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Abstract

Recently, large language models (LLMs) have
gained much attention for the emergence of
human-comparable capabilities and huge po-
tential. However, for open-domain implicit
question-answering problems, LLMs may not
be the ultimate solution due to the reasons of: 1)
uncovered or out-of-date domain knowledge, 2)
one-shot generation and hence restricted com-
prehensiveness. To this end, this work pro-
poses a gradual knowledge excavation frame-
work for open-domain complex question an-
swering, where LLMs iteratively and actively
acquire external information, and then reason
based on acquired historical knowledge. Specif-
ically, during each step of the solving process,
the model selects an action to execute, such
as querying external knowledge or performing
a single logical reasoning step, to gradually
progress toward a final answer. Our method
can effectively leverage plug-and-play external
knowledge and dynamically adjust the strategy
for solving complex questions. Evaluated on
the StrategyQA dataset, our method achieves
78.17% accuracy with less than 6% parame-
ters of its competitors, setting new SOTA for
∼10B-scale LLMs.

1 Introduction

Recently, powerful LLMs such as ChatGPT,
GPT4 (OpenAI, 2023), PaLM (Anil et al., 2023),
LLaMA and its variances (Touvron et al., 2023;
Taori et al., 2023), exhibiting human-alike ability
in conversation. It is believed the LLMs memorize
knowledge in their parameters from the vast pre-
training data (Moiseev et al., 2022; Roberts et al.,
2020). Nonetheless, they could still fail to solve
open-domain implicit complex questions.

In real-world applications, users might ask ques-
tions in arbitrary domain that requires specific
knowledge, and expect the model to return not only
syntactically fluent but also factually correct an-
swers. Beyond open-domain, the questions can

also be multi-step and implicit, consisting of multi-
ple sub-questions that cannot be directly identified
from the question language, but require logical
reasoning to form a problem-solving strategy. Be-
cause of the above challenging characteristics, how
to answer open-domain implicit complex questions
remains an open question.

For example, in the upper part of Fig. 1, an im-
plicit complex question “Did any citizen of San
Antonio vote for Boris Johnson" confuses the LLM
because there is no direct information about in-
dividual voting history. However, the strategy of
searching voting history is invalid does not mean
the question is unsolvable. On the top right corner
of Fig. 1, the question can be decomposed into sub-
questions about Boris Johnson and San Antonio,
respectively, and a strategy of checking citizenship
can be easily unsealed from the background knowl-
edge (marked in red). Following the strategy, the
answer is straightforward because US citizens can-
not vote in UK elections. Now if the question is
re-asked with the hint of ‘citizenship contradiction’,
the LLM can successfully recall its inner knowl-
edge about Boris Johnson and San Antonio, hence
correctly answering the question. However, differ-
ent from existing works that try to design manual
prompts (Wei et al., 2022b; Lyu et al., 2023) to
serve as the hint in the above example, we want to
stress that this approach is not always valid. Be-
cause the key ‘citizenship contradiction’ is not di-
rectly linked to the question text, but relies on the
gradually increased knowledge during the solving
process (e.g., background about Boris Johnson and
San Antonio).

Another problem for solving open-domain com-
plex questions with LLMs is the finite pretrained
knowledge. In the bottom part of Fig. 1, we rewrite
the question with two less well-known entities out
of the LLM’s knowledge scope, and it fails again
due to limited knowledge.

Therefore, in this work, we propose a pipeline
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Figure 1: LLMs fail to solve open-domain complex questions due to unrecognized entities and implicit strategies.
(1) In the upper part, the LLM fails to answer the question with the one-shot generation, for there is no off-the-shelf
answer or evidence to this question. However, the question can be decomposed into several sub-questions and be
solved once the citizenship contradiction is identified. If the hint of ‘citizenship contradiction’ is also given, the
LLM can successfully solve the question with the inner knowledge now. (2) But for the bottom case with less
well-known entities, the LLM fails again due to a lack of specialized knowledge about ‘Aisin-Gioro Yizhu’ and
hence rejects to answer. Moreover, the strategy of the ‘political system’ is not likely to be discovered from the
question text only, unless enough knowledge is provided. ‘Citizenship contradiction’ is also a possible solution.

named Gradually Excavating External Knowledge
(GEEK) to address the main challenges of open-
domain implicit complex question answering: ex-
ternal knowledge, multi-step complexity, and im-
plicit logic strategy. Given an open-domain multi-
step implicit question, GEEK progressively decom-
poses the problem into several sub-questions, and
iteratively calls different modules for answering
the sub-questions. In the end, a final answer is con-
cluded, synthesizing the historical sub-questions
and their corresponding answers. Specifically,
GEEK consists of three modules, core model, re-
triever, and extractor. The core model handles
logical reasoning and selects an action to perform
at each time step, planning the solving strategy
purposefully. The retrievers allocate relevant con-
text paragraphs from the external corpus (e.g.,
Wikipedia) to provide trustworthy knowledge, and
the extractor condenses the textual knowledge into
brief fact sentences.

During intermediate steps, GEEK can adjust the
rest sub-questions based on the gradually increased
external knowledge, hence forming a valid strat-
egy like in Fig. 1. Considering there usually exist
multiple valid solutions for a question, we enable

GEEK to branch out different sub-questions during
the solving process, thus exploring a strategy space
and improving the final accuracy.

We verified GEEK on the challenging Strate-
gyQA dataset (Geva et al., 2021), which consists of
open-domain multi-step implicit questions. GEEK
achieves 78.17% accuracy with less than 6% param-
eters of its competitors, refreshing the new SOTA
for LLMs under ∼300B scale.

Our main contributions are threefold:

• We propose GEEK, a novel pipeline to solve
open-domain complex questions by progres-
sively acquiring external knowledge and ad-
justing its strategy.

• GEEK is able to explore a strategy space to
solve the question with different approaches,
hence improving the overall performance.

• Our method is evaluated on the challenging
StrategyQA benchmark, achieving 77.73% ac-
curacy, surpassing vanilla LLMs such as Chat-
GPT with 94% parameters less.
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2 Related Work

Retrieving external information is a widely
adopted method that can provide flexible knowl-
edge to extend LLMs for specific-domain tasks.
(Izacard and Grave, 2020a) leverages retriev-
ers (e.g., BM25 (Robertson et al., 1995) or
DPR (Karpukhin et al., 2020)) to collect relevant
passages, and fuse them in the decoder for a fi-
nal answer. Similarly, (Zhu et al., 2021) proposes
AISO, which performs multi-round retrieval with
different retriever models of BM25, DPR, and
LINK. It then synthesizes the retrievals for a com-
prehensive conclusion. HopRetriever (Li et al.,
2021) adopts a multi-hop manner, which identifies
significant entities in previous retrievals, and then
uses the entities as queries for next step retrieval.

Multi-step Implicit Question Answering involves
complex questions that consist of several single-
step questions, whose answers can be directly
founded in reference context or inferred via logical
deduction. The question is implicit if the decompo-
sition strategy cannot be formulated merely from
the question text. StrategyQA (Geva et al., 2021) is
a dataset for multi-step implicit question answering,
including human-annotated solutions in the form
of decomposition questions and corresponding fact
sentences from Wikipedia. However, while hu-
man beings can achieve 87% accuracy (Geva et al.,
2021), the dataset has proved to be very challeng-
ing for language models to solve. Merely improv-
ing the quality of retrieval (Liang et al., 2022) or
decomposition strategy (Katz et al., 2022) cannot
effectively boost final answer accuracy.

Several previous studies adopt the design of it-
erative retrieval and reasoning to solve multi-step
complex questions. IRGR (Ribeiro et al., 2022)
performs iteratively retrieval to search for suitable
premises. ReAct (Yao et al.) lets the model first
generate a reasoning sentence about what next ac-
tion (e.g., search via web API) to be performed, and
then execute the selected action. Maieutic Prompt-
ing (Jung et al., 2022) introduces a maieutic tree
that recursively entails component statements, and
uses the concept of ‘logical integrity’ to verify each
step. RR (He et al., 2022) combines CoT (Wei et al.,
2022b) with retrieval to verify the correctness of
the reasoning process, and achieved an accuracy of
77.73% on the StrategyQA dataset, the SOTA for
LLMs below ∼300B scale at that time.

Nonetheless, most of the previous studies us-

ing iteratively reasoning for multi-step question
answering only focus on datasets such as Hot-
potQA (Yang et al., 2018), which do not involve
implicit questions. Instead, their method assumes a
straightforward direction from one step to another.
For example, IRCoT (Trivedi et al., 2022) directly
uses the ‘thought’ (intermediate result) from the
last step as the query for next-step retrieval, which
highly relies on the strong connections between the
entities from each step. Different from the above-
listed methods, our GEEK modeling the process of
purposely excavating external knowledge by com-
posing sub-questions, and formulating a complete
strategy gradually during the solving process.

3 Problem definition

In this work, we focus on open-domain implicit
complex question answering. Given a question q,
the model is asked to derive the final answer z .
Specifically, q is open-domain and hence requires
some certain background facts to solve, denoted as
F = {fi}. The facts come from an external corpus
C (e.g., Wikipedia), not necessarily included in the
model’s pretraining dataset. The question q is also
multi-step, meaning that it can be decomposed into
several decomposition questions D = {di}. Each
di corresponds to a background fact fi. Noted that
D is usually implicit from q, which means some di
can only be formulated until enough facts Fi ⊂ F
is uncovered. Under the GEEK scenario, we define
the question state Q at step t as:

Qt = (q, {(d1, f1), ..., (dt−1, ft−1)}[, (dt, ft)])

, where the current decomposition dt and fact ft
may or may not have been decided yet. Q includes
the question q and historical exploration steps.

4 Gradually Excavating External
Knowledge

In this section, we introduce GEEK for open-
domain complex question answering. GEEK con-
sists of three components, the core model, retriever
and extractor model. Iteratively, the core model
selects actions to perform from an action space A,
conditioned on the current question state Q. Then
the selected action is executed and the question
state is updated, gradually accumulating external
knowledge until a final answer can be drawn.
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Figure 2: GEEK workflow: the core model, retriever and extractor collaborate to solve complex questions progres-
sively. (Left): In each iteration, based on the question state Qt, GEEK selects an action and calls the corresponding
module to execute. The execution updates the question state in turn, until a final answer z is derived. (Right): The
detailed procedure of action selection and execution. For action selection, Qt and A are fed into the core model with
the instruction for action selection, and the model outputs an action code a . For the execution of Add Decomp, Final
Answer, and Self Answer, the core model outputs corresponding responses following different instructions. At last,
for Retrieve & Extract, the retriever firstly retrieves several paragraphs P from the corpus as external knowledge,
and then the extractor answers the decomposition question dt based on P .

4.1 Core model
The core model is a pretrained LLM for sequence-
to-sequence text generation (e.g., Flan-T5 (Chung
et al., 2022)), acting as the controller of GEEK. For
each step t, the core model chooses an action a
to perform, among the action space A and condi-
tioned on the current question state Qt:

a = Core(Qt, A)

Besides choosing actions, the core model is also
used to execute some types of actions, under action-
specific prompts, such as generating decomposition
questions. Details are in Sec. 4.4.

4.2 Retriever
In order to utilize external knowledge, we employ
a neural retriever, DPR (Karpukhin et al., 2020), to
retrieve paragraphs from a vast volume of context
C. Given the decomposition question dt as query,
the retriever returns top k relevant paragraphs:

Pt = {p1, p2, ..., pk} = Retr(dt, C)

, where Retr stands for the retriever and each pi
denotes a paragraph. Due to the enormous amount
of context in C, full-size retrieval is time costly.
For efficiency, we use two nested DPR bi-encoder
models (Karpukhin et al., 2020), namely the docu-
ment retriever and the paragraph retriever. Firstly,

we deploy the title retriever for a document-level
retrieval, to shrink the context space to kdoc = 100
documents, where the context embeddings are built
from each document’s title and first paragraph.
Then the paragraph retriever performs a secondary
search on the paragraph level, outputting the top k
matched paragraphs among the 100 documents.

4.3 Extractor

Even though we retrieve k paragraphs from the vast
C, these retrieved paragraphs are still too long to
be input into the core model. Therefore, another
specialized extractor is used to condense the k para-
graphs into concise fact sentences for dt:

ft = Extractor(dt,P)

We use FiD architecture (Izacard and Grave, 2020b)
for the extractor. Instead of extracting facts locally
from each of the k paragraphs, FiD can perceive all
the paragraphs simultaneously and generate more
comprehensive results.

4.4 GEEK Pipeline and Action Space

As shown in Fig. 2, GEEK iteratively selects and ex-
ecutes actions to solve implicit complex questions.
The procedure involves neural inference where neu-
ral networks generate text outputs that are less in-
terpretable due to the black-box nature of neural
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networks, as well as symbolic inference which fol-
lows strict rules. Based on the question state Qt

at each round, the core model decides whether a
final answer can be made or more decomposition
needs to be explored. If the latter, it also determines
whether external knowledge should be retrieved, or
the decomposition can be directly answered using
the fact sentences so far. The newly acquired facts
are added to the question state for the next iteration.
Next, we introduce the details for each action:

• FinalAnswer (core model) If enough back-
ground knowledge is acquired and a final con-
clusion can be drawn, the core model should
output the final answer to q. For the real im-
plementation, we let the model summarize the
facts from previous steps as a self-CoT, and
then conclude the final answer (yes or no).

• AddDecomp (core model) Based on current
Qt, the core model generate a next-step de-
composition question dt. The generation is
conditioned on previous decompositions and
facts. Hence the model could adjust the rea-
soning strategy on-fly, and benefit from the
gradually enhanced external knowledge.

To further improve the comprehensiveness
of the strategy and avoid generating unsolv-
able decomposition questions, we design a
pre-answer trick. Instead of generating dt
only, we use an explicit prompt to instruct the
model to generate all the remaining decom-
positions with corresponding pseudo answers:
(dt, f̃t, dt+1, f̃t+1, · · · ). Hence, the strategy
leading by dt could be more coherent and solv-
able. Note that the generated pre-answers are
not necessarily correct, and all the redundant
generations except dt only serve as genera-
tion auxiliaries, which will be removed before
adding to the question state Qt.

• Retrieve & Extract (retriever) Once a new
decomposition is added, the core model would
decide whether this decomposition question
needs external knowledge to answer. If yes,
this action is executed and the retriever is
called to retrieve the top k most relevant para-
graphs Pt corresponding to the current decom-
position dt. Once Pt is retrieved, the extractor
model would read the k paragraphs and gen-
erate a concise fact ft as the answer to dt.

For the extractor, we also use the generated

pseudo answer f̃t from the ‘AddDecomp’ ac-
tion as a reference. We formulate the input
to extractor with the prompt: ‘Answer the
question dt based on the context p(t)i , a refer-
ence but not necessarily correct answer is f̃t’.
Therefore, the extractor knows what kind of
information should be extracted among pos-
sibly multiple aspects, avoiding correct but
not relevant answers (e.g., for decomposition
‘Who is xxx?’, possible aspects include nation-
ality, career, education, family, etc.).

• SelfAnswer (core model) For some decom-
position questions that are pure logical de-
duction, or the required knowledge has been
included in the question state already, no ex-
ternal evidence is needed and hence retriever
and extractor are not used. In this case, a self-
answer prompt is used and the core model
would answer dt directly, outputting ft.

4.5 Strategy Exploration

Considering that there often exist multiple possi-
ble strategies to solve an identical question, we
also extend the GEEK to explore a strategy space
for different solutions. Specifically, in the step of
AddDecomp, the core model can return multiple
decomposition questions using beam search. For
each different decomposition d

(i)
t , a copy of cur-

rent question state Qt is created, and updated by the
new decomposition, forming Q(i)

t . Then the copies
carry on for the rest solving process independently.

We emphasize that our method Strategy
Exploration (SE) is different from Self-
Consistency (Wang et al., 2022), which outputs
multiple CoT solutions with the one-shot gen-
eration, and then takes the majority. Under the
scenario of GEEK with SE, the question branches
into n = 4 different strategies at every iteration,
hence formulating a latent solution tree. The
diverged decomposition would lead to different
retrieval results and generated facts, hence is
an exploration of the strategy space. Due to
computation constraints, we limit the expansion
number to be at most 16 (i.e., expansion rate n = 4
at each decomposition and for at most 2 iterations).
The majority vote is used to derive the final answer.

5 Case Study

In Fig. 3 we show a full inference process of GEEK.
The inference involves in total three iterations. In
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Figure 3: Full process of GEEK inference. For each round, the prompts are shown in gray, and the current question
state is also given to the model as input. Model responses are shown in green and action selection is represented
by a red circle to save space. On the top right corner, the question state is listed, where the historical states of
sub-question and fact are gradually added during the inference (best viewed in color and numerical marks).

order to save space, we omit the input question
state for each step, but show it in the top right
corner. Marked in colored numbers, the question
state is gradually enriched as the decomposition
questions and corresponding facts are added. Also,
for each action selection step, we circle out the core
model’s choice. Some repeated prompts are also
abbreviated, due to the page limitation.

As can be observed in the example, the GEEK
decomposes the original question into three sub-
questions, and takes the strategy of ‘temporal con-
fliction’ to solve the problem. For sub-questions
‘(1)’ and ‘(2)’, external knowledge is retrieved and
the original pseudo answers are verified and cor-
rected (e.g., ‘1599’ → ‘1623’). The strategy is

also dynamically adjusted as more facts are ac-
quired (e.g., ‘Is 1599 before 1865?’ → ‘Is 1865
before 1623?’). For the last logical sub-question
that requires no external knowledge, the core model
chooses to self-answer it without calling retriever
and extractor. When there is enough information,
the final answer ‘no’ is given with reasons.

6 Experiment
In this section, we compare GEEK with previous
baselines and conduct ablation studies to analyze
the contributions of specific modules.

6.1 Dataset and Preprocessing
We use the StrategyQA dataset (Geva et al., 2021)
to evaluate our method. The dataset consists of
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Method Backbone Retrieve Specification SQA

ChatGPT (Qin et al., 2023) GPT-3.5 (175B) ✗ Without CoT 59.2
ChatGPT (Qin et al., 2023) GPT-3.5 (175B) ✗ CoT 62.5
FaithfulCoT (Lyu et al., 2023) code-davinci-002 (175B) ✗ - 73.2
(Xie et al., 2023) code-davinci-002 (175B) ✗ - 77.2
(Lazaridou et al., 2022) Gopher (280B) ✓ - 66.2
Visconde (Pereira et al., 2023) text-davinci-002 (175B) ✓ CoT 69.43
RR (He et al., 2022) text-davinci-002 (175B) ✓ CoT 77.73

PaLM (Chowdhery et al., 2022) PaLM (540B) ✗ - 73.9
PaLM (Anil et al., 2023) PaLM (540B) ✗ CoT + SC 81.6
PaLM2 (Anil et al., 2023) PaLM2 (340B) ✗ - 90.4

GEEK (ours) Flan-T5 (11B) ✓ CoT 75.98
GEEK (ours) Flan-T5 (11B) ✓ CoT+SE 78.17

Table 1: Experiment results on strategyQA dataset. GEEK achieves the SOTA accuracy for LLMs in ∼10B scale,
and surpasses all the previous methods with backbone under 300B scale, using only 6% parameters or less.

2061 samples in the train set and 229 in the dev set.
Another 490 samples without labels are provided
for the test set, and results for that can be uploaded
to their website for evaluation 1. For train and
dev samples, each question is provided a human-
annotated strategy D in the form of decomposition
questions. Golden supporting paragraphs p for each
d are also given, which are from 36.6M Wikipedia
processed corpus. In addition, human-annotated
background facts F are also provided.

Nonetheless, the provided background facts are
not strictly mapped with the decomposition, either
in the aspect of total number or sequential order.
Additionally, over 25% human annotated decom-
position questions refer to previous i-th decompo-
sition by symbol ‘#i’. We find that these symbols
cannot be simply filled by decomposition’s corre-
sponding answer, because some ‘#i’ may refer to an
entity in the decomposition question text. For the
above two reasons, we use GPT4 (OpenAI, 2023)
to refine the annotations. We provide the question
together with the final answer, golden facts and
decomposition questions to GPT4, and prompt it to
fill the ’#i’s in annotations. Meanwhile, we also ask
it to give a concise answer for each decomposition,
according to the golden facts and the final answer.
Unless specified, all the experiment results below
are from the GPT4 processed version.

6.2 Detailed Settings

For retriever, vanilla DPR (Karpukhin et al., 2020)
is used with BERT-base-uncased (Devlin et al.,

1https://allenai.org/data/strategyqa

2018) as backbone. By default, k = 10 paragraphs
will be retrieved during GEEK inference. The ex-
tractor is a FiD (Izacard and Grave, 2020b) with
Flan-T5-3B as the backbone. During training, the
extractor is fed golden paragraphs and remaining
retrieval paragraphs, to satisfy the fixed number k.

For the core model, we adopt Flan-T5-
11B (Chung et al., 2022; Raffel et al., 2020). The
model is trained for multiple tasks including ac-
tion selection and execution of three actions, as
described in Fig. 2. The tasks are trained in paral-
lel, with input-output pairs built from human an-
notations and in the same instruction format as
Fig. 3. We train the model on 8 V100 GPUs. Due
to the LLMs’ out-of-memory problems, the deep-
speed flatform is used (Rasley et al., 2020). During
inference, we utilize the accelerate package with
offloading for acceleration (Sylvain et al., 2022).

6.3 Comparison with other Baselines

In this section, we compare the proposed GEEK
with other baselines on the strategyQA dataset. As
shown in Tab. 1, GEEK yields 78.17% accuracy
on the StrategyQA dataset, with a much smaller
model size (11B) than previous baselines. Our
method sets a new SOTA for the ∼10B LLMs, and
also is the second best among all existing methods
except PaLM. Although GEEK is finetuned with
supervision, the accuracy of GEEK is still consid-
erably high considering its size in comparison with
other baselines. It is also worth noting that due to
the indirection of using LLM APIs, finetuning or
adaption for special domain tasks is not easy. For
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De RE SE Acc

Zero-shot ✗ ✗ ✗ 62.01
CoT ✗ ✗ ✗ 70.74
+De ✓ ✗ ✗ 71.50
+RE ✓ ✓ ✗ 75.98
Full ✓ ✓ ✓ 78.17

Table 2: Ablation study results. The three columns de-
note whether an action is performed under GEEK. (‘De’:
‘AddDecomp’, ‘RE’: ‘Retrieve and Extract’, ‘SE’: ‘Strat-
egy Exploration’)

Human Equal GEEK

ChatGPT 13.54% 24.02% 62.45%

Table 3: ChatGPT Assessment of prediction results.

example, only Visconde (Pereira et al., 2023) and
RR (He et al., 2022) successfully leverage exter-
nal knowledge, but with a relatively less capable
backbone text-davinci-002. However, the external
knowledge is proved to benefit the task effectively,
and RR achieves SOTA performance at its time.

Specifically, while the initially finetuned GEEK
yields 75.98% accuracy, by using SE, the accuracy
is improved significantly, to 78.17%. This process
requires no retraining yet can boost final accuracy,
where GEEK explores the strategy space and tries
to solve the question via multiple paths.

6.4 Ablation Study

We also analyze the contribution of the different
components in GEEK. Results are shown in Tab. 2.
The line of ‘CoT’ denotes that the core model di-
rectly answers the question as in the ‘FinalAnswer’
action, following the CoT approach (Wei et al.,
2022a) without iterative reasoning and knowledge
retrieval. After finetuning, the accuracy is 70.74%
accuracy, 8.73% higher than zero-shot Flan-T5 but
7.73% lower than the full version of GEEK. We
find that performing the action ‘Retrieve&Extract’
could efficiently increase the accuracy to 75.98%,
justifying the motivation of leveraging external
knowledge for solving open-domain questions.

6.5 ChatGPT Assessment

To further evaluate the quality of the strategy gen-
erated by GEEK, we also leverage the GPT4 to
simulate a human assessment. Specifically, we
show it the human-annotated decomposition ques-
tions and corresponding facts, as well as the GEEK-

generated decomposition-fact pairs, and let the
model choose which is more informative and faith-
fully correct. The results are listed in Tab. 3.
It turns out that 62.45% of the GEET-generated
decomposition-fact pairs are preferred.

7 Conclusion

We present GEEK, a pipeline to progressively ex-
cavate external knowledge for boosting LLM’s ca-
pability in solving open-domain multi-step implicit
questions. Interactively, GEEK decomposes the
question into explicit sub-questions to retrieve ex-
ternal knowledge, and the accumulated knowledge
enlightens the model to form a better strategy in
turn. The proposed method also provides explain-
ability by showing the full reasoning process, sup-
ported by retrieved evidence. By using SE, GEEK
can also explore the strategy space and try different
approaches to solve the complex question, which
increases the performance further. Experiment re-
sults justify our design. With GEEK, 78.17% accu-
racy is achieved using less than 6% size of the com-
petitors, refreshing the SOTA accuracy for ∼10B
LLMs. As an alternative to the paradigm of scaling
for larger models and more pretraining data, we
hope this research could inspire more future works
to investigate how to organically excavate external
knowledge and progressively formulate strategies
for solving open-domain implicit questions.

Limitations

Albeit achieving outstanding overall accuracy with
a significantly smaller model size, the GEEK is not
without limitations. First of all, as long as neural
reasoning is involved, the hallucination problem is
inevitable in theory, due to the black-box nature
of neural networks. We want to stress that by us-
ing a retriever and an extractor, the hallucination
problem can be alleviated from factual references,
but not completely avoided. Secondly, the logic of
GEEK is not guaranteed to be correct. It is possible
that GEEK gives the correct answer but wrong solv-
ing steps, or correct intermediate steps but wrong
final answer. Lastly, due to the scarcity of public
datasets like StrategyQA for open-domain complex
question answering, it is difficult for us to research
this problem under more datasets and different task
settings. We expect future works that may come up
with more suitable datasets like StrategyQA.
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Appendix

A Training Details

For training the core model, we use the refined
annotation of StrategyQA dataset. The original
StrategyQA dataset provides human-annotated de-
composition questions, fact sentences, and support-
ing paragraphs from Wikipedia. The decompo-
sition questions break the original open-domain
complex question into several simple and explicit
sub-questions. The fact sentences contain evidence
and background knowledge for solving the main
question. The supporting paragraphs are where
the fact sentences are grounded, and are one-to-
one matched with the corresponding fact sentences.
Nonetheless, the fact sentences are not one-to-one
mapped to each decomposition question. There-
fore, we use GPT4 to refine the annotation, ex-
tracting a concise answer for each decomposition
question from the set of human-annotated fact sen-
tences. Explicit instruction is given to GPT4 to
force the model to use information that is faithful
to the human-annotated fact sentences only.

After that, the core model is trained via super-
vised fine-tuning. Specifically, we use ground-truth
annotations (decomposition, paragraphs, and fact
sentences) to build a full-solving process for each
question. The ground-truth action to be performed
also depends on the process. For example, if there
are still more ground-truth decomposition ques-
tions, the model should select ‘AddDecomp’. And
if all decomposition questions have been visited,
the model should select ‘FinalAnswer’. By doing
so, we build multiple input-output pairs simulating
each timestep of the solving process, and use these
pairs to train the core model in parallel.

B More Comparison with Other Baselines

Besides the results shown in Tab. 1, we also list
more comparison results with other baseline meth-
ods, whose backbone models are similar in size
to ours. As shown in Tab. 4, our method signifi-
cantly surpass the other baselines, with improve-
ment larger than 7.62%.

C Results with Other Backbones

We also implement GEEK with other backbone
models, to verify the generality of our method. In
this section, we select the similar-scale LLaMA
models for comparison. As shown in Tab. 5, GEEK
performs well with all the backbone models. The

LLaMA-13B backbone yields similar accuracy as
Flan-T5-11B, demonstrating the generality of our
GEEK pipeline. However, LLaMA is trained with-
out instruction tuning, and both LLaMA-7B and
LLaMA-13B perform slightly worse than Flan-T5-
11B. This observation suggests that instruction tun-
ing is helpful for the task of StrategyQA, but a
larger model (e.g., LLaMA-13b) can reduce the
gap.

D Prompt Examples

In this section, we show all the prompts used
in GEEK, please also refer to Sec. 4.4 for
more details of the actions. The terms such as
{Question_state} represents the placeholder to
be substitute by corresponding text values.

• System Prompt (at the beginning of every in-
put):

"Try␣to␣solve␣a␣multi -step␣
open -domain␣question.␣</s
>{ Question_state}"

• ActionSelection Prompt1 (begin of each
round):

"Synthesis␣the␣information␣so␣
far ,␣what␣action␣should␣be
␣performed␣the␣next?␣\n[A
]:␣enough␣evidence␣to␣
conclude␣a␣final␣answer.␣\
n[B]:␣ask␣more␣sub -
questions␣for␣necessary␣
knowledge."

• If final answer (action [A]):

"Conclude␣a␣final␣answer␣to␣
the␣question␣{Q}.␣Use␣the␣
format␣\" Reasoning␣steps:␣
[your␣reasoning␣steps]␣
Therefore ,␣the␣final␣
answer␣is:␣[yes/no]\""

• If add decomp (action [B]):

"Besides␣the␣current␣steps ,␣
what␣more␣sub -questions␣
need␣to␣be␣asked?␣Show␣
your␣steps␣in␣the␣format␣
\"(i)␣[Q]␣(sub -question)␣[
A]␣(pseudo␣answer)\""
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Method Model size Acc

UL2 (Qin et al., 2023) 20B 59.0
StableVicuna INT8 (Hartill et al., 2023) 13B 61.7
GR+RATD (Hartill et al., 2023) 440M 64.2
KARD (Kang et al., 2023) 3B 70.55

GEEK (ours) 11B 78.17

Table 4: More comparison with other baselines.

LLM Acc

LLaMA-7B 74.67
LLaMA-13B 77.73
Flan-T5-11B 78.17

Table 5: More backbone results.

• ActionSelection Prompt2 (when new decomp
is added):

"Does␣the␣sub -question␣{Decomp
}␣involves␣external␣
evidence␣to␣answer?␣\n[A]:
␣external␣evidence␣is␣
needed ,␣call␣tools.␣\n[B]:
␣it␣can␣be␣safely␣answered
␣by␣logical␣inference␣
without␣extra␣evidence"

• If call tools (action [A]):

# retriever input
"Question:␣{Q},␣Sub -question:␣

{Decomp}"

# extractor input
"Based␣on␣the␣following␣

context ,␣answer␣the␣
question:␣\"{ decomp }\"␣(A␣
reference␣but␣not␣
necessarily␣correct␣answer
␣is:␣\"{ pseudo_answer }\")
</s>Context:␣{paragraph}"

• If self answer (action [B]):

"Based␣on␣the␣sub -questions␣
and␣facts ,␣use␣strict␣
logic␣to␣answer␣the␣sub -
question:␣{Decomp}"

E Error Analysis of GEEK

We manually analyzed all the error samples in the
dev set. The reasons for wrong predictions are
categorized into 4 types listed below (with actual
examples):

• Unreasonable decomposition: the predicted
decomposition does not effectively lead to a
valid solution to the original answer. For ex-
ample:

– Question: “Would the author of Little
Women have remembered the ratification
of the 13th Amendment?"

– Ground truth: “(1) When was the 13th
Amendment ratified? (2) Who wrote Lit-
tle Women? [Louisa May Alcott] (3)
What years was Louisa May Alcott alive?
[1832-1888] (4) Did the ratification of
the 13th Amendment occur sometime
during 1832-1888?" [Final answer: yes]

– Prediction: “(1) When was the 13th
Amendment ratified? (2) When was
Louisa May Alcott born? [1832] (3) Is
1865 before 1832?" [Final answer: no]

• Wrong action selection: the model selects
the wrong action to be performed (e.g., con-
clude final answer too early, incorrectly call
retriever, or attempt self-answer)

• Incorrect facts: Retriever and extractor out-
put incorrect facts (either irrelavant or factu-
ally incorrect). For example:

– Decomposition question: “What are the
numbers that are used in the scoring sys-
tem in table tennis?"

– GT: “11 and 21" (for old rules).
– Pred: “15 points, 30 points, and 40

points".
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• Logical deduction error: the model gives the
wrong final answer from correct decomposi-
tions and facts. For example:

– Question: “Can the Swiss Guard fill the
Virginia General Assembly chairs?"

– Facts: “There are 140 seats in the Vir-
ginia General Assembly. The Swiss
Guard has a total of 134 members."

– GT answer: “No"
– Pred answer: “Yes"

Based on the above categories, we also statistic
the proportion of errors. The results are shown in
Tab. 6. Most of the errors are due to bad decompo-
sition generation and incorrect facts. Because of
the nature of implicit QA, generating good decom-
position questions is challenging. By observing
the error cases, we find that logical reasoning and
background knowledge are required and critical to
generate high-quality decompositions. Therefore,
we hypothesize that GEEK could benefit from a
larger backbone LLM, which is believed to have
more knowledge absorbed and higher reasoning
ability. This is also partially verified by the results
in Tab. 1 and Tab. 5.

For the factual errors in generated facts, as also
mentioned in the section ‘Limitation’, the extrac-
tor’s neural processing mechanism makes the hal-
lucination problem inevitable. Based on the obser-
vation of error cases, we find that two main reasons
result in incorrect facts: (1) the retriever fails to
find relevant paragraphs corresponding to the de-
composition question, and (2) the extractor outputs
summarized fact sentences that are not faithful to
the paragraph. For (1), a more powerful retriever
(e.g., search engine) or more affluent corpus be-
yond Wikipedia could help. For (2), faithful QA
techniques, such as changing the generative task
into an extractive task, might be a remedy. How-
ever, constraints by the computation resources, and
also considering that this research mainly focuses
on implicit question answering, we leave this prob-
lem for future works.

Error type Percentage

Unreasonable Decomposition 40%
Wrong action selection 8%
Incorrect facts 54%
Logical deduction error 20%

Table 6: Error cases and proportion.
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