveness on MXLS, to
our knowledge, little research attention has been
paid to simultaneously supporting both MMS and
MXLS tasks and prompting both of them. Besides,
the visual features generally include noise which
is summary-unrelated. Thus the remaining work
mainly focuses on improving MMS models by fil-
tering these noises with (a) implicit learning or (b)
complex training objectives. For (a), researchers
design various fusion methods to effectively model
the interactions between textual articles and visual
features (Liu et al., 2020; Yu et al., 2021; Palaskar
et al., 2019; Zhang et al., 2021a). For (b), to ex-
plicitly filter needless visual information, Liang
et al. (2022b) present two well-designed auxiliary
tasks, i.e., vision to summary and masked image
modeling. Albeit effective, implicit learning via the
MMS objective may limit the potential of visual
features, and explicit training objectives are com-
plex and time-consuming to be trained and applied
in the real world.

To address these issues, in this paper, we first
introduce a more general task, i.e., M3S, which
supports both MMS and MXLS tasks. Fur-
ther, we propose a Dual knowledge Distillation
and Target-oriented Vision enhanced framework,
named D2TV, for the new task. Specifically, the
dual knowledge distillation approach ensures that
the knowledge from MMS can be transferred to
MXLS and vice versa, and thus mutually improve
both tasks. Furthermore, to discard the summary-
unrelated visual information, a target-oriented con-
trastive objective is devised to directly optimize
the visual features. In this way, the model is en-
hanced to explicitly exploit the summary-oriented
visual features, thereby yielding more accurate
summaries.

To validate the D2TV framework, we pro-
vide a Many-to-Many Multimodal Summarization
(M3Sum) benchmark dataset by reorganizing the
cross-lingual summarization dataset (Bhattacharjee
et al., 2022) and MM-Sum dataset (Liang et al.,
2022b). The M3Sum covers 44 languages and thus

involves 44*44 language directions. To efficiently
evaluate our approach, we randomly select 4 lan-
guages (i.e., English, Indonesian, Russian, and
Urdu2), which consist of 4*4 language directions.
We implement our approach grounding on two gen-
erative pre-trained language models, i.e., mT5 (Xue
et al., 2021) and mBART-50 (Tang et al., 2021).
Extensive experiments on both backbones show
that our model significantly outperforms related
methods in terms of ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2020) scores, demon-
strating its effectiveness. The human evaluation
further suggests the superiority of our approach. In
summary, our main contributions are:

• To the best of our knowledge, we are the first
that introduces the general many-to-many multi-
modal summarization (M3S) task and contributes
a corresponding benchmark dataset.

• We propose a dual knowledge distillation and
target-oriented vision modeling framework for
the M3S task.

• Experiments on M3Sum benchmark show that our
model builds new state-of-the-art performance,
showing the effectiveness of the proposed ap-
proach.

2 Background

2.1 Problem Formulation
Given an input article XL1={xL1

k }Mk=1 in lan-
guage L1 and its corresponding visual features
V={vij}i≤n,j≤m

i=1,j=1 , where xL1
k denotes the k-th to-

ken, and M is the number of tokens in the arti-
cle, and vij represents the detected j-th object of
the i-th image (n, m is the number of images and
detected objects in each image, respectively), the
many-to-many multimodal summarization task is
defined as:

p(YL2 |XL1 ,V) =
N∏

t=1

p(yL2
t |XL1 ,V, yL2

<t),

where yL2
<t indicates the tokens before the t-th time

step of the summary YL2={yL2
t }Nt=1 in language

L2 and N is the number of tokens in the summary.
The L1 and L2 can be any language.

2.2 The MMS Model
Following Yu et al. (2021); Liang et al. (2022b), the
MMS model is an extension of the pre-trained lan-
guage model (e.g., mT5 (Xue et al., 2021)) based

2Urdu is the low-resource language.
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on Transformer architecture (Vaswani et al., 2017).
As shown in the left part of Fig. 2, it includes
four modules: textual encoder, visual encoder, text-
vision fusion, and decoder.

Textual Encoder. The textual encoder consists
of Ne stacked layers, where each layer consists
of two sub-layers, a multihead self-attention sub-
layer (SelfAttn) and a position-wise feed-forward
network (FFN) sub-layer:

Sℓ
T = SelfAttn(Hℓ−1

T ) +Hℓ−1
T , Sℓ

T ∈ RM×d,

Hℓ
T = FFN(Sℓ

T ) + Sℓ
T , H

ℓ
T ∈ RM×d,

where Hℓ−1
T and Hℓ

T denote the inputs and outputs
of the ℓ-th encoder layer, respectively, and H0

T is
initialized as the embedding of input tokens XL1

and d is the hidden dimension.

Visual Encoder. Following Yu et al. (2021); Liang
et al. (2021, 2022c,a); Zhang et al. (2021a,b), the
visual encoder is also the Transformer (Vaswani
et al., 2017) encoder with Nv stacked layers. The
difference is the visual inputs. Generally, there is
an image sequence to be extracted by the Faster
R-CNNs (Ren et al., 2015) pre-trained on Vi-
sual Genome (Krishna et al., 2017). Specifically,
for the i-th input image, we obtain a set of de-
tected objects from Faster R-CNNs, i.e., Ii =
{oi,1,oi,2,oi,3, ...,oi,m}, where m is the number
of extracted objects and oi,∗ ∈ Rdv . Each ob-
ject is captured by a dense feature representation,
which can be mapped back to a bounding box
/ region (i.e., Region-of-Interest (RoI)). Finally,
the image sequence is converted to visual features
I={oij}i≤n,j≤m

i=1,j=1 . Following Cho et al. (2021), the
RoI bounding box coordinates Ebox

ij , image id em-
bedding Eimg

i , and region id embedding Ereg
j are

added on the visual features to keep the order infor-
mation of the image sequence:

vij = oij +Ebox
ij +Eimg

i +Ereg
j ; i ≤ n, j ≤ m.

Then, they are fed into the visual encoder for better
modeling the intramodal dynamics and enhancing
the vision-specific order information.

Sℓ
V = SelfAttn(Hℓ−1

V ) +Hℓ−1
V , Sℓ

V ∈ R|V|×dv ,

Hℓ
V = FFN(Sℓ

V ) + Sℓ
V , H

ℓ
V ∈ R|V|×dv ,

where Hℓ−1
V and Hℓ

V denote the inputs and outputs
of the ℓ-th encoder layer, respectively, and H0

V is
initialized as the Z={vij}i≤n,j≤m

i=1,j=1 , and dv is the
hidden dimension.

Text-Vision Fusion. Following Yu et al. (2021),
the visual features are firstly injected by cross-

modal multi-head attention (CrossMAttn):

M = CrossMAttn(Q,K,V), M ∈ RM×dc ,

where Q are the projected textual features Q =
HNe

T Wq, K and V are the projected visual features
with different weights, i.e., K = HNv

V Wk, V =

HNv
V Wv, and Q ∈ RM×dc , K,V ∈ R|V|×dc , and

dc is the common hidden dimension.

Secondly, a forget gate G is used to filter redun-
dant and noisy information from the visual features:

G = Sigmoid(Concat(HNe
T ,M)Wg + bg),

ZV = G⊗M.

Finally, the vision-guided output ZT+V is con-
catenated by ZV and textual features HNe

T , and
then linearly project it to the original dimension d:

ZT+V = Concat(HNe
T ,ZV )Wz + bz,

where Concat is the concatenation operation and
W∗ and b∗ are trainable weights.

Decoder. The decoder follows a similar architec-
ture but each of Nd decoder layers has an additional
multi-head cross-attention (CrossAttn) sub-layer:

Sℓ
dec = SelfAttn(Hℓ−1

dec ) +Hℓ−1
dec , S

ℓ−1
dec ∈ RN×d,

Cℓ
dec = CrossAttn(Sℓ

dec,ZT+V ) + Sℓ
dec,

Hℓ
dec = FFN(Cℓ

dec) +Cℓ
dec, C

ℓ
dec ∈ RN×d,

(1)

where Hℓ
dec ∈ RN×d denotes the state of the ℓ-th

decoder layer. Then, at each decoding time step t,
the top-layer (Nd-th) decoder hidden state ZNd

dec,t is
fed into the softmax layer to produce the probability
distribution of the next target token as:

p(yt|XL1 ,O, y<t) = Softmax(WoZ
Nd
dec,t + bo),

where Wo and bo are trainable weights.

Finally, the loss function is written as:

LL1,L1

MMS = −
N∑

t=1

log(p(yL1
t |yL1

<t ,XL1 ,V)). (2)

3 D2TV Training Framework

Based on the MMS model described in § 2.2, we
firstly introduce the proposed dual knowledge dis-
tillation (DKD) method in § 3.1, which improves
both MMS and MXLS tasks. Further, we present a
simple yet effective target-oriented contrastive ob-
jective to filter needless visual information in § 3.2.
Finally, we describe the training and inference
in § 3.3.

14912



Figure 2: The overview of our model architecture. The left part is a general MMS model, which is enhanced by
DKD and TCO. As shown in the right part, the (a) dual knowledge distillation (DKD) and (b) target-oriented
contrastive objective (TCO), are proposed to improve the M3S model performance.

3.1 Dual Knowledge Distillation

As shown in the right part of Figure 2 (a), our
framework involves training both MXLS and MMS
models. Essentially, the MXLS model needs to
simultaneously conduct machine translation and
summarization (Liang et al., 2022d; Wang et al.,
2022a,b) while the MMS model only conducts
summarization. Obviously, it is harder to train
an MXLS model than to learn an MMS model
and that is why researchers (Nguyen and Luu,
2022; Liu et al., 2022) take the MMS model as
the teacher to help the MXLS student model (i.e.,
teacher→student distillation). However, when the
MXLS model achieves a level of multilingual and
cross-lingual ability, the MXLS model can better
transfer and share task knowledge among different
languages. Therefore, the MXLS model, in turn,
can guide the MMS model to conduct summariza-
tion in diverse languages (e.g., English→English,
Indonesian→Indonesian, Russian→Russian, and
Urdu→Urdu), especially for low-resource ones
(i.e., student→teacher distillation). That is why
we propose DKD to mutually enhance their perfor-
mance.
Teacher→Student. Specifically, for training
the student model, given an input XL2 =
{xL2

1 , xL2
2 , . . . , xL2

M1
} in language L2 and corre-

sponding visual features V , the student model is
to generate the cross-lingual summary YL1 =
{yL1

1 , yL1
2 , . . . , yL1

N } where L2 ̸= L1. Then, we
train the student model with two objectives as fol-
lows:

LL2,L1

student = LL2,L1

MXLS + αLT(L1,L1)→S(L2,L1)
KD , (3)

where LL2,L1

MXLS denotes by maximizing the likeli-
hood of the ground-truth tokens which takes the

cross-entropy form:

LL2,L1

MXLS = −
N∑

t=1

log(p(yL1
t |yL1

<t ,XL2 ,V), (4)

and α is the trade-off factor and LT(L1,L1)→S(L2,L1)
KD

represents KD loss to penalize the large distance of
two hidden states of two summaries generated by
the student and teacher models:

LT(L1,L1)→S(L2,L1)
KD = dist(H

Nd,T(L1,L1)
dec ,H

Nd,S(L2,L1)
dec ),

(5)
where dist(·, ·) is the distance function to evaluate
the difference between two representations (e.g.,
KL and cosine similarity), and H

Nd,T(L1,L1)
dec =

{hT
1 ,h

T
2 , . . . ,h

T
N} denote the contextualized rep-

resentations produced by the decoder of the teacher
model, and H

Nd,S(L2,L1)
dec = {hS

1 ,h
S
2 , . . . ,h

S
N} de-

note the representations from the decoder of the
student model.
Student→Teacher. In particular, given the in-
put document XL1 = {xL1

1 , xL1
2 , . . . , xL1

M2
} in lan-

guage L1 and corresponding visual features V , the
teacher model aims to generate its summary YL1

in the same language. We update the parameters of
the teacher model with the following objective:

LL1,L1

teacher = LL1,L1

MMS + (1− α)LS(L2,L1)→T(L1,L1)
KD ,

(6)
where LS(L2,L1)→T(L1,L1)

KD denotes the inverse KD
loss:

LS(L2,L1)→T(L1,L1)
KD = dist(H

Nd,S(L2,L1)
dec ,H

Nd,T(L1,L1)
dec ).

(7)
Finally, to flexibly distill the knowledge in Eq. 3

and Eq. 6, we apply an annealing strategy to dy-
namically adjust the balancing factor α:

α = max(0.5, 1− t1/T1), (8)
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where t1 is the training step ranging from 0 to the
max training step T and T1 is a hyperparameter. In
this manner, the teacher model dominantly guides
the student model in the first T1/2 training steps
and the student model gradually distills the knowl-
edge to the teacher. After training step T1, both
models begin to equally distill their knowledge to
each other.

3.2 Target-oriented Contrastive Objective

The M3S task requires a model to have the
ability to understand and generate in multiple
languages. However, there are some languages
that are low-resource and lack enough data to
train a good summarizer. Therefore, we aim
to take visual features as the bridge between
languages and hope that the visual features can
be summary-oriented i.e., discarding the noise
that not appeared in the summary. To this end,
we elaborately design an explicit target-oriented
contrastive objective. Particularly, we push
the visual feature Vi close to its corresponding
summary YL1

i and push apart irrelevant pairs, e.g.,
(Vi, YL1

j ) where i ̸= j. Therefore, we treat the
paired (Vi, YL1

i ) as the positive sample and treat
the pair (Vi, YL1

j ) as the negative samples where
i ̸= j. To obtain the representation of summary
and image sequence, we apply mean-pooling
with mask operation over the summary output
HNe,L1

T,sum of the Ne-th encoder layer and visual
output HNv

V of the Nv-th encoder layer, respec-
tively. That is, hL1

sum= 1
N

∑N
k=1(M

sum
k hNe,L1

sum,k),
hL1
sum ∈ Rd, where Msum ∈ RN denotes the mask

matrix, whose value is either 1 or 0 indicating
whether the token is padded. Similarly, we
obtain the representation of image sequence,
i.e., hvis= 1

m∗n
∑n

i=1

∑m
j=1(M

vis
i,j MLP(hNv

i,j )),
hvis ∈ Rd, where Mvis ∈ Rn×m denotes the
mask matrix and MLP is a fully-connected layer.
Finally, the target-oriented contrastive training
objective is defined by (B is mini-batch size):

LL1
TCO = − log

esim(hvis
i , hL1

sum,i)/τ

∑B
b=1 e

sim(hvis
i ,hL1

sum,b)/τ
, (9)

where sim(·, ·) is the cosine similarity and τ de-
notes a temperature hyperparameter.

3.3 Training and Inference
At training, we train our model with the following
objective:

J =

K∑

i=1

K∑

j=1,j ̸=i

(LLj ,Li

student + LLi,Li

teacher + βLLi
TCO),

(10)
where K is the number of languages and β is

balancing hyper-parameter.
Note that the MMS model and the MXLS model

are shared and thus the final model can conduct
summarization in any language. During inference,
the training objectives are not involved and only
the model is used to generate summaries.

4 Experiments

4.1 M3Sum Dataset
There is no many-to-many multimodal summariza-
tion benchmark dataset until now. We construct one
as follows. Based on the CrossSum dataset (Bhat-
tacharjee et al., 2022) and MM-Sum dataset (Liang
et al., 2022b), we construct a Many-to-Many
Multimodal Summarization (M3Sum) dataset. The
original CrossSum dataset is crawled from the
BBC website3 and its quality has been verified and
ensured reliability by Bhattacharjee et al. (2022).
However, the lack of associated image sequence
in CrossSum, makes it impossible to directly con-
duct research on MMS and MXLS. The original
MM-Sum dataset is also crawled from the BBC
website, which includes multilingual multimodal
summarization. But it cannot conduct cross-lingual
summarization due to the lacking of cross-lingual
alignment. Therefore, we reorganize both datasets
and conduct cross-lingual alignment through the
same url in each dataset.

According to the dataset size of each language,
we follow CrossSum (Bhattacharjee et al., 2022)
and utilize about 80% training:10% validation:10%
test splitting. Besides, in CrossSum, the number
of languages is 44 and thus there are 44*44 lan-
guage directions. Tab. 4 of Appendix A shows the
detailed statistic of our M3Sum and please refer to it
for details.

4.2 Setup and Metrics
Implementation Details. For efficiency, we ran-
domly select 4 languages (i.e., English, Indonesian,
Russian, and Urdu), which totally cover 16 lan-
guage directions. Please refer to Appendix B for

3https://www.bbc.com/
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Src
Trg

Models English Indonesian Russian Urdu Avg.

English →

MMS 36.16 / 13.08 / 27.67 / 70.57 6.87 / 1.94 / 6.34 / 63.39 1.23 / 0.20 / 1.21 / 59.60 0.14 / 0.00 / 0.14 / 55.44 11.09 / 3.80 / 8.84 / 62.25
MXLS 6.94 / 2.35 / 6.03 / 61.82 27.23 / 9.32 / 22.13 / 68.40 22.52 / 7.88 / 18.07 / 64.84 32.27 / 11.17 / 25.15 / 68.29 22.24 / 7.68 / 17.84 / 65.83

MMS+MXLS 35.80 / 13.45 / 27.93 / 70.64 27.18 / 9.20 / 22.04 / 68.78 23.88 / 8.03 / 19.30 / 65.57 28.59 / 8.94 / 22.95 / 66.79 28.86 / 9.90 / 23.07 / 67.94
Vanilla-KD 34.60 / 12.70 / 26.86 / 70.07 27.75 / 9.71 / 22.63 / 68.93 24.36 / 8.00 / 19.41 / 65.42 31.53 / 10.28 / 24.83 / 67.76 29.56 / 10.17 / 23.43 / 68.04

D2TV (Ours) 36.12 / 13.21 / 27.99 / 70.64 28.87 / 10.26 / 23.77 / 69.31 25.53 / 8.69 / 20.72 / 66.01 32.56 / 10.73 / 25.71 / 68.39 30.77 / 10.72 / 24.53 / 68.83

Indonesian →

MMS 7.28 / 2.03 / 6.73 / 63.59 34.10 / 13.92 / 27.92 / 71.14 1.19 / 0.19 / 1.16 / 60.40 0.13 / 0.01 / 0.13 / 56.42 10.67 / 4.03 / 8.98 / 62.88
MXLS 32.43 / 11.31 / 25.09 / 69.13 5.39 / 1.59 / 4.88 / 61.82 21.65 / 7.80 / 17.62 / 65.09 31.85 / 11.00 / 25.39 / 68.53 22.83 / 7.92 / 18.24 / 66.14

MMS+MXLS 32.59 / 11.67 / 25.42 / 69.53 34.43 / 14.56 / 28.43 / 71.30 24.38 / 8.70 / 20.01 / 66.18 30.65 / 10.30 / 24.95 / 67.90 30.51 / 11.31 / 24.70 / 68.72
Vanilla-KD 32.88 / 11.56 / 25.45 / 69.46 32.67 / 13.01 / 26.71 / 70.68 25.50 / 8.97 / 20.65 / 66.30 32.48 / 11.31 / 25.88 / 68.79 30.88 / 11.21 / 24.67 / 68.80

D2TV (Ours) 34.54 / 12.10 / 26.50 / 69.73 33.94 / 14.08 / 28.05 / 71.19 26.40 / 9.27 / 21.35 / 66.56 33.45 / 11.38 / 26.60 / 68.89 32.08 / 11.71 / 25.63 / 69.09

Russian →

MMS 1.24 / 0.22 / 1.23 / 60.20 1.23 / 0.22 / 1.19 / 60.86 30.30 / 11.82 / 24.25 / 68.16 0.11 / 0.00 / 0.11 / 56.10 8.22 / 3.02 / 6.69 / 61.33
MXLS 29.47 / 9.86 / 22.82 / 68.10 25.78 / 9.06 / 21.01 / 68.20 2.68 / 0.90 / 2.41 / 59.02 31.06 / 10.64 / 25.05 / 68.08 22.24 / 7.61 / 17.82 / 65.85

MMS+MXLS 30.79 / 9.82 / 24.02 / 68.74 27.37 / 9.84 / 22.70 / 69.13 29.67 / 11.67 / 24.33 / 68.04 30.53 / 10.04 / 24.92 / 67.95 29.59 / 10.37 / 24.09 / 68.50
Vanilla-KD 31.18 / 10.64 / 24.26 / 68.70 26.50 / 9.60 / 21.91 / 68.73 28.32 / 10.93 / 23.00 / 67.37 31.38 / 10.76 / 25.25 / 68.33 29.34 / 10.48 / 23.60 / 68.28

D2TV (Ours) 32.87 / 11.06 / 25.59 / 69.14 29.03 / 10.59 / 23.64 / 69.59 29.90 / 11.44 / 24.75 / 68.20 33.29 / 11.88 / 26.96 / 69.10 31.27 / 11.24 / 25.13 / 68.96

Urdu →

MMS 0.09 / 0.00 / 0.09 / 55.58 0.05 / 0.00 / 0.05 / 56.43 0.09 / 0.00 / 0.09 / 56.03 37.54 / 15.04 / 30.19 / 70.55 9.44 / 3.76 / 7.60 / 59.64
MXLS 29.95 / 9.06 / 23.09 / 68.36 26.00 / 9.37 / 21.44 / 68.43 21.52 / 6.87 / 17.23 / 65.35 7.70 / 2.62 / 6.15 / 58.76 21.29 / 6.98 / 16.97 / 65.22

MMS+MXLS 28.94 / 9.29 / 22.81 / 67.76 26.43 / 8.84 / 21.74 / 68.55 20.47 / 6.44 / 16.74 / 64.33 37.72 / 15.78 / 30.97 / 70.96 28.39 / 10.17 / 23.14 / 67.90
Vanilla-KD 29.60 / 9.63 / 23.00 / 67.88 26.30 / 9.02 / 21.65 / 68.29 22.58 / 7.36 / 18.03 / 65.22 37.52 / 15.25 / 30.19 / 70.56 29.00 / 10.31 / 23.21 / 67.98

D2TV (Ours) 32.01 / 9.99 / 24.71 / 68.65 28.23 / 10.01 / 23.19 / 69.25 24.52 / 7.87 / 19.98 / 66.13 38.05 / 16.12 / 31.30 / 70.97 30.70 / 10.91 / 24.71 / 68.75

(a) The test results based on the mT5 backbone in terms of ROUGE-1 / ROUGE-2 / ROUGE-L / BERTSCORE scores.

Src
Trg

Models English Indonesian Russian Urdu Avg.

English →

MMS 34.19 / 11.87 / 26.14 / 69.38 24.70 / 6.94 / 19.55 / 67.37 21.50 / 6.14 / 17.14 / 64.08 23.18 / 5.00 / 17.68 / 63.04 25.89 / 7.49 / 20.13 / 65.96
MXLS 26.06 / 8.49 / 20.22 / 64.50 25.89 / 8.41 / 21.03 / 66.96 24.87 / 7.96 / 20.01 / 65.32 27.30 / 7.76 / 21.31 / 65.65 25.27 / 8.06 / 20.08 / 65.58

MMS+MXLS 35.03 / 12.50 / 27.17 / 69.75 22.97 / 7.37 / 18.65 / 68.05 23.50 / 7.81 / 18.95 / 65.72 27.14 / 8.04 / 21.17 / 66.51 27.16 / 8.93 / 21.49 / 67.45
Vanilla-KD 34.84 / 12.52 / 26.98 / 69.46 24.29 / 7.76 / 19.81 / 67.98 24.49 / 7.80 / 19.64 / 65.76 29.06 / 8.83 / 22.84 / 66.90 28.17 / 9.22 / 22.31 / 67.47

D2TV (Ours) 34.78 / 12.36 / 26.81 / 69.55 26.13 / 8.39 / 21.15 / 68.26 24.84 / 8.28 / 20.06 / 65.94 28.60 / 8.44 / 22.30 / 66.70 28.59 / 9.37 / 22.58 / 67.71

Indonesian →

MMS 30.79 / 9.09 / 23.03 / 67.68 30.12 / 10.77 / 24.16 / 69.14 21.67 / 6.27 / 17.46 / 64.28 25.13 / 5.27 / 19.01 / 63.82 26.93 / 7.85 / 20.92 / 66.23
MXLS 32.85 / 10.56 / 24.78 / 68.53 18.27 / 6.45 / 15.00 / 63.64 22.58 / 7.29 / 18.07 / 63.65 25.96 / 8.10 / 20.70 / 63.36 24.50 / 8.06 / 19.36 / 64.99

MMS+MXLS 33.87 / 11.51 / 26.14 / 69.36 29.81 / 11.33 / 24.29 / 69.75 24.26 / 8.40 / 19.65 / 65.89 29.05 / 8.99 / 22.87 / 66.88 29.25 / 10.06 / 23.24 / 67.97
Vanilla-KD 33.68 / 11.68 / 25.80 / 69.25 30.49 / 11.58 / 24.84 / 69.59 24.22 / 8.28 / 19.48 / 66.05 29.16 / 8.77 / 23.05 / 67.05 29.38 / 10.07 / 23.29 / 67.98

D2TV (Ours) 34.18 / 11.75 / 26.17 / 69.46 31.25 / 11.75 / 25.30 / 69.93 24.99 / 8.66 / 20.29 / 66.38 29.56 / 8.88 / 23.18 / 67.28 30.00 / 10.26 / 23.74 / 68.26

Russian →

MMS 29.53 / 8.39 / 22.53 / 66.86 24.02 / 6.73 / 19.21 / 66.84 28.29 / 9.85 / 22.33 / 66.88 24.79 / 5.16 / 18.92 / 63.59 26.66 / 7.53 / 20.75 / 66.04
MXLS 32.01 / 10.83 / 24.39 / 67.87 23.92 / 8.20 / 19.36 / 65.78 23.41 / 8.19 / 18.70 / 62.44 24.59 / 7.54 / 19.39 / 63.58 25.23 / 8.47 / 19.93 / 64.91

MMS+MXLS 32.94 / 11.40 / 25.74 / 68.79 24.58 / 8.43 / 20.09 / 67.92 28.10 / 10.37 / 22.66 / 66.93 27.44 / 8.54 / 21.59 / 66.52 28.27 / 9.68 / 22.52 / 67.54
Vanilla-KD 32.86 / 11.54 / 25.64 / 68.75 24.63 / 8.40 / 20.15 / 68.12 28.27 / 10.31 / 22.64 / 67.04 28.50 / 8.87 / 22.56 / 66.83 28.56 / 9.78 / 22.75 / 67.69

D2TV (Ours) 33.61 / 11.65 / 26.09 / 69.14 26.57 / 8.96 / 21.63 / 68.47 28.39 / 10.47 / 22.92 / 67.38 28.39 / 8.81 / 22.68 / 66.88 29.24 / 9.97 / 23.33 / 67.96

Urdu →

MMS 24.55 / 5.14 / 18.29 / 64.04 19.20 / 4.39 / 15.06 / 64.68 17.22 / 3.59 / 13.36 / 61.99 34.82 / 12.63 / 27.14 / 68.99 23.95 / 6.44 / 18.46 / 64.92
MXLS 30.89 / 9.53 / 23.82 / 67.05 22.74 / 7.40 / 18.59 / 65.59 21.63 / 6.62 / 17.66 / 63.27 21.90 / 6.94 / 17.19 / 60.13 23.69 / 7.49 / 18.84 / 64.01

MMS+MXLS 31.54 / 10.42 / 24.53 / 68.24 22.94 / 7.62 / 18.88 / 67.02 22.32 / 7.13 / 18.32 / 64.93 35.86 / 13.49 / 28.48 / 69.56 28.17 / 9.66 / 22.55 / 67.43
Vanilla-KD 30.96 / 10.20 / 24.34 / 68.18 23.72 / 8.16 / 19.49 / 67.36 21.94 / 6.79 / 17.90 / 64.69 35.83 / 13.53 / 28.39 / 69.50 28.11 / 9.67 / 22.53 / 67.43

D2TV (Ours) 31.65 / 10.63 / 24.90 / 68.62 25.47 / 8.52 / 20.68 / 67.75 22.38 / 7.19 / 18.44 / 65.37 36.46 / 13.76 / 28.75 / 69.94 28.99 / 10.03 / 23.19 / 67.92

(b) The test results based on the mBART-50 backbone.

Table 1: The block in “ */*/*/* ” denotes the MMS results and the block in “ */*/*/* ” indicates the MXLS results.
The “ */*/*/* ” indicates the average (Avg.) score for each model and the best scores in each block are bold. Our
bold results indicate that statistically significantly better than the “Vanilla-KD” with t-test p < 0.05. Note that the
results out of each block (e.g., English→English block) cannot be compared to others (e.g., Indonesia→English
block) because they belong to different language directions. Therefore, in each block of MMS, the MMS always
surpasses MXLS without any exception. In each block of MXLS, the MXLS always surpasses MMS without any
exception.

more implementation details including data pre-
processing and hyper-parameters settings.
Metrics. Following Bhattacharjee et al. (2022);
Wang et al. (2023a), we use the standard ROUGE
scores (ROUGE-1, ROUGE-2, and ROUGE-
L) (Lin, 2004) with the statistical significance
test (Koehn, 2004) for a fair comparison. Besides,
we apply BERTSCORE (Zhang et al., 2020) for a
comprehensive comparison.

4.3 Comparison Models

• MMS: It is the MMS model trained with the
objective Eq. 2.

• MXLS: It is the MXLS model trained with the
objective Eq. 4.

• MMS+MXLS: It is the model jointly trained
with the objectives Eq. 2 and Eq. 4, which actu-

ally is the M3S training objective.
• Vanilla-KD: It is the model enhanced with the

knowledge distillation, which is trained with the
objectives Eq. 2, Eq. 4 and Eq. 3.

• D2TV : It is the proposed model which are
trained with the objective Eq. 10.

All the above models use the multimodal Trans-
former described in § 2.2 and involve two strong
training backbones: mT5 (Xue et al., 2021) and
mBART-50 (Tang et al., 2021).

4.4 Main Results
Tab. 1 presents the main results on many-to-many
scenarios grounding on different backbones. Over-
all, our model obtains significantly better results
than all contrast models in both settings.
Results based on mT5 backbone. In Tab. 1 (a),

14915



Models English→* Indonesian→* Russian→* Urdu→* Train (S)
0 MMS+MXLS 28.86 / 9.90 / 23.07 / 67.94 30.51 / 11.31 / 24.70 / 68.72 29.59 / 10.37 / 24.09 / 68.50 28.39 / 10.17 / 23.14 / 67.90 6.12
1 w/o Visual Features 28.48 / 9.44 / 22.73 / 67.71 30.12 / 10.83 / 24.33 / 68.39 29.18 / 10.01 / 23.68 / 68.33 27.91 / 9.88 / 22.79 / 67.67 5.37
2 w/ Vanilla KD 29.56 / 10.17 / 23.43 / 68.04 30.88 / 11.21 / 24.67 / 68.80 29.34 / 10.48 / 23.60 / 68.28 29.00 / 10.31 / 23.21 / 67.98 7.95
3 w/ DKD 30.19 / 10.63 / 23.98 / 68.48 31.49 / 11.44 / 25.12 / 68.92 30.89 / 10.88 / 24.51 / 68.55 29.96 / 10.65 / 24.38 / 68.51 9.58
4 w/ CAT 30.19 / 10.57 / 24.03 / 68.45 31.42 / 11.49 / 25.33 / 68.88 30.75 / 10.59 / 24.41 / 68.64 29.96 / 10.61 / 24.32 / 68.31 13.45
5 w/ TCO 30.01 / 10.45 / 23.77 / 68.27 31.27 / 11.25 / 25.01 / 68.85 30.78 / 10.61 / 24.45 / 68.51 29.89 / 10.44 / 24.15 / 68.29 8.90
6 w/ DKD&TCO 30.77 / 10.72 / 24.53 / 68.83 32.08 / 11.71 / 25.63 / 69.09 31.27 / 11.24 / 25.13 / 68.96 30.70 / 10.91 / 24.71 / 68.75 11.88

Table 2: Ablation study based on the mT5 ( Avg. results of ROUGE-1 / ROUGE-2 / ROUGE-L / BERTSCORE),
where each component is separately added on the “MMS+MXLS”. “*” denotes the four languages (i.e., English,
Indonesian, Russian, and Urdu). The “CAT” denotes the complex auxiliary tasks of (Liang et al., 2022b). Train (S)
denotes how many seconds are required for each model to train one step (32 batch size * 8 GPUs).

1) in each group (e.g., English→{English, Indone-
sian, Russian, Urdu}), the MMS model typically
performs better in generating monolingual sum-
maries while it cannot process well in cross-lingual
settings. The reason is that the MMS model has no
access to the cross-lingual data during training. The
MXLS model faces a similar phenomenon where
it cannot handle well the monolingual summaries
while generating better cross-lingual summaries. In
contrast, the “MMS+MXLS” model, as a multitask
model, achieves better results than both MMS and
MXLS models, showing that the MMS and MXLS
tasks can benefit each other and thus improve both
of them. Based on this finding, a dual knowledge
distillation is more reasonable than unidirectional
knowledge distillation. Our results further demon-
strate this (See ablation study). 2) Generally, in
each block, we find that our D2TV approach no-
tably outperforms the Vanilla-KD method, showing
the effectiveness of dual knowledge distillation and
target-oriented contrastive learning. Although our
results are slightly worse than the MMS model
in English→English, Indonesian→Indonesian, and
Russian→Russian directions of “ */*/*/* ” blocks,
our D2TV model can balance well between MMS
and MXLS. The results in each “ Avg. ” blocks
fully prove this point. 3) On average, our model
consistently and significantly surpasses all base-
lines by large margins (e.g., the previous best
“Vanilla-KD”, up to 1.70/0.60/1.50 ROUGE and
0.77 BERTScore scores in Urdu→* directions, re-
spectively).

Results based on mBART-50 backbone.
In Tab. 1 (b), we observe similar findings as in
the mT5-based scenario. This demonstrates that
our conclusions are solid and convincing on gen-
eral pre-trained language models. All these results
prove the superiority of our approach.

5 Analysis

5.1 Ablation Study

We conduct ablation studies to investigate how well
each component works. The results are shown
in Tab. 2. We have the following conclusions:

• (Row 1 vs. row 0). The results show that in-
corporating visual features has a positive impact
on the model performance, demonstrating the
importance of image sequence for the summary.

• (Row 2 vs. row 0). The vanilla KD makes reason-
able contributions, showing that the MMS model
indeed helps improve the quality of summaries
in terms of both ROUGE and BERTScore scores,
suggesting that distilling the knowledge of MMS
to MXLS is helpful to summarization;

• (Row 3 vs. row 2&row 0). The results show that
dual knowledge distillation further improves the
model performance, indicating that the knowl-
edge of MMS and MXLS are beneficial to each
other and thus can enhance both of them.

• (Row 5 vs. row 4&row 0). The results show
that summary-oriented visual features can signif-
icantly improve the quality of summaries and our
simple TCO achieves comparable performance
with the CAT with less training time. This shows
the superiority of the target-oriented contrastive
objective.

• (Row 6 vs. row 0). Adding DKD and TCO
exhibit notable cumulative benefits, showing the
effectiveness of the proposed approach.

5.2 Human Evaluation

Following Liang et al. (2022b), we conduct hu-
man studies on 50 samples randomly selected from
English→English and Russian→English test sets
to further evaluate the performance of all models.
We invite three Chinese postgraduate students who
major in English to compare the generated sum-
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Models English→English Russian→English
Flu. Con. Inf. Flu. Con. Inf.

MMS 3.28 3.04 2.58 1.20 1.04 0.88
MXLS 1.22 1.10 0.96 2.72 2.28 2.14
MMS+MXLS 3.44 3.28 3.18 3.26 3.16 3.04
Vanilla-KD 3.60 3.46 3.22 3.40 3.28 3.18
D2TV 4.14 3.94 3.78 3.86 3.58 3.50

Table 3: Human evaluation results. ‘Flu.’: fluency,
‘Con.’: conciseness, and ‘Inf.’: informativeness.

maries 4 and assess each summary from three inde-
pendent aspects: fluency (Flu.), conciseness (Con.)
and informativeness (Inf.). We ask them to score
each aspect from 1 (worst) to 5 (best). The average
results are presented in Tab. 3.

Tab. 3 shows the human results. We find that
our D2TV substantially outperforms all contrast
models under all criteria in both directions, which
further shows the effectiveness and superiority of
our approach. The Fleiss’ Kappa scores (Fleiss and
Cohen, 1973) of Flu., Con. and Inf. are 0.74, 0.70
and 0.65, respectively, which indicates a substantial
agreement among three evaluators. Furthermore,
we present a case study in Appendix C and it intu-
itively shows the superiority of our D2TV.

6 Related Work

Multimodal Monolingual Summarization
(MMS). With the rapid growth of multimedia,
many MMS datasets have been built which
cover video summarization (Tjondronegoro et al.,
2011; Sanabria et al., 2018), movie summa-
rization (Evangelopoulos et al., 2013), meeting
records summarization (Erol et al., 2003), sentence
summarization (Li et al., 2018a, 2017), product
summarization (Li et al., 2020a), and news
summarization (Zhu et al., 2018; Chen and Zhuge,
2018; Hasan et al., 2021; Fu et al., 2021; Liang
et al., 2022b). With the data resources extensively
used, the MMS task has attracted much attention,
where the existing work mainly focuses on 1)
how to effectively exploit the additional features
which are generally implicitly learned by the MMS
objective or 2) explicit and complex auxiliary
tasks, having achieved impressive performance
on these high-resource English datasets (Li et al.,
2018b, 2020b; Zhu et al., 2020, 2021; Zhang et al.,
2021b,a; Yu et al., 2021). In this work, we instead
of focusing on introducing a more general and
practical many-to-many multimoal summarization

4When evaluating summaries in Russian→English, we
show them the English document rather than the Russian
document where the English and Russian document describe
the same thing.

setting and also provide a corresponding bench-
mark dataset. Additionally, we propose a simple
yet effective target-oriented contrastive learning
objective to filter needless visual features, i.e.,
offer summary-oriented visual features.

Multimodal Cross-lingual Summarization
(MXLS). There is only one study that focuses
on the MXLS task, i.e., Liu et al. (2022) first
propose this task and design a triple-stage training
framework and distill the knowledge from MMS
to enhance MXLS while ignoring the performance
of MMS. Different from this work, we introduce
the many-to-many multimodal summarization
task. Furthermore, we devise a dual knowledge
distillation approach to simultaneously improve
both MMS and MXLS tasks.

Knowledge Distillation (KD). KD (Hinton et al.,
2015) is to transfer the knowledge (e.g., soft targets
outputs) of the stronger model (aka. the teacher
model) to the small model (aka. the student model),
which has achieved impressive results in the lit-
erature (Zhang et al., 2023). In summarization,
(Zhang et al., 2021b) adopt KD from a vision-
language pre-trained model to improve image se-
lection when generating multimodal summaries.
Besides, researchers (Nguyen and Luu, 2022; Liu
et al., 2022) typically treat the monolingual sum-
marization model as the teacher model and the
cross-lingual one as the student model because the
monolingual summarization model is easier to train
well than the cross-lingual one, which has shown
promising performance on cross-lingual summa-
rization task while ignoring the performance of the
monolingual one. In this work, we aim to mutu-
ally prompt both monolingual and cross-lingual
summarization tasks via dual KD rather than only
improving the cross-lingual summarization task by
unidirectional KD.

Constrastive Learning. The idea of contrastive
learning aims to learn effective representation
by pulling semantically close neighbors together
and pushing apart non-neighbors (Hadsell et al.,
2006), which has verified its superiority in many
fields (Zhou et al., 2023). In summarization, Liu
and Liu (2021) use contrastive loss to post-rank
generated summaries and achieves good results in
textual-only benchmark datasets. Cao and Wang
(2021) and Xu et al. (2021) use contrastive learning
to improve faithfulness and factuality and observe
consistent improvements. Wang et al. (2021) apply
contrastive learning for multilingual summarization
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and obtain promising performance. Differently, we
introduce it into the multimodal area and aim to
pull the visual feature close to its corresponding
summary and offer summary-oriented visual fea-
tures. Therefore, we can improve the quality of
summaries from the perspective of visual features
rather than the textual document.

7 Conclusion

In this paper, we first introduce a more general
task, i.e., M3S, which can support both MMS and
MXLS tasks. Further, we propose a dual knowl-
edge distillation and target-oriented vision (D2TV)
enhanced framework for the new task. Extensive
experiments demonstrate that our model signifi-
cantly outperforms related baselines in terms of
ROUGE, BERTScore scores, and human evalua-
tion. Furthermore, we contribute a many-to-many
multimodal summarization (M3Sum) dataset to the
research community.

Limitations

Although we show that our D2TV outperforms the
vanilla-kD model based on two stronger backbone
i.e., mT5 (Xue et al., 2021) and mBART-50 (Tang
et al., 2021), there are some limitations worth con-
sidering to study in future work: (1) In this study,
we only provide 44 languages and conduct experi-
ments on four out of them, and future work could
extend our method to more languages; (2) With
the development of the large-scale language mod-
els, extending and validating our approach on them
may be future work.

Ethics Statement

In this section, we consider the potential ethical
issues of our model. In this paper, we propose
D2TV which is trained on the publicly-available
BBC datasets. Therefore, D2TV might lead to in-
correct summaries in applications and involve the
same biases and toxic behaviors exhibited by the
datasets. Besides, we obtained our M3Sum dataset
by reorganizing the CrossSum (Bhattacharjee et al.,
2022) and MMSum (Liang et al., 2022b) datasets5

and its permissions are granted to copy, distribute
and modify the contents under the terms of the
Creative Commons AttributionShareAlike 3.0 Un-
ported License and Creative Commons CC0 Li-
cense, respectively.

5The data originally comes from: https://www.bbc.com/
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A Dataset Statistics and Splits.

As shown in Tab. 4, we only present 4*4 lan-
guage directions of our M3Sum used in this work
for simplicity. Actually, our M3Sum covers 44*44
languages and in total includes 1,078,215 article-
summary pairs with 3,479,348 images, where each
article-summary pair contains about 3.23 images on
average. The average article and summary length
for all languages is about 520 and 84, respectively.
According to the dataset size of each language, we
follow CrossSum (Bhattacharjee et al., 2022) and
utilize about 80% training:10% validation:10% test
splitting. Besides, in CrossSum, the number of
languages is 44 and thus there are 44*44 language
directions. For efficiency, we randomly select 4
languages (i.e., English, Indonesian, Russian, and
Urdu), which totally cover 16 language directions.

Languages English Indonesian Russian Urdu
English 24,768 10,037 9,076 6,297
Indonesian 9,814 23,176 7,260 6,324
Russian 8,902 7,329 21,036 5,179
Urdu 6,052 5,810 4,700 17,800

Table 4: An example of 4 * 4 Language pairs covered
by our M3Sum dataset.

B Implementation Details

Data Pre-Processing. Following Bhattacharjee
et al. (2022), we pre-process the textual data by
truncating or padding them into sequences of 512
tokens for X and the outputs Y to 84 tokens after
using the 250k wordpiece (Xue et al., 2021) vocab-
ulary provided with the mT5 checkpoint (similar
to mBART-50 setting). For the image sequence,
following Liang et al. (2022b), we truncate or pad
the sequence length to 180 (i.e., five images: 5 *
36; n=5, m=36).
Hyper-Parameters. In this work, we use
two strong backbones, i.e., the base6 model of
mT5 (Xue et al., 2021) and the large7 model of
mBART-50 (Tang et al., 2021). We list detailed
hyper-parameter used in this work in Tab. 5.

For inference, we use beam search with beam
size 4 and length penalty of γ = 0.6. When calcu-
lating the ROUGE scores, we use the multi-lingual

6https://huggingface.co/google/mt5-base/tree/
main

7https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

Hyperparameters mT5 mBART-50
batch size (B) 32 32
number of GPUs 8 V100 8 V100
hidden size 768 1024
filter size 2048 4096
encoder layers 12 12
decoder layers 12 12
attention heads 12 16
label smoothing 0.1 0.1
learning rate 2e-5 5e-6
warmup steps 2,000 2,000
training steps T 10,000 10,000
T1 5,000 5,000
training time ≈33h ≈8h
optimizer Adam Adam
adam beta1 0.9 0.9
adam beta2 0.998 0.98
layer normalization postnorm postnorm
M 520 520
N 84 84
m 5 5
n 36 36
Ne 12 12
Nd 12 12
Nv 4 4
d 768 1024
dv 2048 2048
dc 256 256
K 4 4
β 1.0 1.0

Table 5: Training hyperparameters and model configu-
rations of our experiments.

rouge8 toolkit following Bhattacharjee et al. (2022).
All experimental results reported in this paper are
the average of three runs with different random
seeds.

C Case Study

Fig. 3 shows an example of the many-to-many mul-
timodal summarization, the generated summary,
and the ground truth summary in different lan-
guages. (updating later.)

8https://github.com/csebuetnlp/xl-sum/tree/
master/multilingual_rouge_scoring
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Figure 3: An example of many-to-many summarization in different language directions. ((updating later.))
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