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Abstract

Automatically generated reports from medi-
cal images promise to improve the workflow
of radiologists. Existing methods consider an
image-to-report modeling task by directly gen-
erating a fully-fledged report from an image.
However, this conflates the content of the re-
port (e.g., findings and their attributes) with its
style (e.g., format and choice of words), which
can lead to clinically inaccurate reports. To ad-
dress this, we propose a two-step approach for
radiology report generation. First, we extract
the content from an image; then, we verbalize
the extracted content into a report that matches
the style of a specific radiologist. For this,
we leverage RadGraph—a graph representation
of reports—together with large language mod-
els (LLMs). In our quantitative evaluations, we
find that our approach leads to beneficial per-
formance. Our human evaluation with clinical
raters highlights that the AI-generated reports
are indistinguishably tailored to the style of in-
dividual radiologist despite leveraging only a
few examples as context.

1 Introduction

Generating radiology reports from medical images
is a crucial task in the field of medical imaging.
For human interpreters to write such reports is not
only time-consuming and labor-intensive but also
requires a high level of expertise (Hartung et al.,
2020). Furthermore, these reports are often subject
to inter-observer variability, potentially compro-
mising the consistency and accuracy of the reports’
findings. As a result, there is a growing interest
in methods for automated radiology report genera-
tion, which can alleviate these issues and improve
overall efficiency of the diagnostic process.

Recent advances in large language models
(LLMs) have shown great potential for generating
high-quality text, with the ability to customize out-
puts based on user-specified instructions (Brown
et al., 2020b). These models have been utilized to

rephrase existing text, paving the way for new ap-
proaches to automated report generation in radiol-
ogy. However, despite the promise of LLMs, their
application to this task is not without challenges.
One principal concern is their tendency to ‘hallu-
cinate’, i.e., to generate false information (even
if plausible sounding), which can be particularly
problematic in high-stakes settings such as when
generating reports from medical images.

Previous attempts at automated report genera-
tion have largely focused on approaches that aim to
produce fully-fledged reports directly from medical
images (i.e., a image-to-report modelling task) (Al-
laouzi et al., 2018; Chen et al., 2020; Wang et al.,
2022a). However, this conflates the content of the
report (i.e., the radiology entities and attributes that
are described) with its style (i.e., the complement
of radiology entities and attributes, or everything
needed in terms of language, grammar, and struc-
ture to formulate a fully-fledged report, on top of
the content representation), which limits the flexi-
bility and applicability of such models.

This problem is also reflected in the employed
evaluation metrics of existing approaches. They
frequently optimize for traditional natural language
processing (NLP) metrics, such as BLEU, ROUGE,
or METEOR, which measure the similarity of the
generated report to a reference report based on lex-
ical overlap. These metrics, while generally useful,
may not correlate with the clinical correctness or
usefulness of the report (Yu et al., 2022). Previous
work has demonstrated that optimizing for clinical
metrics that measure the content’s relevance, such
as the RadGraph scores (Jain et al., 2021), is crucial
in generating reports that accurately represent the
image findings. The RadGraph score gauges simi-
larity in extracted radiology entities and relations
with a ground truth annotation. This emphasizes
the report’s clinical content as opposed to style or
lexical overlap, and makes it an amenable mea-
sure of the report’s usefulness and completeness in
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clinical practice.

Here, we propose to generate radiology reports
as a two-step procedure for disentangling report
content and style. In the first step, a dedicated
model is trained to extract pure content from the
image. Specifically, it generates a structured repre-
sentation (called RadGraph) of the entities and at-
tributes that are present in the image. In the second
step, a frozen LLM generates a stylized report from
this structured representation. Given a few report
examples as context, the LLM can on-the-fly adapt
the report style closely to the style of a target ra-
diologist or hospital template for whom the report
should be drafted. This model stylization could
offer several advantages for radiology workflows:
flexibility, in generating reports targeted to their
readership, such as ones with less jargon that are
more accessible to patients; consistency, in ensur-
ing clear communication between a radiologist and
the referring physician, who may be accustomed to
a particular style of reporting; and emphasis on pre-
ferred information, in highlighting findings most
relevant to a specialist’s scope of practice (e.g.,
follow-up on a patch of pneumonia, or the correct
location of pacing lead in the heart).

In the first step of our approach, we alter the
supervision signal of an image-text model to a se-
rialization of the clinical entities (as captured in
RadGraph) and their attributes, rather than the full
report text. This step ensures the content extraction
model focuses only on generating the report’s clin-
ical content, measured by RadGraph score, rather
than optimizing for traditional NLP metrics such as
BLEU that may not correlate with the report’s clin-
ical relevance. By generating the clinical content
first, we prioritize the report’s clinical usefulness
over its stylistic quality, which can be improved
and even personalized in the second step.

For the second step, we leverage GPT-3.5 (a gen-
erative LLM developed by OpenAI) to transform
the predicted serialization of clinical entities and
attributes from the image into a styled radiology
report (Brown et al., 2020a). These models have
shown great promise in generating high-quality
text (Anil et al., 2023), including summaries and
paraphrases of existing text (Li et al., 2023a), which
we can use to inject a hospital-specific style, as well
as to enhance readability and understandability. By
separating the content generation and style injec-
tion steps, we can ensure the model optimizes for
the relevant criteria for each step, resulting in a

high-quality report.
Our approach addresses the limitations of end-to-

end image-to-report generation, as the LLM does
not need to suggest facts about the image. Instead,
it can focus on rephrasing the structured set of enti-
ties and attributes that were first derived from the
image and infuse the desired style into the report.
At prediction time, the LLM in-context learns a
serialization-to-report mapping from a few exam-
ples of a target report writing style. Our method not
only offers a novel solution to the challenges posed
by previous approaches but also enhances the cus-
tomization and adaptability of radiology reports
generated by LLMs.

This paper makes the following contributions:

• First, we develop a method for extracting
structured content—that is, a serialized ver-
sion of RadGraph—from radiology images.

• Second, we propose a strategy for generating
stylized reports from this extracted content by
means of in-context learning from few style-
specific example reports.

• Third, our overall system (combining content
extraction and style generation) achieves com-
petitive performance at radiology report gen-
eration.

• Fourth, in a human style evaluation clinical ex-
perts were not able to distinguish real reports
from AI-generated ones that were adapted to
the writing style of individual radiologists.

2 Related Works

2.1 Medical Report Generation

Medical report generation (MRG) has seen a re-
cent insurgence in the field of medical AI. Early
works (Allaouzi et al., 2018) adhere to the meth-
ods of image captioning models (Vinyals et al.,
2015; Xu et al., 2015), leveraging deep CNNs to
extract image features and RNNs to generate text
descriptions in an encoder-decoder fashion. Mean-
while, emerging in several works was an auxiliary
classification task to predict certain medical abnor-
malities, with the aim of more structured guidance
for report generation (Shin et al., 2016; Wang et al.,
2018; Yin et al., 2019; Yuan et al., 2019). Later,
the use of the attention mechanism in MRG sys-
tems became increasingly prevalent (Jing et al.,
2017; Chen et al., 2020). To further bridge visual
and linguistic modalities while incorporating med-
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Figure 1: Overview of our two-step pipeline for generating radiology reports (right panel) as contrasted with the
standard "image-to-report" strategy for directly generating radiology reports from X-ray images (left panel). During
training, we consider a set of paired chest X-ray images and radiology reports. We preprocess the reports by
extracting its content in the form a graph representation (RadGraph). We serialize the RadGraph into a condensed
summary of the clinical content of the report. From there, this RadGraph serialization is used as the supervising
signal in an image captioning model. For illustration purposes, we omit to display the text encoder that augments
both captioning models with clinical context. At inference time, a new chest X-ray is fed through the model to
generate a serialized RadGraph. By providing few example reports of a specific radiologist (and extracting their
RadGraphs), an LLM can in-context learn to verbalize the structured content extracted from the image into a
fully-fledged report in the style of the target radiologist.

ical domain knowledge, various kinds of knowl-
edge graphs have been explored for use (Li et al.,
2019, 2023b; Zhao et al., 2021; Zhang et al., 2020;
Liu et al., 2021). In our study, we use the classic
encoder-decoder architecture, as it is a common
denominator of many MRG approaches.

Subsequent studies acknowledge the constraints
of traditional natural language generation metrics
when assessing medical reports, prompting a grow-
ing emphasis on ensuring clinical accuracy. Rad-
Graph (Jain et al., 2021) is a dataset of entities and
relations in full-text chest X-ray radiology reports
based on a novel information extraction schema.
(Yang et al., 2022) adopts the knowledge graph
provided by RadGraph as general knowledge em-
bedding. (Wang et al., 2022b) employed a clas-
sification loss for medical concepts provided by
RadGraph. (Delbrouck et al., 2022) improves the
factual completeness and correctness of generated
radiology reports with a well-designed RadGraph
reward. Most existing methods develop metrics
around RadGraph and integrate that into the objec-
tive function; our approach, on the other hand, di-

rectly trains the model to generate a serialized (i.e.,
text) representation of RadGraph as we decouple
the content and style generation and focus solely
on the clinical correctness during the content gen-
eration stage. Additionally, serialized RadGraphs
allow us to juxtapose dense content representations
with stylized reports which enables style adaptation
via in-context learning.

2.2 Large Language Models
Recent watersheds such as the Transformer ar-
chitecture (Vaswani et al., 2017), generative pre-
training objectives (Radford et al., 2018), and in-
creased computing power have facilitated the train-
ing of large language models comprising billions of
parameters (Brown et al., 2020a; Chowdhery et al.,
2022; Touvron et al., 2023). These advances have
significantly burgeoned model capability in tasks
such as translation, summarization, and generating
long text that closely resembles human language.

In 2021, OpenAI announced GPT-3 (Brown
et al., 2020a; Floridi and Chiriatti, 2020), a gener-
ative language model featuring an unprecedented
175 billion parameters. Their study introduces in-
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Figure 2: Overview of the RadGraph serialization. In the RadGraph entities, ANAT-DP, OBS-DP, and OBS-DA
refer to present anatomical, present observational, and absent observational entities, respectively. The token counts
refer to the averages across the test set.

context learning, the ability of LLMs to learn to
perform a task simply by being provided a few ex-
amples as context—without any parameter updates.

LLMs have also demonstrated great potential in
the medical domain. For instance, GPT-4 has been
employed to post-hoc transform free-text radiol-
ogy reports into structured reports (Adams et al.,
2023). As for LLM-based MRG systems, Wang
et al. (2023) utilized ChatGPT to generate medi-
cal reports based on features extracted by neural
networks (e.g., disease classifier). However, their
approach does not exploit in-context learning and
thus has limited control over format and style.

3 Methods

3.1 Dataset
Our study makes use of the MIMIC-CXR (John-
son et al., 2019) and RadGraph (Jain et al., 2021)
datasets. MIMIC-CXR is a large dataset of 377 110
chest radiographs imaged at Beth Israel Deaconess
Medical Center from 227 835 studies, with free-
text medical reports. The RadGraph dataset is pub-
licly available and comprises radiology text reports
and corresponding knowledge graphs (Figure 2).

To preprocess reports, we extract only Findings
and Impressions, as other sections contain details
that cannot be readily referenced from the image,
such as patient demographics or lab results from
different procedures. Findings refer to the direct
observations from the image (e.g., opacity of lungs,
catheter placement), while Impression summarizes
the most urgent inferences and diagnostically rele-
vant findings (e.g., presence of pneumonia).

3.2 RadGraph
As notation, a RadGraph refers to any knowledge
graph within the titular dataset. The nodes of a

RadGraph are either anatomical (e.g, lungs, cardio-
mediastinal, carina) or observational entities (e.g.,
acute, abnormality). The edges are directed and
heterogeneous, capturing three types of relations—
modify, located at, suggestive of—between entities.
Nodes and edges are automatically obtained via a
named entity recognition and relation extraction
model on MIMIC-CXR reports, employing the DY-
GIE++ framework from Wadden et al. (2019). This
embodies the Report → RadGraph preprocessing
step, or content extraction in (Figure 1). We dis-
tinguish this from content generation (Section 3.4),
which is the transformer-based prediction of serial-
ized content based on the image.

3.3 RadGraph Serialization

We serialize each RadGraph into a structured text
representation (Figure 2), which serves as the super-
vision label for the content generation model (Sec-
tion 3.4). This serialization acts as a dense con-
tent representation whose advantages over the free-
text report include conciseness and the pruning
of non-semantic content (e.g., style-filler words,
radiologist-specific phrasing) from the report. The
aim is to focus the model purely on generating the
content backbone at this step, and defer the style in-
jection to a later stage of the pipeline (Section 3.5).

To exploit the graph structure of the input Rad-
Graph, we first extract the weakly connected com-
ponents (step (3) in Figure 2). These are the maxi-
mal subgraphs where any two nodes can be reached
through a path of undirected links. Each compo-
nent is thus a separate network of spatially and
medically related entities, segmenting the chest X-
ray’s content into distinct regions of interest that
can be serialized in parallel.

For each component, we create a text span of all
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labelled entities. The keywords no and maybe are
prepended to absent and uncertain entities, respec-
tively. The entity ordering follows the syntax of the
corresponding tokens in the report to ensure read-
ability and lexical fidelity. When the report con-
tains both Findings and Impression sections (Fig-
ure 2), we analogously stratify the components
based on their referenced location in the free-text
report. This is crucial as the content representation
should carefully distinguish between factual im-
age information (Findings) and clinical inferences
(Impressions), even if strongly supported.

Within Findings and Impression, the components
are concatenated and separated by delimiters. The
two sections are combined into a single text, which
is the report serialization and densely characterizes
the full chest radiograph. In the case where the
report is not bipartite (e.g., only Impressions), we
unify the components under a singular section.

3.4 Content Generation Model

For the content generation model, we leverage the
encoder-decoder architecture that has been widely
employed in image-to-text systems. An image en-
coder takes chest X-ray images as the input and
encodes them into a visual feature representation.
In parallel, a text encoder reads clinical documents,
such as doctor indications, and transforms the tex-
tual content into dense feature vectors.

The visual and text embeddings are then added
together and passed through a LayerNorm oper-
ation to form contextualized embeddings. The
fused embeddings are then fed into the report de-
coder, which generates serialized RadGraph word-
by-word. The main architecture is adapted from
(Nguyen et al., 2021), but we simplified it by re-
moving the classifier and the interpretation module
to eliminate as many potential confounders as we
can since our goal is to evaluate the influence of
the supervision signal.

Image Encoder We adopt a DenseNet-121
(Huang et al., 2017) model pre-trained on the Ima-
geNet dataset as the image encoder. For each input
chest X-ray image I , it extracts a feature vector
d ∈ Re where e is the embedding dimension. If
an imaging study consists of more than one image,
the feature will be obtained via max-pooling across
all feature vectors extracted from each image. d is
then transformed into n low-dimensional disease
representations Dimg ∈ Rn×e.

Text Encoder We use a Transformer encoder to
extract features H = {h1, h2, ..., hl} from the clin-
ical document text input with length l consisting of
word embeddings {w1, w2, ..., wl} where wi ∈ Re

is the vector representation of the i-th word in the
text, e is the embedding dimension and hi ∈ Re

is the attended features of the i-th word to other
words in the input document. The features are
then transformed into summarization denoted as
Q = {q1, q2, ..., qn} representing a set of n disease-
related topics (such as pneumonia or atelectasis)
to be queried from the document, as proposed in
(Nguyen et al., 2021),

Dtxt = Softmax(QHT )H (1)

where matrix Q ∈ Rn×e is constructed by verti-
cally stacking {q1, q2, ..., qn} where each vector
qi is initialized with random values and subse-
quently refined through the attention process, and
H ∈ Rl×e is formed by stacking {h1, h2, ..., hl}.

Fused Embedding We obtain the final, contex-
tualized embedding D ∈ Rn×e by entangling the
visual embedding Dimg and text embedding Dtxt,

D = LayerNorm(Dimg +Dtxt) (2)

where D will be the input for the report decoder.

Report Decoder We use the Transformer as the
backbone of our report decoder to generate long,
robust text. A total of 12 decoder components are
stacked together where each component consists
of a masked multi-head self-attention component
followed by a feed-forward layer. The report gener-
ation objective (Equation 3) is defined as the cross-
entropy loss between predicted words p and ground
truth y. Here, we denote pij as the confidence of
selecting the j-th word of vocabulary V in the i-th
position in the generated text, and yij as a binary
indicator of whether the j-th word appears in the
i-th position of the ground truth.

L = −1

l

l∑

i=1

v∑

j=1

yij log(pij) (3)

3.5 Style Generation Step

We describe the process of prompting a pre-trained
LLM to generate reports from the serialization.
This enables adapting the generation to a spe-
cific style by supplying the LLM with relevant
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in-context examples. Each example is a pair: seri-
alization si from the RadGraph, and corresponding
ground truth report ri under the desired style.

We use the gpt-3.5-turbo model from OpenAI,
a dialogue-based LLM that accepts a sequence
of messages as input, rather than a singular text
prompt. This is useful for inserting style pairs
seamlessly; we relay them as a back-and-forth con-
versation between user and assistant roles, where
a user role supplies serialization si and an assis-
tant responds with target report ri for the language
model to learn in-context.

The chain of K examples {(si, ri)}Ki=1 is pref-
aced by a system role message indicating the LLM
should act as the report-generating assistant, estab-
lishing its specific task within the radiology-based
dialogue. The remaining prompt is structured as
s1 : r1, s2 : r2, · · · , sK : rK , ŝeval : . At the end,
the model is given an evaluation serialization ŝeval
predicted from the chest X-ray image using our
content generation model, cuing the LLM to gen-
erate the corresponding report prediction r̂eval next.
Note that in the zero-shot case, the prompt is just
ŝeval : , with no preceding context examples.

3.6 Evaluation Metrics

We present a comprehensive quantitative evalua-
tion of our approach with commonly-used metrics
concerning both language fluency and clinical accu-
racy. For each metric, we display the mean x across
the n test reports, as well as the 95% confidence
interval (x± 1.96 · σ√

n
).

Natural Language Generation Metrics (NLG)
As for classical NLG metrics, we compute BLEU-
2 and BERT scores. However, these metrics have
relevant limitations due to focusing on lexical sim-
ilarity or general (non-clinical) semantics, respec-
tively, thereby lacking in the assessment of clinical
similarity (for more details, see Section A.5).

Clinical Accuracy Metrics CheXbert vector
similarity extends beyond BERT by utilizing
CheXbert, a model trained specifically on datasets
comprising chest X-rays. It computes the co-
sine similarity between the indicator vectors of 14
pathologies that the CheXbert labeler extracts from
machine-generated and human-generated radiol-
ogy reports. It is designed to evaluate radiology-
specific information but its evaluation is limited to
14 pathologies. To address this limitation, we also
adopt RadGraph F1 (Yu et al., 2022) that calcu-

lates the overlap in clinical entities and relations ex-
tracted by RadGraph from both machine-generated
and human-generated reports. In this study, we lay
emphasis on clinical metrics because we aim to
generate reports in different styles while keeping
accurate clinical information instead of reports that
lexically match the ground truth in the dataset.

3.7 Experimental Setup

We conduct four experiments to scrutinize each
individual step and overall performance of our pro-
posed strategy for report generation. This includes:

1. Image to Serialization: We evaluate content
generation model in terms of comparing the
content of the generated serialization with the
ground truth report.

2. Serialization to Report: Conditioning on a
strong image-to-serialization model, we eval-
uate LLM-based style injection by using the
ground-truth RadGraphs as input to the LLM.

3. End-to-end report generation: We evaluate
the pipeline end-to-end, feeding the image and
clinical context through the content generation
model and the generated serialization through
the LLM.

4. Human style evaluation: To evaluate the style
quality, we let physicians rate sets of 4 radiol-
ogy reports where 3 were written by the same
radiologists and 1 was AI-generated by our
method following the style of the radiologist.
The goal for the physicians is to detect the AI-
generated report and to justify their choice.

Baseline The baseline model is adapted from
(Nguyen et al., 2021), sharing the same architecture
as our image-to-serialization model (Section 3.4),
but its supervision target is the full report (Findings
and Impressions) instead of serialization. The train-
ing involves an identical parameter set as above.

Additional experimental details (training, hyper-
parameter search, and infrastructure) are provided
in Section A.1.

4 Results

4.1 Image to Serialization

We train two content generation models, one with
the full report as the supervision target, and the
other with the serialized RadGraph. In table 2, we
present the RadGraph F1 evaluation result on the
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Method Examples RadCliQ (↓) RadGraph F1 (↑) CheXbert (↑) BLEU (↑) BERT Score (↑)
Baseline — 3.553± 0.032 0.186± 0.005 0.352± 0.008 0.184 ± 0.005 0.378 ± 0.006

Ours 0 3.527± 0.027 0.228 ± 0.004 0.394 ± 0.008 0.162± 0.003 0.333± 0.004
1 3.512± 0.028 0.226± 0.005 0.393± 0.008 0.170± 0.003 0.343± 0.004
5 3.489± 0.028 0.224± 0.004 0.391± 0.008 0.177± 0.003 0.354± 0.004
10 3.485 ± 0.028 0.224± 0.005 0.390± 0.008 0.180± 0.003 0.357± 0.004

Table 1: Results for the end-to-end report generation. The baseline is the direct image-to-report transformer, i.e., the
content generation model trained to predict reports directly from image. Note that RadCliQ (lower is better) is the
most important metric as it best corresponds with radiologists’ quality assessment (Yu et al., 2022). Best row is in
bold. Rows leveraging in-context examples are grayed out, whereas the first two rows use the exact same input data.

MIMIC-CXR test set, comparing the outputs from
both models against the ground truth full report.

The comparison is suitable as RadGraph F1 is ag-
nostic of general lexical similarity, measuring only
overlap in radiology entities and relations extracted
from the text. We find the model trained on the se-
rialized RadGraph outperforms the model trained
on the full report. This verifies our assumption that
switching the supervision signal to the serialization
would help focus the model on generating clinical
content with greater accuracy and saliency.

Supervision Target RadGraph F1
Full Report 0.186± 0.005
Serialized RadGraph 0.221± 0.004

Table 2: RadGraph entity and relation F1 score of mod-
els trained on full report versus serialized RadGraph.

4.2 Serialization to Report

For selecting examples, we draw randomly from
the train split. This avoids patient overlap that
could unfairly benefit performance on test cases.
We compare the LLM-generated reports against
the ground truth reports. Results are provided (Ta-
ble 3) for varying numbers of in-context examples.
We observe strong performance across all metrics,
including a 0.722 RadGraph F1 mean in the zero-
shot regime. Furthermore, lexical overlap metrics
such as BLEU and BERT score saw noticeable im-
provement with more examples (20.2% and 15.7%
increases, respectively, from 0 to 10 examples).
This aligns with the aim of in-context learning to
improve the style fidelity of generated reports.

4.3 End-to-End Report Generation

We evaluate the end-to-end performance from chest
X-ray to report by concatenating the content gen-
eration step with the style generation step. The
results are presented in Table 1. We observe that
our two-step model surpasses the baseline (direct

image-to-report model) in clinical accuracy met-
rics (CheXbert similarity, RadGraph F1, RadCliQ),
even in the zero-shot style generation case. This
illustrates greater accuracy in extracting radiology
content from the chest X-ray, the central focus of
separating content generation from style injection.
Notably, RadCliQ is a composite metric found by
Yu et al. (2022) to best correlate with quality judge-
ment of human radiologists.

The primary contribution of more examples
is improving lexical and non-clinical NLG met-
rics (BLEU, BERT Score), similar to our findings
in the Serialization → Report step. However, they
remain slightly lower than those of the baseline.
A potential explanation is that during training, the
baseline is directly supervised with full reports,
while only the extracted content is available to our
content generation model—with the report itself
synthesized with an external, pre-trained LLM.

4.4 Human Style Evaluation

Four board-certified radiologists were instructed to
write chest X-ray reports in their usual style from
40 randomly selected chest X-ray images from the
MIMIC-CXR test set (Figure 4). As several chest
X-rays in the MIMIC-CXR dataset were within
normal limits or interval follow ups on intensive
care patients, duplicate or near-duplicate chest X-
ray reports were removed upon manual inspection.

The style generation step described in Section
3.5 was then used to produce AI-generated chest
X-ray reports in the style of each of the four ra-
diologists. From these radiologist-generated and
AI-generated chest X-ray reports, we created 23
sets of four chest X-ray reports for style evalu-
ation by physician evaluators (i.e., the target au-
dience for written radiology reports). In each set,
three reports (corresponding to three different chest
X-rays) from the same radiologist, and one AI-
generated report (from a fourth chest X-ray) in the
style of that radiologist were presented in random
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provide a context of k input / output pairs of serialized RadGraphs (dense content representation) together with the
corresponding stylized reports as written by R1. Next, to generate a report for a given image Ik, we feed the image
through our image-to-serialization model and use the generated RadGraph serialization (as indicated with a hat) as
the final query of the prompt. The LLM is then prompted to return a generated report in the style of R1. Panel c
illustrates the human evaluation. Physician raters are provided with problems each consisting of 4 reports, 3 written
by one radiologist and 1 AI-generated in the same radiologist’s style.

order. Three physician evaluators were asked to
identify the AI-generated report out of the four re-
ports and indicate whether report content, language,
or report structure contributed to their choice (for
more details, refer to Section A.3).

A one-sided Z-test was performed for the pro-
portion of AI-generated reports correctly identified
by the three evaluators with a null hypothesis of
25%, corresponding to random chance, and an al-
ternative hypothesis of >25%, corresponding to AI-
generated reports being identified at a rate greater
than that of random chance. Evaluators A, B, C
correctly identified 5 out of 23 (21.7%), 5 out of
23 (21.7%), and 4 out of 23 (17.4%) AI-generated
chest X-ray reports, respectively, for a mean ac-
curacy of 20.3%. The one-sided Z-test produced
p-values of 0.648, 0.648, and 0.832 for Evaluators
A, B, and C respectively, and 0.835 when pooling
all evaluators together.

One potential explanation for why evaluators
identified <25% of AI-generated reports (worse
than random), is variance in radiologist style. For
example, our radiologists would sometimes alter-
nate between using parentheses to highlight the
chest X-ray view (e.g., “Chest X-ray (PA and lat-
eral views):”) and not using any parentheses (e.g.,

“Chest X-ray PA and lateral views:”). Human eval-
uators may use particular heuristics to call a report
AI-generated, when faced with similar appearing
reports. However, if they are not reflective of the
truth, this may result in accuracy less than random.

Figure 4: Human Style Evaluation: All evaluators iden-
tified the AI-generated chest X-ray report at rates lower
than 25% (corresponding to random chance).

5 Discussion

We presented a novel approach for radiology report
generation that disentangles the report’s content
from its style. Our experiments showed that our
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method offers several advantages over the prevail-
ing paradigm of direct image-to-report modeling.
First, training a content extraction model to predict
a serialized RadGraph represention from the input
image helps focusing the model on the clinically
relevant content which is reflected in improved per-
formance metrics (Table 2). Second, when concate-
nating the content generation step with the style
injection step, we observe favourable performance
compared to the direct image-to-report baseline (Ta-
ble 1). Third, by in-context learning the radiologist-
specific mapping from serialized RadGraph to re-
port, our method enables the generation of high
quality reports that are tailored to the individual
radiologist to the degree of indiscernability using
just a few example reports. To ultimately deter-
mine the clinical utility of our method, deployment
studies will be an exciting venue for future work.
Another promising direction would be to expand
our two-step report generation paradigm to other
modalities such as radiology mammograms and
magnetic resonance imaging (MRI).

6 Limitations

A limitation of our approach is that it relies on the
accuracy and effectiveness of the initially extracted
RadGraph representation, as this serves as a key su-
pervision signal in our model. Notably, RadGraphs
are extracted at inference time using an automated
model rather than manual expert labelling. The
model achieves high performance in entity and re-
lation extraction (Jain et al., 2021) but is susceptible
to error, particularly with report inputs that contain
rarer medical entities or ambiguous observations.

Furthermore, due to our employed LLM being
served by a third party (OpenAI), reproducing our
results comes at the financial costs of using Azure
OpenAI’s service. Another consequence of relying
on this service is that we cannot guarantee the de-
terministically exact reproduction of our findings,
as the served LLM models may change and poten-
tially degrade over time—for instance, if models
are replaced by distilled versions thereof.

7 Ethics Considerations

A principal ethical consideration is the de-
identified, credentialed medical data we worked
with. In particular, responsible usage policy of the
MIMIC-CXR dataset (Johnson et al., 2019) pro-
hibits sharing access to third parties. This disquali-
fies the use of ChatGPT or large language model

APIs for prompting models to generate radiology
reports from our content representations. How-
ever, cloud-based services are allowed, including
the Azure OpenAI platform, which we use for de-
ploying and prompting the gpt-3.5-turbo model. A
stipulation is the monetary service costs, which are
counted at a rate per one thousand tokens. These
can pose financial barriers to equitable access to
high-end language models (which are typically
more expensive), as well as usage at scale.

Furthermore, as discussed in the Introduction
section, the use of large language models is ac-
companied by their risks of “hallucination” and
generating false or misleading content. These risks
can be amplified in the critical setting of medical
report generation. To mitigate them, we prompt the
LLM not to synthesize medical content, but rather
to rephrase existing content into readable, stylized
prose. We assist the model through providing con-
tent serialization to report pairs as in-context ex-
amples. This is our style injection step, which we
intentfully separate from the content generation
step to reduce the opportunity for LLM hallucina-
tion when generating the full report prediction.
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A Appendix

A.1 Further experimental details

In the following, we provide additional details
about our experimental setup including information
about the model training and used infrastructures.

Training The image-to-serialization model is
trained and evaluated on the official train/test split
of the MIMIC-CXR (v2.0.0) dataset with 213 501
and 2 799 chest X-ray reports, respectively. The
ground-truth RadGraph serialization associated
with each study is taken from the RadGraph dataset.
The model is trained for 25 epochs, with a batch
size of 16, a learning rate of 0.0001, an embedding
size of 512, a weight decay of 0.001, a dropout rate
of 0.1, and 12 transformer blocks in the decoder.

Hyperparameter Search We optimized our hy-
perparameters for the content generation model
through grid search with the help of WandB. Fig-
ure 5 visualizes the performance of the model with
a different set of hyperparameters. We search the
learning rate from [0.001, 0.0001], embedding di-
mension from [256, 512], number of transformer
decoder components from [6, 12], and weight de-
cay rate from [0.001, 0.0001, 0].

Infrastructure The image-to-serialization model
was trained on an AWS g5.2xlarge instance with
one NVIDIA A10G Tensor Core GPU. It was
trained for 25 epochs or roughly 50 hours. Evalua-
tion was dispatched on two NVIDIA RTX A4000
GPUs with 16 GB of memory. We use the Azure
OpenAI service to access the gpt-3.5-turbo lan-
guage model, with a cloud-based deployment.
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Figure 5: Sweeps of our hyperparameter search: we use
validation loss as the metric to search for best hyperpa-
rameters.

A.2 Serialization to Report Results

Table 3 shows the quantitative results of our Seri-
alization to report generation task as described in
Section 4.2.

A.3 Human Style Evaluation

Here, we provide further results on the human style
evaluation of the generated reports. To reiterate the
approach, three physicians were tasked to identify
an AI-generated report within a set of four radiol-
ogy reports: three were written by the same radiolo-
gist and the fourth one (appearing in random order)
was generated using our approach using in-context
examples from the same radiologist.

Figure 6 shows the cumulative count of expla-
nations stratified by clinical evaluator (rows), as
well as by whether the selection was correct or in-
correct (columns). Language (e.g., word choice,
grammar, and/or writing style) was the primary
heuristic that evaluators used to decide whether a
report was human-generated or AI-generated, fol-
lowed by content (e.g., missing important details
or including extraneous details), and structure (e.g.,
different use of numbering or section headings).

A.4 LLM Prompting

Here, we illustrate a template of our dialogue-based
prompt for the LLM to generate a report prediction,
with 2-shot learning to adapt to a report style. For
notation, <SERIALIZATION i> and <REPORT i>
are placeholders for the i-th serialization and cor-
responding ground truth report, respectively, and
<EVAL SERIALIZATION> is the serialization pre-
dicted from an image in the evaluation set.

• System: You are a helpful assistant that gen-
erates chest x-ray reports from key words.

Figure 6: Human Style Evaluation Explanations: When
style evaluators attributed their choice of AI-generated
report, they attributed it primarily to language and
structural differences between human-generated and
AI-generated reports.

• User: Generate a chest x-ray report from the
following key words:
<SERIALIZATION 1>

• Assistant: <REPORT 1>

• User: Generate a chest x-ray report from the
following key words:
<SERIALIZATION 2>

• Assistant: <REPORT 2>

• User: Generate a chest x-ray report from the
following key words:
<EVAL SERIALIZATION>

The LLM will proceed to generate its report pre-
diction from the evaluation serialization, which we
compare against the corresponding ground truth
report in the test set.

A.5 Natural Language Generation Metrics

BLEU-2 is widely used in machine translation
tasks; it measures the similarity between a can-
didate translation and one or more reference trans-
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Examples RadCliQ (↓) RadGraph F1 (↑) CheXbert (↑) BLEU (↑) BERT Score (↑)
0 1.357± 0.030 0.722± 0.006 0.843± 0.007 0.388± 0.005 0.568± 0.005
1 1.234± 0.031 0.723± 0.007 0.847± 0.007 0.423± 0.005 0.614± 0.005
5 1.125± 0.030 0.731± 0.006 0.852± 0.007 0.460± 0.006 0.652± 0.005
10 1.107 ± 0.030 0.733 ± 0.006 0.853 ± 0.007 0.466 ± 0.006 0.657 ± 0.005

Table 3: Results for the Serialization → Report generation task, using the ground truth serialization in place of the
predicted one. The goal of this experiment is to evaluate the style generation in isolation, assuming a very strong
content generation step (here the ground truth serialization of RadGraph). Note a lower RadCliQ score is better.
The best row is bolded. Leveraging more in-context examples leads to better performance across all metrics.

lations by comparing their bigram overlaps. Al-
though BLEU-2 is a fast and reliable metric, it
possesses a few limitations, e.g., it does not take
into account synonymous words and the proper use
of grammar. We thus also adopt the BERT score, a
recently proposed metric for assessing the quality
of machine-generated text. It takes into account
the semantic similarity between the generated text
and reference text by calculating the contextual
embeddings of both texts using BERT and measur-
ing their cosine similarity. Nevertheless, BERT is
a general-purpose metric and not at all optimized
for capturing clinical semantics and radiological
findings. This is why the included clinical accu-
racy metrics are most salient to our quantitative
evaluation of radiology report generation.

14688


