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Abstract

Key information extraction (KIE) from scanned
documents has gained increasing attention be-
cause of its applications in various domains. Al-
though promising results have been achieved by
some recent KIE approaches, they are usually
built based on discriminative models, which
lack the ability to handle optical character
recognition (OCR) errors and require laborious
token-level labelling. In this paper, we propose
a novel generative end-to-end model, named
GenKIE, to address the KIE task. GenKIE
is a sequence-to-sequence multimodal gener-
ative model that utilizes multimodal encoders
to embed visual, layout and textual features
and a decoder to generate the desired output.
Well-designed prompts are leveraged to incor-
porate the label semantics as the weakly su-
pervised signals and entice the generation of
the key information. One notable advantage
of the generative model is that it enables au-
tomatic correction of OCR errors. Besides,
token-level granular annotation is not required.
Extensive experiments on multiple public real-
world datasets show that GenKIE effectively
generalizes over different types of documents
and achieves state-of-the-art results. Our ex-
periments also validate the model’s robustness
against OCR errors, making GenKIE highly
applicable in real-world scenarios1.

1 Introduction

The key information extraction (KIE) task aims
to extract structured entity information (e.g. key-
value pairs) from scanned documents such as re-
ceipts (Huang et al., 2019), forms (Jaume et al.,
2019), financial reports (Stanisławek et al., 2021),
etc. This task is critical to many document under-
standing applications, such as information retrieval
and text mining (Jiang, 2012), where KIE frees the

∗Corresponding author.
1Our code and pretrained model are publicly available

at https://github.com/Glasgow-AI4BioMed/
GenKIE.
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Figure 1: An example of document KIE. Two entity
types (i.e. company and address) are extracted from
the document image. The baseline model (Xu et al.,
2021) predicts correct labels, but the extracted entity
values are still wrong due to the OCR errors (marked in
red). GenKIE auto-corrects OCR errors and generates
the correct entity values. The multimodal features can
be used to distinguish ambiguous entity types (e.g. term
‘TAMAN DAYAN’ in the red circles of the input image).

business from manually processing a great number
of documents and saves a significant amount of
time and labour resource (Huang et al., 2019).

The KIE task is often tackled by a pipeline of
approaches (Huang et al., 2019), including opti-
cal character recognition (OCR) and named en-
tity recognition (NER). The OCR technique, ex-
emplified by Tesseract2, is employed to discern
textual and layout attributes from the input images,
namely the scanned documents. The NER model
(Mohit, 2014) is used to discriminatively extract
salient details from the derived texts, such as pin-
pointing specific entities from the text and layout
features based on the annotated beginning-inside-
outside (BIO) tags via a sequence classification
strategy. A plethora of methodologies adhering to
this framework have emerged, leveraging a synergy
of multimodal features—textual, visual, and layout
data—from the document image. Notably, contem-
porary KIE models like StrucText (Li et al., 2021),
BROS (Hong et al., 2020), and LayoutLMv2 (Xu
et al., 2021) exhibit commendable results through

2https://tesseract-ocr.github.io/
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the use of multimodal pretrained frameworks.
However, one limitation of these models is that

they highly rely on the OCR model to extract texts
from scanned documents and inevitably suffer from
OCR errors. These OCR errors in texts will eventu-
ally render wrong entity information. As shown in
Figure 1, although the classification-based model
tags the entities correctly, the result is still wrong
due to the OCR errors. Another limitation is that
the semantic ambiguity in the document is hard
to be captured by the existing models. For exam-
ple, as shown in Figure 1, two image patches of
the same text (TAMAN DAYAN) in the receipt have
different entity types. It is difficult for some exist-
ing approaches to improve performance by using
only textual information. Other signals such as lay-
out and visual information play a critical role in
identifying the correct entity type (Xu et al., 2021).
Therefore effective incorporation of multimodal
features is indispensable to improve the model per-
formance for the KIE task.

To cope with the mentioned problems, we
propose GenKIE, a robust multimodal genera-
tive model for document KIE. GenKIE utilizes
the encoder-decoder Transformer (Vaswani et al.,
2017) as the backbone and formulates docu-
ment KIE as a sequence-to-sequence generation
task. The encoder effectively incorporates mul-
timodal features to handle semantic ambiguity
and the decoder generates the desired output auto-
regressively following the carefully designed tem-
plate (i.e. prompt) and auto-correcting OCR errors.
An example is shown in Figure 1 to demonstrate
the prompting technique, the label company in the
prompt guides the model to generate words that cor-
respond to company names. Other labels such as
address serve as additional label semantic signals
and provide shared context about the task. Thanks
to the generation capability, GenKIE does not need
the laborious granular token-level labelling that is
usually required by discriminative models.

Extensive experiments demonstrate that our pro-
posed GenKIE model has not only achieved perfor-
mance levels comparable to state-of-the-art (SOTA)
models across three public KIE datasets but also
exhibits enhanced robustness against OCR errors.
Our contributions are summarized as follows:

• We propose GenKIE, a novel multimodal gen-
erative model for the KIE task that can gener-
ate entity information from the scanned docu-
ments auto-regressively based on prompts.

• We propose effective prompts that can adapt
to different datasets and multimodal feature
embedding that deals with semantic ambigu-
ity in documents. Our model generalizes on
unseen documents with complex layouts.

• Extensive experiments on real-world KIE
datasets show that GenKIE has strong robust-
ness against OCR errors, which makes it more
applicable for practical scenarios compared to
classification-based models.

2 Related Works

2.1 Conventional KIE Methods

Traditional document KIE methods (Dengel and
Klein, 2002; Schuster et al., 2013) depend on prede-
fined templates or rules to extract key information
from scanned documents. Due to the extensive
manual effort and specialized knowledge required
to design these specific templates for each entity
type, these approaches are not suitable for effec-
tively managing unstructured and intricate docu-
ment layouts. Later KIE systems formalize the
problem as an NER task and start to employ pow-
erful machine learning models. For example, the
BiLSTM-CRF model employed by Huang et al.
(2015); Lample et al. (2016); Ma and Hovy (2016);
Chiu and Nichols (2016) decodes the chain of entity
BIO tags from either textual or textual and visual
features. Katti et al. (2018) proposes an image-
based convolutional encoder-decoder framework
that can encode the semantic contents. The graph-
based LSTM utilized by Peng et al. (2017); Song
et al. (2018) allows a varied number of incoming
edges in a memory cell to learn cross-sentence en-
tity and relation extraction. While those models are
effective in their domains, they do not make use of
all multimodal features available in the documents
and thus could not solve semantic ambiguity and
generalize. Therefore, recent research emphasizes
more on the incorporation of multimodal features
to generalize on documents with varied and compli-
cated layouts. For example, PICK (Yu et al., 2021)
models document input as a graph, where the text
and visual segments are encoded as nodes and spa-
tial relations are encoded as edges. However, due
to the lack of pretraining on a large corpus, those
methods are relatively limited in terms of robust-
ness and generalization ability.
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2.2 Multimodal-based KIE Methods

Multimodality-based transformer encoder mod-
els, which are pretrained on large-scale linguistic
datasets, show strong feature representation and
achieve SOTA performance in downstream KIE
tasks. LayoutLM (Xu et al., 2020) first proposes the
pretraining framework to handle document infor-
mation extraction. Textual and layout features are
jointly utilized in pretraining and visual features are
embedded in finetuning. LayoutLMv2 (Xu et al.,
2021) further improves LayoutLM by incorporat-
ing visual features in pretraining. LayoutLMv3
(Huang et al., 2022) introduces a new word-patch
alignment objective in pretraining, which recon-
structs the masked image tokens from surrounding
text and image tokens. DocFormer (Appalaraju
et al., 2021) designs a multimodal self-attention
layer to facilitate multimodal feature interaction.
BROS (Hong et al., 2020) is also an encoder-based
model that utilizes graph-based SPADE (Hwang
et al., 2021) classifier to predict both entity tags and
entity relations. Layout features are specifically ex-
ploited to solve the reading order serialization issue.
Similar to BROS, LAMBERT (Garncarek et al.,
2021) augments the input textual features with lay-
out features to train a layout-aware language model.
StrucText (Li et al., 2021) and StrucTexTtv2 (Yu
et al., 2023) exploit the structured information from
the document image and use it to aid entity informa-
tion extraction. However, all the above-mentioned
models are classification-based, which means fine-
grained annotations are necessary and they lack the
mechanism to auto-correct OCR errors.

2.3 Prompt-based Language Models

Recently the paradigm of “pretrain, prompt, and
predict” has been prevailing in NLP due to its high
adaptability and effectiveness in downstream tasks
(Liu et al., 2023). Our proposed work follows this
new paradigm by using OFA (Wang et al., 2022a),
a multimodal generative vision language model, as
the model backbone and leveraging task-specific
prompts in finetuning. It is worth mentioning TILT
(Powalski et al., 2021), which is also a generative
KIE model. The major difference is that GenKIE
emphasizes the prompt design and the model’s
OCR correction capability in practical scenarios,
which are not explored in TILT. Donut (Kim et al.,
2022) is an OCR-free model and by design unaf-
fected by OCR errors. It encodes the image fea-
tures with a Swin Transformer (Liu et al., 2021)

and decodes the key information with a Bart (Lewis
et al., 2020)-like decoder. However, the limitation
of Swin Transformer to capture the local character
patterns might lead to sub-optimal KIE results.

3 Task Formulation

In this work, we address the KIE task which sup-
ports many downstream applications such as en-
tity labeling (Jaume et al., 2019) and entity extrac-
tion (Huang et al., 2019). In particular, given a col-
lection of scanned document images ID, the goal
of KIE is to extract a set of key entity fields (i.e.
key-value pairs) K = {< Ti, Vi > |1 ≤ i ≤ NI}
for each image I ∈ ID, where Ti is the predefined
entity type, Vi is the entity value, and NI is the
number of entity fields in image I . The entity types
of each image example can be given or not, depend-
ing on the downstream applications. For example,
the output of the entity extraction task is the entity
values of predefined entity types, while the output
of the entity labelling task is the extracted entities
and their entity types.

4 Methodology

The overall architecture of GenKIE is shown in Fig-
ure 2. Unlike the encoder-based models (e.g. Lay-
outLMv2 (Xu et al., 2021)), GenKIE is a genera-
tive model that uses a multimodal encoder-decoder
model, i.e. OFA (Wang et al., 2022a), as the back-
bone. The encoder of GenKIE embeds multimodal
features (e.g. text, layout and images) from the
input and the decoder generates the textual output
by following the prompts. Entity information is
parsed from the decoder output. In the following
sections, we illustrate the process of multimodal
feature embedding, and then go over the techniques
of prompting and inferring.

4.1 Encoder
Following the common practice of the KIE task (Xu
et al., 2020, 2021), we use an off-the-shelf OCR
tool to extract the textual and layout features (i.e.
transcripts and bounding boxes of the segments)
from the input image. Then we use our back-
bone language encoder (i.e. byte-pair encoding
(BPE) (Sennrich et al., 2016)), layout encoder and
visual encoder (i.e. ResNet (He et al., 2016)) to
obtain embeddings from these features.

4.1.1 Textual Embedding
To process the textual feature, we apply the BPE
tokenizer to tokenize the text segment into a sub-
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Figure 2: An illustration of GenKIE performing entity extraction from a scanned SROIE receipt with the template
and QA prompts. The input to the encoder consists of patched visual tokens and textual tokens embedded along
with the positional features. Following the prompts, the decoder generates the desired output, which is processed
into four entity key-value pairs.

word token sequence and then wrap around the
sequence with the start indicator tag [BEG] and
the end indicator tag [END]. Then a sequence of
prompt tokens is appended after the [SEP] tag,
which marks the end of the transcript tokens. Extra
[PAD] tokens are appended to the end to unify
the sequence length inside the batch. The token
sequence S is formulated as:

S = [BEG],BPE(T ),[SEP],BPE(P ),[END], ...,[PAD],

(1)
where T represents the transcripts and P represents
the prompt. To preserve positional information, we
combine the token embedding with the trainable 1D
positional embedding in an element-wise manner to
obtain the final textual embedding. Specifically, the
i-th textual token embedding TEi is represented
as:

TEi = EMB(Si) + POSEMB1D(i) ∈ Rd, i ∈ [0, L), (2)

where d is the embedding dimension, L is the se-
quence length, EMB : R → Rd is the token em-
bedding layer shared between encoder and decoder.
POSEMB1D : R → Rd is the 1D positional em-
bedding layer that is not shared.

4.1.2 Layout Embedding
GenKIE uses a layout embedding layer to cap-
ture the spatial context of text segments. We first
normalize and discretize all bounding box coor-
dinates so they fall between [0, 1024). In this

work, we use a tuple of normalized coordinates
to represent the layout feature of the tokens in
that bounding box. For instance, the layout fea-
ture of i-th bounding box can be represented by
bi = (xi0, x

i
1, wi, y

i
0, y

i
1, hi), where (xi0, y

i
0) is the

left top coordinate, (xi1, y
i
1) is the bottom right co-

ordinate, wi is the width and hi is the height of the
bounding box, and all textual tokens in the bound-
ing box share the same layout feature. Special to-
kens such as [BEG], [END] and [SEP] default
to have empty feature bemp = (0, 0, 0, 0, 0, 0). If
the prompt token pj refers to the same textual to-
ken ti, then bi is shared with pj for prompt layout
embedding, otherwise pj defaults to use bemp. The
final encoder layout embedding is given by:

LEi =CONCAT(POSEMB2Dx(x
i
0, x

i
1), POSEMB2Dw(wi),

POSEMB2Dy(y
i
0, y

i
1), POSEMB2Dh(hi)) ∈ Rd,

(3)
where CONCAT is the concatenation function;
POSEMB2Dx, POSEMB2Dy, POSEMB2Dw and
PosEmb2Dh are linear transformation to embed
spatial features correspondingly following (Xu
et al., 2021). The two-axis features are concate-
nated to form the 2D spatial layout embedding.

4.1.3 Visual Embedding
For visual embedding, we first resize the input im-
age I to 480× 480 and then use a visual encoder
consisting of the first three blocks of ResNet (He
et al., 2016) following the common practice of the
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Dataset Prompt
Type Prompt Generation Target Example Target

SROIE
Template
(All Types)

type1 is[SEP]
type2 is[SEP]
...

type1 is value1[SEP]
type2 is value2[SEP]
...

company is yongfatt enterprise[SEP]
address is no 122 jalan dedap johor bahru[SEP]
...

SROIE Template type is[SEP] type is value[SEP] company is yongfatt enterprise[SEP]
SROIE Question type is? value yongfatt enterprise

FUNSD
Template value is[SEP] value is type[SEP] coupon code registration form is header[SEP]
Question value is? type header

CORD
Template value is[SEP] value is type[SEP] Es Kopi Rupa is menu.nm[SEP]
Question value is? type menu.nm

Table 1: Prompting techniques for different datasets. For the template prompt, GenKIE fills in the missing entity
information in the template and each entity type and value pair is ended with the[SEP] indicator. Specifically for
the SROIE dataset, the template prompt can include all entity types, for which GenKIE generates all entity values in
one go. For the question prompt, GenKIE generates the answer, which is similar to the question-answering task.

vision language models (Wang et al., 2022b,a) to
extract the fix-sized contextualized feature map
M ∈ RH×W×C , where H is the height, W is the
width and C is the number of channels. The fea-
ture map M is further flattened into a sequence
of patches Q ∈ RK×dimg , where dimg is the im-
age token dimension and K = H×W

P 2 is the image
token sequence length given a fixed patch size P .
The patches are fed into a linear projection layer to
conform to the textual embedding dimension. Sim-
ilarly to textual embedding, we also add trainable
1D positional embedding to retain the positional in-
formation since the visual encoder does not capture
that. The visual embedding is formulated as:

V Ei = Qi ·W + POSEMB1D(i) ∈ Rd, (4)

where W is the trainable parameters of a linear
projection layer that maps from the image token
dimension to the model dimension. We concate-
nate the image embedding with textual embedding
to produce the final document multimodal feature
embedding:

E = CONCAT(V E, TE + LE) ∈ R(T+L)×d, (5)

where the concatenation is performed in the second
to the last dimension.

4.2 Prompts
Prompts are a sequence of text inserted at the end
of the encoder input to formulate the task as a gen-
eration problem. The decoder is provided with
the filled-in prompt as the sequence generation ob-
jective. Inspired by the unimodal textual prompts
in DEGREE (Hsu et al., 2022), we design simple
and efficient spatial awareness prompts which uti-
lize both textual features and layout features. The

prompts go through the same textual and layout
embedding steps as the transcripts (see Figure 2).

We introduce two types of prompts, template
prompt and question prompt as presented in Table
1. The performance of different prompts is dis-
cussed in the ablation study (see §6.3.2). For the
entity extraction task, the prompt is designed to be
prefixed with the desired entity type and GenKIE
continues the prompt with the entity value. For
example, in Figure 2, GenKIE generates the value
of the Company type by answering the question
prompt “Company is?”. For the entity labeling
task, the prompt is prefixed with the entity value
and GenKIE generates the entity type similarly to
the classification-based model. For example, in
Table 1 on the CORD dataset, GenKIE generates
the entity type of Es Kopi Rupa by filling in
the template “Es Kopi Rupa is [SEP]”.

In essence, the prompt defines the decoder out-
put schema and serves as the additional label or
value semantic signal to enforce the model to gen-
erate the expected output. Although prompt engi-
neering requires manual efforts to construct appro-
priate prompts, it is more effortless than granular
token-level labelling for the entity extraction task.
Unlike vectorized prompts in previous works (Li
and Liang, 2021; Yang et al., 2022), we design the
prompts in natural sentences to leverage the power
of the pretrained decoder. Moreover, the usage of
natural sentences further reduces the overhead of
composing the prompt. See Appendix C for the
method to construct the prompt.

4.3 Decoder

The decoder input has the filled-in prompt that
serves as the learning target. The same BPE to-
kenizer and textual embedding in the encoder are
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utilized. Note that only the textual modality is lever-
aged to take advantage of the pretrained decoder.

During inference, if the prompt is a template,
we utilize prefix beam search that constrains the
search space to start with the template prefix. For
example, in Table 1, for the template prompt
of the FUNSD dataset, we directly search af-
ter the prefix “coupon code registration
form is” for the entity type without generating the
prefix from scratch. Prefix beam search not only
makes the inference faster and more efficient but
also guarantees a deterministic output that follows
the template. Entity information can then be parsed
from the template easily. In our experiments, we
observe prefix beam search can improve the model
performance on all datasets. We will discuss more
in the ablation study.

5 Experimental Setup

5.1 Settings

GenKIE takes a multimodal encoder-decoder-
based pretrained model as its backbone. In par-
ticular, the backbone model weights used in this
work are initialized from the pretrained OFA base
model (Wang et al., 2022a), which consists of a
6-layer Transformer encoder and a 6-layer Trans-
former decoder. The model dimension is 768. For
the entity extraction task on the SROIE dataset, the
maximum sequence length is 512. For the entity la-
belling task on the CORD and FUNSD datasets, the
maximum sequence length is 32 for the question
prompt and 128 for the template prompt. The maxi-
mum encoder sequence length is set to 1024 across
all datasets. The model is trained for 50 epochs
with a batch size of 64 and an initial learning rate
of 5e − 5. For beam search during inference, the
number of beams is configured as 5 and we limit
the maximum generated sequence length to 512 for
SROIE and 128 for CORD and FUNSD.

5.2 Datasets and Baselines

We conduct experiments on three real-world
datasets, including SROIE (Huang et al., 2019),
CORD (Park et al., 2019) and FUNSD (Jaume et al.,
2019). Table 2 shows statistics of these datasets3.

Eleven baselines are used for comparison, includ-
ing the SOTA models such as LayoutLMv3 (Huang
et al., 2022), LayoutLMv2 (Xu et al., 2021), Doc-
Former (Appalaraju et al., 2021) and TILT (Powal-

3See Appendix A for more details about these datasets.

Dataset Type # Keys # Images

FUNSD Form 4 Train 149, Val 0, Test 50
SROIE Receipt 4 Train 626, Val 0, Test 347
CORD Receipt 30 Train 800, Val 100, Test 100

Table 2: Statistics of our used datasets.

ski et al., 2021). All baselines except TILT are
classification-based models.

6 Results and Analysis

This section provides experimental results and anal-
yses of our model’s effectiveness (§6.1) and robust-
ness against OCR errors (§6.2) on the KIE task.
An ablation study is conducted to analyze the con-
tributions of each component of our model (§6.3).
Finally, we provide a case study in §6.4.

6.1 KIE Effectiveness

We evaluate the effectiveness of GenKIE on the
entity extraction task (using the SROIE dataset)
and the entity labelling task (using the FUNSD and
CORD datasets). In this paper, we use token-level
evaluation metrics across all datasets.

As shown in Table 3, GenKIE outperformed
LayoutLMv3 by a certain margin on the FUNSD
dataset. However, GenKIE demonstrates compa-
rable performance to other strong encoder-based
baselines, such as LayoutLMv2 (Xu et al., 2021),
DocFormer (Appalaraju et al., 2021), and LAM-
BERT (Garncarek et al., 2021). This result vali-
dates the effectiveness of our method and suggests
that modelling the KIE task in a generative manner
is nearly as capable as classification-based models.

From Table 3, we can also observe that models
with more modality features generally perform bet-
ter than those with fewer across all datasets. This
suggests that integrating multimodal features can
effectively improve KIE performance.

6.2 Model Robustness

To verify the robustness of GenKIE against OCR
errors, we run entity extraction experiments on the
SROIE dataset with simulated OCR errors. We
choose LayoutLMv2 (Xu et al., 2021) as our base-
line model because of its similar embedding design.

We manually add OCR errors to the original re-
ceipt transcripts by replacing the words with visu-
ally similar ones4, e.g. hello v.s. he11o. Each

4The visually similar characters are collected from errors
produced by the OCR tool.
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Model Modality # Params SROIE CORD FUNSD
P R F P R F P R F

BERT (Devlin et al., 2019) T 110M 90.99 90.99 90.99 88.33 91.07 89.68 54.69 67.10 60.26
RoBERTa (Liu et al., 2019) T 125M 91.07 91.07 91.07 - - - 66.48 66.48 66.48
UniLMv2 (Bao et al., 2020) T 110M 94.59 94.59 94.59 89.87 91.98 90.92 65.61 72.54 68.90
BROS (Hong et al., 2020) T+L 110M 94.93 96.03 95.48 95.58 95.14 95.36 81.16 85.02 83.05
LayoutLM (Xu et al., 2020) T+L 113M 94.38 94.38 94.38 94.37 95.08 94.72 76.77 81.95 79.27
LAMBERT (Garncarek et al., 2021) T+L 125M - - 96.93 - - 94.41 - - -
LayoutLMv2 (Xu et al., 2021) T+L+V 200M 96.25 96.25 96.25 94.53 95.39 94.95 80.29 85.39 82.76
LayoutLMv3 (Huang et al., 2022) T+L+V 133M 94.91 95.68 95.30 - - 96.56 - - 90.29
StrucText (Li et al., 2021) T+L+V 107M 95.84 98.52 96.88 - - - 85.68 80.97 83.09
TILT (Powalski et al., 2021) T+L+V 230M - - 97.65 - - 95.11 - - -
DocFormer (Appalaraju et al., 2021) T+L+V 183M - - - 96.52 96.14 96.33 80.76 86.09 83.34
GenKIE T+L+V 180M 97.40 97.40 97.40 95.75 95.75 95.75 83.45 83.45 83.45

Table 3: Overall performance of the compared models on our three datasets. Bold indicates the best performance
per metric and underline indicates the second best. In the modality column, T represents the textual modality, L
represents the layout modality and V represents the visual modality. All models except GenKIE and TILT are
discriminative. For LayoutLMv3, the evaluation result on the SROIE dataset is obtained by using the source code
provided by the authors. Other performance metrics of compared models are obtained from their original papers.

5 10 15 20 25 30 35 40 45 50
Noise Level

50

60

70

80

90

100

F1

Model
GenIE EE
LayoutLMv2 EE

Figure 3: Model robustness experiments under different
noise levels. LayoutLMv2 entity extraction is heavily
impacted by the OCR errors. Under the 50% error level,
the F1 score drops around 40%. While the performance
of LayoutLMv2 entity labelling and GenKIE entity ex-
traction drops only around 3%.

word in the transcript has n% of the chance to be
replaced (n denotes the level of OCR errors) and
if there are no visually similar characters, we keep
the original text.

We run experiments under different levels of
OCR errors ranging from 5% to 50% with a 5%
step. As shown in Figure 3, when the error level in-
creases, the F1 score of LayoutLMv2 drops signifi-
cantly since the OCR errors are not handled by de-
sign. Under the 50% OCR error level, GenKIE still
achieves nearly 94% F1 score dropping only 3%
from 97%, which proves that GenKIE has strong ro-
bustness against OCR errors. However, it is worth

Modality Precision Recall F1

T 96.24 96.24 96.24
T + V 97.20 96.82 97.01
T + L 96.89 97.39 97.14
T + L + V 97.40 97.40 97.40

Table 4: Model performance of different modalities for
entity extraction on the SROIE dataset. Bold indicates
the best performance.

noting that GenKIE can generate wrong answers
although there are no OCR errors in the input. We
present some qualitative examples of KIE on the
SROIE dataset in 6.4 and Appendix B.

6.3 Ablation Study
6.3.1 Effectiveness of Multimodality Features
For the entity extraction task on the SROIE dataset,
we ran experiments with the question prompt to
analyze the feature importance of the layout and
visual embedding. The textual modality in our
model is vital and cannot be removed.

As is shown in Table 4, the model trained with
full modality achieves the highest F1 score. The
model trained with unimodal textual modality has
the lowest score, which verifies that both visual and
layout embeddings are effective in this task.

6.3.2 Effectiveness of Different Prompts
In Table 5, we compare the effectiveness of differ-
ent prompts on all datasets. In particular, for entity
extraction on the SROIE dataset, we have an addi-
tional template prompt that includes all entity types
in the prompt, e.g. the template prompt in Figure
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Dataset Prompt Prefix
Search P R F

SROIE

Template
(All Types)

- 96.88 96.96 96.92

Template ✓ 96.76 96.99 96.87
Template ✗ 96.86 96.63 96.75
QA - 97.40 97.40 97.40

FUNSD
Template ✓ 83.45 83.45 83.45
Template ✗ 76.42 76.42 76.42
QA - 75.17 75.17 75.17

CORD
Template ✓ 95.75 95.75 95.75
Template ✗ 94.24 94.24 94.24
QA - 92.44 92.44 92.44

Table 5: Effectiveness of different prompts and prefix
beam search on SROIE, FUNSD, and CORD datasets.
Bold indicates the best F1 performance over different
schemes per each dataset.

2. The model needs to fill in all the required entity
values in one generation. Note that formulating the
dataset with the prompt of a single entity type can
result in possible duplication of data as the doc-
ument can have multiple entity types. It requires
careful processing to not incur unnecessary com-
putational overhead during training. However, we
do not observe a large performance gap between
a template prompt with all entity types and other
prompts, e.g. 96.92 v.s. 97.40 in terms of F1, which
suggests that using a template prompt with all en-
tity types is a simple while efficient mechanism to
avoid duplication data processing at the cost of a
minor performance drop.

For entity labeling on the CORD and FUNSD
datasets, the template prompt outperforms the ques-
tion prompt while for entity extraction on the
SROIE dataset, the question prompt outperforms
the template prompt. This indicates in the entity
extraction task, the model benefits more from the
question-answering formulation since the answer
space is unconstrained from the template and the
generation capability is utilized more. In the entity
labelling task, GenKIE essentially works similarly
to classification-based models. The value seman-
tics provided by the template prompt can effec-
tively restrict the search space and guide the model
to generate the desired entity type.

6.3.3 Effectiveness of Prefix Beam Search
As presented in Table 5, when the template prompt
is used, prefix beam search outperforms vanilla
beam search by a small margin on the SROIE and
CORD datasets, while the performance gap is no-
tably large on the FUNSD dataset (e.g. 83.45 v.s.

LayoutLMV2 TED HENG STATIONERY 
S BOOKS

GenIE TEO HENG STATIONERY 
& BOOKS 

LayoutLMV2 CROSS … NEIWORK 
SDN. 8HD.

GenIE CROSS … NETWORK 
SDN. BHD

LayoutLMV2 No 4, Jalan Pemias 10/5. 
…

GenIE No 4. Jalan Permas 10/5. 
… 

(a) company (b) company (c) address

Figure 4: Qualitative examples of the entity extraction
task on SROIE. While LayoutLMv2 was misled by the
OCR result, GenKIE corrects these OCR mistakes.

76.42). This could be due to more abundant value
semantics in the entity labeling task of the FUNSD
datasets, which adds difficulty for the model to gen-
erate the complete prompt from scratch in vanilla
beam search. In the constrained search space of pre-
fix beam search, the model only needs to generate
the entity type.

6.4 Case Study
The motivation behind GenKIE is to cope with
the OCR errors for practical document KIE. To
verify the model’s robustness and effectiveness, we
show some qualitative examples of the output of
GenKIE on the SROIE dataset. As presented in
Figure 4, subfigures (a) to (c) have multiple OCR
errors in the company and address entities, and our
GenKIE is able to correct all of them, e.g. TED v.s.
TEO, 8HD v.s. BHD, Pemias v.s. Permas, etc.
See Appendix B for more examples, including the
failure cases where GenKIE generates the wrong
entities even when there is no OCR error.

7 Conclusion

We propose GenKIE, a novel prompt-based gen-
erative model to address the KIE task. GenKIE is
effective in generating the key information from
the scanned document images by following care-
fully designed prompts. The validated strong ro-
bustness against the OCR errors makes the model
applicable in real-world scenarios. Extensive ex-
periments over two KIE tasks (i.e. entity labelling
and entity extraction) on three public cross-domain
datasets demonstrate the model’s competitive per-
formance compared with SOTA baselines. Our
GenKIE incorporates multimodal features, which
enables the integration with other vision language
models, offering possibilities for future exploration
and experimentation.
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Limitations

One limitation with GenKIE is that it might re-
quire additional processing of the datasets. As most
of the document KIE datasets nowadays might be
tailored for the classification task only, it takes
some time to formulate the datasets with different
prompts. And it also takes time to experiment with
those prompts to find the best one.

Besides, although the multimodal feature embed-
ding is effective in coping with semantic ambiguity,
it is only utilized in the encoder in finetuning. Pre-
training the model on large document datasets with
multimodal features could potentially improve the
model’s performance.
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A Datasets

FUNSD consists of 199 forms annotated with 4 en-
tity types, where each entity type can correspond to
multiple values. Each image of the dataset contains
many value-type pairs and the task to perform is
entity labeling.

SROIE contains 626 receipts for training and
347 receipts for testing and each receipt has four
entity types for information extraction. Unlike
FUNSD, SROIE focuses on key entity extraction
from the document, where there could be a lot
of unrelated entities. The model performs entity
extraction on this dataset and is evaluated on the
mentioned four entity types.

CORD has 800 scanned receipts for the training
set, 100 for the validation set, and 100 for the test
set. There are in total 4 main categories in this
dataset, which are further classified into 30 subcat-
egories, such as menu name under menu category,
total price under total category etc. Similar to the
FUNSD dataset, the task is entity labelling.

B Case Study

We provide more qualitative examples on the
SROIE dataset to validate the effectiveness of
GenKIE. In subfigure (d), an entire word IPOH

is intentionally removed from the end of the ad-
dress line, leaving OCR to recognize a blank string,
GenKIE is still able to reconstruct the word thanks
to the powerful generative capability. It’s worth
mentioning that subfigures (e) and (f) are failure
cases, in which GenKIE generates wrong entity
values even if the OCR result is correct. This is rea-
sonable in that OCR errors could influence model
training and lead the model to learn wrong features.

C Prompt Construction

The prompt is intended to be precise and simple
to not incur any semantic ambiguity and linguistic
overhead. One strategy to construct the prompt for
the entity extraction task is first identifying all the
entity types in the document. Then for each entity
type, e.g. A, we can either construct the template
prompt such as “A is [SEP]" and “A: [SEP]" or
the question prompt such as “What is A?" and “A
is ?". And we append the prompt to the end of
the document transcript to form a training instance.
For the entity labeling task, we use the entity value
to construct the prompt and the same strategy can
be applied.

D Zero-Shot and Few-Shot Entity
Extraction

To further test our model’s generalization abil-
ity, we conduct entity extraction experiments un-
der zero-shot and few-shot settings on the SROIE
dataset.

D.1 Experimental Settings
In each experiment, we select one entity type as an
unseen type and the other types as common types.
To simulate the zero-shot setting, we remove all
training instances with unseen types. For the few-
shot setting, we only keep k training instances for
the unseen type (denoted as k-shot). We evaluate
the performance only for those unseen types in the
test dataset with the F1 score.

D.2 Experimental Results
Table 6 shows the results of zero/few-shot experi-
ments. Performance of GenKIE is relatively lim-
ited compared to full-shot training. However, for
entity types with common semantics such as date,
few-shot training can significantly boost the perfor-
mance, which justifies the strong generalizability
of the model.
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Figure 5: Qualitative examples of the entity extraction task on the SROIE dataset. We compare GenKIE with
LayoutLMv2. In subfigures (a) to (d), GenKIE correctly fixes the OCR mistakes. In subfigures (e) to (f), GenKIE
generates the wrong entity values even though there are no OCR errors. Best viewed in colour.

Entity Type 0 shot 1 shot 5 shot 10 shot full shot

company 4.0 3.7 34.18 42.43 96.97
address 3.9 3.6 12.38 55.60 97.22
date 3.2 14.53 77.21 78.21 97.45
total 5.0 4.9 45.92 66.33 97.83

Table 6: Results of zero/few-shot entity extraction on
SROIE.
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