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Abstract

Language model prompt optimization research
has shown that semantically and grammatically
well-formed manually crafted prompts are rou-
tinely outperformed by automatically generated
token sequences with no apparent meaning or
syntactic structure, including sequences of vec-
tors from a model’s embedding space. We use
machine-generated prompts to probe how mod-
els respond to input that is not composed of nat-
ural language expressions. We study the behav-
ior of models of different sizes in multiple se-
mantic tasks in response to both continuous and
discrete machine-generated prompts, and com-
pare it to the behavior in response to human-
generated natural-language prompts. Even
when producing a similar output, machine-
generated and human prompts trigger different
response patterns through the network process-
ing pathways, including different perplexities,
different attention and output entropy distribu-
tions, and different unit activation profiles. We
provide preliminary insight into the nature of
the units activated by different prompt types,
suggesting that only natural language prompts
recruit a genuinely linguistic circuit.

1 Introduction

Neural language models (LMs) are parameterized
probabilistic models that can assign a probability to
any sequence of language tokens. Given that they
are trained on huge amounts of natural language,
we expect their statistics to mimic those of the
latter. In this paper, we study what happens when
a LM trained on English must process “unnatural
language”, that is, sequences that are extremely
unlikely in English, as they are syntactically and
semantically ill-formed.

We tackle this topic through the lens of machine-
generated prompts, that is, automatically discov-
ered input token sequences that optimize the
model’s performance in a target zero-shot task
(Shin et al., 2020; Deng et al., 2022). It has indeed

been widely observed that such prompts, while em-
pirically effective, consist of nonsensical sequences
of jumbled tokens. For example, using the pop-
ular AutoPrompt algorithm of Shin et al. (2020)
and the OPT-1.3b language model (Zhang et al.,
2022), we found that the prompt “[X] Antarctica
= sequelsStationrough [Y]” outperforms reason-
able human-crafted prompts such as “[X] belongs
to the continent of [Y]” on the task of retrieving
the continent a geographic body belongs to. Even
more extremely, recent prompt generation methods
find sequences of embedding vectors that do not
correspond to items in the model vocabulary, but
still outperform both human-crafted and machine-
derived discrete prompts (Lester et al., 2021; Liu
et al., 2023; Zhong et al., 2021). This state of af-
fairs is paradoxical: why does a LM that has been
trained to reproduce the statistics of natural lan-
guage respond better to input sequences that are
completely outside this distribution?

We present a detailed comparative study of
how LMs internally process manually-crafted
prompts and both discrete and continuous machine-
generated prompts. While we do not solve the
puzzle of why linguistically ill-formed machine-
generated prompts are better than human prompts,
we discover that there are fairly deep differences
characterizing the various prompt types through all
the processing stages of a LM, suggesting that the
latter has fortuitously developed a distinct pathway
to process unnatural language.

2 Related work

Understanding prompts. The advent of zero-
shot prompting stimulated interest in the linguis-
tic and semantic properties of prompts.1 For
example, Webson and Pavlick (2022) showed

1There is also related work on the effect of ablations such
as word order permutations in the context of models fine-tuned
for a specific task, such as natural language inference (e.g.,
Gupta et al., 2021; Pham et al., 2021; Sinha et al., 2021a,b).
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that, with minimal fine-tuning, highly semanti-
cally irrelevant prompts can be as effective as
prompts with pertinent semantic content. Start-
ing with Wallace et al. (2019) and Shin et al.
(2020), the fact that inscrutable machine-generated
discrete prompts outperform natural language se-
quences has also attracted attention. For exam-
ple, Deng et al. (2022) showed that constraining
machine-generated prompts to be more “language-
like” harms performance. Ishibashi et al. (2023)
and Rakotonirina et al. (2023) studied how vari-
ous ablations affect the performance of machine-
generated prompts. The second study also demon-
strated that it is possible to find discrete machine-
generated prompts that are effective across a range
of LMs. Khashabi et al. (2022) found that continu-
ous prompts can be optimized to be near any arbi-
trary text in embedding space, while being equally
effective. These studies focus on properties of the
prompts themselves. We complement them with
an analysis of how LMs respond when exposed to
these prompts.

Understanding LMs More generally, under-
standing how LMs process unnatural linguistic in-
put contributes to our understanding of their inner
workings. Therefore, our study is also related to
work on interpretability (Lipton, 2018), defined as
the analysis of a trained model’s decision policy. In
particular, one can approach neural network inter-
pretability by adopting a mechanistic paradigm,
consisting in directly studying the weights and
their activation in order to reverse-engineer the neu-
ral network. Successful mechanistic insights have
been obtained in computer vision (Voss et al., 2021;
Olah et al., 2020). Cammarata et al. (2020) is an
example of mechanistic interpretability applied to
Tranformer LMs. In this context, the Transformer
feed-forward layers have been shown to behave
like key-value memories (Geva et al., 2021). No-
tably, as shown in Dai et al. (2022), these memory
slots, also called knowledge neurons, encode spe-
cific concepts acquired during pre-training. Even
more interesting, manually editing these memo-
ries allows to causally control the prediction output
(Meng et al., 2022), suggesting that they play a
central role in language processing (see also Geva
et al., 2022). In the present paper, we show that
unnatural language processing is achieved by re-
cruiting different knowledge neurons than the ones
used for natural language processing.

3 Setup

3.1 Language model and tasks
OPT family LMs We conduct our analyses on
OPT-350m and OPT-1.3b (Zhang et al., 2022),
two pre-trained auto-regressive Transformer-based
models trained on The Pile corpus (Gao et al.,
2020), whose pre-trained weights are publicly
available from HuggingFace. We choose auto-
regressive models since LM development has in-
creasingly shifted to this class, and OPT models
since, in informal experiments, we found them
to perform better on our tasks than comparable
auto-regressive models available from Hugging-
Face (e.g., the GTP2 family). OPT models use a
vocabulary set composed of 50,265 items.

Knowledge-retrieval tasks We base our experi-
ment on the LAMA dataset (Petroni et al., 2019).
Initially designed to probe factual knowledge and
commonsense in LM, this dataset is a collection
of ⟨r, s, o⟩ triplets describing a relation r between
a subject s and an object o, e.g.: ⟨continent of,
Lavoisier Island, Antarctica⟩. In particular, we
use the TREx (ElSahar et al., 2018) subset, whose
test set contains 41 relations, each with up to
1,000 tuples. All the machine-generated prompts
are trained using the data collected by Shin et al.
(2020), also containing 1,000 tuples per relation.
Each relation defines a different knowledge re-
trieval task. We focused on these tasks because
they require semantically contentful prompts (e.g.,
for the relation above, the prompt must carry some
geographic information), as opposed to other se-
tups where a prompt might simply have to describe
the task at a meta-linguistic level (“translate the
following sentence into Chinese”; “does paragraph
X entail paragraph Y?”, etc.).

3.2 Prompts
Terminology We refer to different methods to
derive prompts as prompt types. We refer to the
actual token sequences generated by a method for
a certain task as templates.

Human prompts Human prompts (human) come
from an augmented version of PARAREL (Elazar
et al., 2021). PARAREL provides a set of near-
paraphrase templates capturing each LAMA rela-
tion, e.g. “[X] belongs to the continent of [Y]”.
ParaRel enlarged the initial templates provided
by LAMA using paraphrases from LPAQA (Jiang
et al., 2020) and additional patterns mined from
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Wikipedia. Each prompt was then evaluated by a
set of human experts. We further manually aug-
mented the set with more paraphrases, and we
cleaned the prompt set, e.g., by removing templates
not adapted to auto-regressive LMs.

Machine-generated prompts We compare hu-
man prompts with both discrete (M-disc) and con-
tinuous (M-cont) machine-generated prompts. The
discrete ones are obtained using the popular Auto-
prompt (Shin et al., 2020) algorithm. For a given
task, this algorithm generates a sequence of N to-
kens relying on a gradient-guided search in the
discrete LM’s vocabulary space. We set template
length to N = 5, as it is the average human prompt
length. The continuous machine generated prompts
are obtained using Optiprompt (Zhong et al., 2021).
For each task, Optiprompt generates a sequence of
N continuous vectors through optimization in the
LM’s embedding space. Similarly to Autoprompt,
we set N = 5. Machine-generated prompts are
extracted using the LAMA-TREx training set (see
above). 10 templates are obtained for each task by
initializing training with different random seeds.

Template filtering We only use tasks for which
we have, for each prompt type, at least one template
reaching > 10% accuracy. We end up with 5.9 hu-
man, 8.3 M-disc, and 9.0 M-cont templates on av-
erage per task (across 21 tasks) for OPT-350m, and
6.3 human, 8.9 M-disc, and 10 M-cont templates on
average per task (across 24 tasks) for OPT-1.3b.2

3.3 Diagnostic metrics
Accuracy We measure the effectiveness of a
prompt type (human, M-disc or M-cont) by com-
puting its micro-accuracy (following Zhong et al.
(2021)), defined as the proportion of cases where
the prompted LM succesfully assigned maximum
completion probability to the ground-truth object.
We average across templates and LAMA tasks. It
is worth noting that, contrary to other works, we
did not perform any filtering on the LM’s output.

Input perplexity and output entropy We mea-
sure the average perplexity for each prompt type,
defined as the exponentiated average negative log-
likelihood of a “[subject] [template]” se-
quence, averaged across subjects, relations and tem-
plates. To characterize the LM probability distribu-
tion output, we also measure the average Shannon

2We attach the filtered template list as a supplementary
archive.

entropy of the output probability vector computed
across all samples of the evaluation set.

Attention distribution We quantify how atten-
tion is distributed over input tokens following Ram-
sauer et al. (2021). For each attention head of each
layer, we compute the average minimal number of
attention values required to get a cumulative soft-
max probability mass of 0.90. This value ranges
from 0% to 100%. Intuitively, given a row of an
attention map of a transformer layer, it corresponds
to the number (in %) of attention values you have
to sum to reach 90% of the total attention. Because
attention values are normalized, if the attention
is flat then the score will be 90%. In contrast, if
all the attention is focused on one token, then the
score will be close to 1. This score decreases as the
attention distribution becomes more peaky.

Knowledge neuron activation overlap Moti-
vated by Geva et al. (2021) and Dai et al. (2022),
who empirically demonstrated that Transformer
feed-forward (FF) layers act as key-value memo-
ries, or knowledge neurons, we measure the acti-
vation overlap of the intermediate FF units (cor-
responding to memory keys) between different
prompt types. More formally, for a given Trans-
former layer, let x ∈ Rd be the token-wise hidden
representation contextualised by the self-attention
operation. The FF layer can be expressed as:

u = f(x ·KT + bK) (1)

FF (x) = u · V + bV (2)

where V,K ∈ Rd×dm are the FF parameters,
bK , bV their respective biases, and f(·) the non-
linearity. K can be seen as a set of dm keys, giving
access to dm “memory slots” stored in V . In order
to quantify which knowledge neurons are being
accessed during prompt processing, we look at the
units u ∈ Rdm corresponding to the weights associ-
ated to each key-value pair (Eq. 1). A high overlap
means that the prompts activate the same knowl-
edge neurons, indicating similar processing by the
LM. On the opposite, a low overlap suggests that
the prompts trigger different activation pathways
in the LM. The measure is described in more detail
in Appendix A.

Input similarity For each pair of same-task tem-
plates, we measure the cosine similarity of their
embedded representations. We then compute the
average to get similarities at the prompt-type level.
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Figure 1: Unit activation overlap (0 to 100) between
human, M-disc and M-cont prompt types for OPT-350m
(left) and OPT-1.3b (right). Higher values (more intense
color, larger squares) represent larger overlap. Con-
fidence intervals (CIs) are shown as square outlines:
thicker lines indicate wider CIs (CIs are generally small).
Within-prompt overlap is higher than betweem-types
overlap, suggesting a difference in processing.

Output agreement For each pair of same-task
templates, we measure the proportion of test cases
where the templates lead to the same prediction.
We then compute prompt-type-level averages.

Uncertainty quantification We provide the un-
certainty estimation of our measurements by com-
puting the 95% Confidence Interval (CI) of each
measure. In Table 1, the CI associated to each
metric (accuracy, perplexity, attention distribution
score and output entropy) is obtained by comput-
ing the 0.025 and 0.975 quantiles given the list
of scores obtained with each templates of a given
prompt type (note that each template’s score is
averaged at the level of the relation). 95%CI in
Figure 1,2,3, and Table 2 are obtained using boot-
strapping by randomly sampling with replacement
from the list of templates (the number of resamples
is found by incrementally increasing it until the
uncertainty estimation converge).

4 Processing machine-generated prompts

We experimentally demonstrate that differences be-
tween human and machine-generated prompts exist
at three different levels: (1) at the input level, when
comparing prompt types in the embedding space,
(2) at the output level, when analyzing predictions
and output probabilities, and (3) at the level of in-
termediate activation, indicating a difference in pro-
cessing at work in the LM. We conclude this quan-
titative analysis by showing that, although these
metrics are correlated when compared within the
same prompt type, the correlation is weak between
prompts of different types, leading to a number of
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Figure 2: Percentage input similarity between human,
M-disc and M-cont prompt types for OPT-350m (left)
and OPT-1.3b (right). Higher values (more intense color,
larger squares) cue high similarity. Within-prompt-type
similarities (the scores on the diagonal) are generally
higher than similarity between types. Note that the
absolute values of the input similarity obtained with
both model sizes are not directly comparable due to a
difference in the input dimension (2048 vs. 1024).

counterintuitive patterns in LM prompt processing.

4.1 Human and machine-generated prompts
are processed differently.

High accuracy and high perplexity As con-
firmed in Table 1, the main motivation to use
machine-generated prompts is their good perfor-
mance, M-cont prompts outperforming human ones
by +25pts. This higher accuracy comes along with
lower output entropy, suggesting better LM calibra-
tion, where a larger mass of the output probability
distribution is concentrated on the correct token.3

However, prompt perplexity – quantifying the de-
gree of predictability of a token sequence given an
LM – is two order of magnitude higher for M-disc
than for human templates.4 We discuss this further
in Section 4.2 below.

Low activation overlap of knowledge neurons
Activation overlap statistics are provided in Fig-
ure 1. For both OPT-350m and OPT-1.3b, we
observe that, while within-prompt-type overlap is
mild or high, ranging from 33 to 66 (on a 0-to-
100 scale), between-prompt-type overlap is always

3Calibration in LM analysis (e.g., Liang et al., 2023) refers
to the confidence that a model has in its predictions when
the latter are correct. Our output entropy measure does not
directly correlate confidence and accuracy. However, as ma-
chine prompts are in general more likely to trigger the correct
output and, at the same time, they have lower output entropy,
the global trends do suggest that they tend to produce correct
answers with more confidence. We informally use the term
“calibration” to refer to this property.

4Due to their continuous nature, there is not trivial way to
estimate perplexity for M-cont prompts.
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OPT-350m OPT-1.3b
human M-disc M-cont human M-disc M-cont

Accuracy 29.5 43.4 54.9 28.8 46.1 58.0
[95% CI] [11.5, 65.0] [17.0, 79.5] [20.7, 86.0] [10.4, 78.2] [15.1, 83.4] [23.8, 89.6]

Perplexity (103) 0.60 40.9 - 0.40 30.3 -
[95% CI] [0.1, 1.9] [16.0, 95.0] [0.04, 1.48] [2.0, 911.3]

Attention distribution (%) 34.4 30.0 23.2 30.8 28.7 29.4
[95% CI] [29.2, 39.7] [27.3, 32.5] [21.1, 25.5] [17.0, 85.8] [16.6, 84.4] [14.3, 74.7]

Output entropy 5.00 4.30 2.10 4.70 3.90 2.10
[95% CI] [3.2, 6.0] [1.9, 5.7] [0.5, 4.3] [1.7, 6.0] [1.3, 6.4] [0.4, 5.9]

Table 1: Human and machine-generated prompts (both M-disc and M-cont) significantly differ in at least four
aspects: (1) machine-generated prompts outperform the human ones in terms of accuracy; (2) they are also better
calibrated on average, given their lower output entropy; while at the same time (3) machine-generated prompts are
less predictable by the LMs, reaching significantly higher perplexity; (4) in machine-generated prompts, attention is
concentrated on a smaller amount of tokens. For technical convenience, perplexity is not computed for M-cont.

low, ranging from 13 to 26. This pattern is more
pronounced when comparing human and M-cont.
Between-prompt overlap tends to be higher with
OPT-1.3b, suggesting that larger LMs could show
a convergence of human and machine-generated
prompts (this remains to be further explored). The
low-overlap result is confirmed by the diagnostic
classifier analysis presented in App. B, that shows
that a simple linear classifier can distinguish be-
tween any prompt type pair based on activation
patterns on any layer of either LM.

Attention is focused on fewer tokens As trans-
former behaviour is a by-product of both FF and
attention layers, we also look at the difference in at-
tention distributions, shown in Table 1. Here again,
we observe a clear distinction between human and
machine-generated prompts, the latter leading to
attention being focused on a smaller amount of to-
kens. Recall that prompt length is a hyperparameter
of automated prompt induction algorithms, fixed
at 5 tokens without tuning. This result might sug-
gest that the algorithms only associated meaningful
information to a subset of these tokens.

Machine prompts are drifting away from Hu-
man prompts in the input space. Figure 2
shows that, for both OPT-350m and OPT-1.3b, in-
put similarity within prompt types is higher than
similarity between different prompt types. In par-
ticular, the input similarity between human and Ma-
chine prompts dramatically decreases when mov-
ing from discrete to continuous prompts.

4.2 Surprising aspects of LM processing

The significant differences that emerged between
human and machine prompt processing suggest
that these prompt types trigger different decision
pathways. Furthermore, they provide interesting
insights concerning the nature of LM processing,
and, in particular, how it can occasionally be quite
counter-intuitive. We explore this by considering
some unexpected correlation patterns.

Perplexity does not predict accuracy Gonen
et al. (2022) reported a negative correlation be-
tween perplexity and effectiveness of handcrafted
prompts. However, we observe that, when using
machine-generated prompt, it is possible to reach a
higher prediction accuracy while having a higher
perplexity. Thus, counter-intuitively, perplexity
does not necessarily predict effectiveness.

Input similarity does not predict output agree-
ment The Input predicts Output? column of Ta-
ble 2 measures the correlation between embedding-
space similarities of same-task templates (e.g., a
human and a M-disc template for the continent
of relation) and the rate of output agreement (de-
fined as the portion of times different templates
lead to the same prediction) for the corresponding
templates. There is a significantly lower correla-
tion when templates belonging to different prompt
types are compared, especially when comparing
human vs. machine-generated templates (e.g., hu-
man vs. M-disc templates), than for within-type
comparisons (e.g., different M-disc templates for
the same task). When comparing different prompt
types, counter-intuitively, the degree of similarity
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Input predicts Output? Input predicts Activation? Activation predicts Output?
OPT-350m

human vs. M-disc 0.11 [-0.06, 0.27] 0.21 [0.16, 0.26] 0.01 [-0.05, 0.07]

human vs. M-cont 0.14 [0.01, 0.26] 0.06 [0.02, 0.09] -0.04 [-0.08, -0.00]

M-disc vs. M-cont 0.30 [0.18, 0.42] 0.06 [0.03, 0.08] 0.02 [-0.01, 0.05]

human vs. human 0.53 [0.43, 0.62] 0.73 [0.69, 0.77] 0.66 [0.59, 0.72]

M-disc vs. M-disc 0.54 [0.45, 0.63] 0.85 [0.83, 0.88] 0.55 [0.49, 0.63]

M-cont vs. M-cont 0.63 [0.55, 0.72] 0.74 [0.69, 0.78] 0.54 [0.47, 0.61]

OPT-1.3b
human vs. M-disc 0.18 [0.07, 0.28] 0.24 [0.18, 0.30] 0.13 [0.05, 0.22]

human vs. M-cont -0.06 [-0.21, 0.08] 0.08 [0.03, 0.14] -0.03 [-0.08, 0.03]

M-disc vs. M-cont 0.12 [0.01, 0.22] 0.03 [-0.01, 0.07] -0.00 [-0.05, 0.04]

human vs. human 0.58 [0.52, 0.66] 0.65 [0.61, 0.68] 0.60 [0.55, 0.65]

M-disc vs. M-disc 0.64 [0.58, 0.70] 0.89 [0.87, 0.90] 0.61 [0.55, 0.67]

M-cont vs. M-cont 0.78 [0.73, 0.83] 0.74 [0.71, 0.77] 0.53 [0.49, 0.57]

Notation: average [95% confidence interval]

Table 2: Pearson correlations between input similarity, output agreement and activation overlap. First, we compute
a single comparative statistic (input similarity, output agreement or activation overlap) for each pair of prompts in
some comparison set (e.g., human vs. M-disc or human vs. human); then, for each comparison set, we look at the
correlation across prompt pairs between two statistics (e.g., input similarity vs. activation overlap). Within-type
correlations range from mild to high. Between-type correlations are significantly lower. These low correlations
highlight counteractive aspects of LM language processing. Results in bold are significant (p < 0.01). We provide
the average and [95%CI interval] correlations obtained using bootstrapped uncertainty estimation.

is not a good predictor of whether the templates
will trigger the same output or not.

Activation overlap is only weakly correlated
with output agreement and input similarity Ta-
ble 2 also provides correlations between activation
overlap and input similarity (Input predicts Activa-
tion?) or output agreement (Activation predicts
Output?) across different pairwise prompt type
combinations. Within a prompt type, these correla-
tions are mild or high, with the higher correlations
pertaining to input similarity. On the contrary, ac-
tivation overlap ceases to be correlated to either
input similarity or output agreement as soon as we
compare different prompt types. This drop in cor-
relation highlights the complexity of LM internal
processing. Without any prior on input type, it is
difficult to predict the decision pathway that will
be used by the model, even in the presence of high
input or output similarities.

5 A closer look at the typical units of each
prompt type

5.1 Unit distribution across layers

The low activation overlap between prompt types
reported in Section 4 taught us that machine-

generated prompts trigger units which are distinct
from the ones triggered by human prompts. The
units that are most often activated by the various
prompt types also appear, to some degree, to be
distributed differently across layers (cf. Figure 3).
In particular, machine prompts display a tendency
to activate more units on the last layer and, espe-
cially, on the first one (it is worth recalling that this
is the first proper Transformer layer, and not the
embedding layer). The M-disc profile lies some-
where between human and M-cont, confirming the
trends already observed in Section 4.

5.2 Profiling prompt-type-typical units
through associated vocabulary items

Having shown that the three prompt types activate
different pathways through the network, we seek
now some insights into the nature of the units char-
acterizing these different pathways.

Methodology We identify those units that are
both typical of a single prompt type across tasks,
and significantly impacting the network output dis-
tribution, in the sense that their gradients w.r.t to
the max output probability are in the top quartile
of all network units (recall that, as usual, we fo-
cus on those units we identified as knowledge neu-
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Figure 3: For each prompt type, we plot the number of units belonging to the top 20% most activated units (overall
across prompt types). M-cont and M-disc have significantly more highly activated units than human on the first
layer, with the effect particularly strong for M-cont. There is also a weaker tendency for the machine prompts to
activate more units on the last layer compared to the human ones. Data from OPT-1.3b.

rons). We define the typical units for prompt A as
those that are among the top 20% most frequently
activated by this prompt type, while at the same
time being among the bottom 20% least frequently
activated by prompt types B and C.5 This filter-
ing procedure leaves 14 human (resp. 6), 4 M-disc
(resp. 4) and 58 M-cont (resp. 238) units for OPT-
350m (resp. OPT-1.3b). As a sanity check, we also
repeated the analysis with laxer thresholds involv-
ing more units, and the results were similar to the
ones we report here.

Next, we associate each selected unit to a set of
items from the LM vocabulary that strongly trig-
ger its activation. Using the Wikipedia corpus,6

for each item in the vocabulary we save the aver-
age unit activation in a forward pass. We sort the
resulting matrix to get, for each unit, the top 500
vocabulary items leading to the strongest activation.
We extract both input items, recording unit acti-
vation when an item is in the input sequence, and
output items, recording activation when an item is
predicted by the LM. We apply lower-casing and
initial-space stripping on the resulting vocabulary
set. More details are provided in Appendix C. This
method has been chosen for its simplicity. How-
ever, it is also noisy and sensitive to rare but “ex-
citing” tokens (e.g., magikarp, see Appendix C Ta-

5A unit is activated when its value is greater than 0.
6Subset “20220301.en” from HuggingFace

ble 4). Improving unit-item association extraction
is left to future work.

Having obtained the list of vocabulary items as-
sociated to each unit, we count how many times
each vocabulary item occurrs in association with
any typical unit of each prompt type (as defined
at the beginning of this Methodology paragraph),
obtaining 3 frequency lists, one for each prompt
type. We compare the relative frequencies of each
vocabulary item in each list to determine which vo-
cabulary items are most distinctively associated to
(the set of typical units of) each type. In particular,
using a standard method from corpus linguistics,
we compute the local Mutual Information score
(Evert, 2005) between each vocabulary item v and
each prompt type t:

LMI = |v, t| log P (v, t)

P (v)P (t)

where |v, t| counts the occurrences of v in the t
list, the joint probability P (v, t) is estimated based
on |v, t|; P (v) is estimated using the cumulative
occurrence count of v in all lists, and P (t) is the
total number of occurrences of any item in the t list.
Table 3 reports the top-30 input vocabulary items
ranked by LMI for each prompt type and both LMs.

Machine prompts recruit “non-linguistic” units
Looking at the OPT-350m results first, nearly all
characteristic human items are well-formed words,
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Table 3: Top 30 vocabulary items associated to each prompt type ranked by LMI. Machine-generated prompts
respond to less language-like items than those triggered by human prompts. Nearly all human items are well-formed
words. Many M-disc items, on the other hand, are non-English diacritics, special symbols or code-related terms.
M-cont items are entirely “non-linguistic”. Some strings have been abbreviated to fit column width.

and include a high number of forms cuing syntac-
tic processing, such as function elements (whats,
why, does. . . ), inflected verbs (noticed, gazed,
liked. . . ) and modifiers (really, much, honestly. . . ).
A remarkable amount of M-disc items are coding-
related terms (handler, expr, iterator. . . ). Numbers
and punctuation sequences that could be coding-
related or web-page boilerplate ((&, \-) also appear,
as well as a few regular words or word fragments
(Hillary, easy, sacrific. . . ). Finally, for M-cont, the
items are entirely “non-linguistic”, being composed
of sequences of non-Latin characters or punctua-
tion marks, as well as code fragments.

Concerning OPT-1.3b, we observe pretty much
the same patterns for human and M-cont. For M-
disc, on the other hand, together with a number of
non-English diacritics and special symbols, there
is a strong increase in regular words and word frag-
ments, although the latter still clearly differ from
those associated to human prompts, in that syntax-
related items, such as function words or inflected
verb forms, are largely missing. In line with what
we observed in Figure 1, we thus observe a cline
on which, at least for M-disc, the difference in pro-
cessing human and machine-generating prompts
decreases with model size.

We tentatively conclude that machine prompts
are not only triggering different activation path-

ways, but that the units involved in these pathways
tend to respond to less language-like items than
those triggered by human prompts. Note that these
units are spread across the layers of the network,
so that we are not only recording low-level differ-
ences in processing the input strings or vectors.7

Moreover, the results are largely mirrored by those
obtained when associating units with output instead
of input vocabulary items (Table 5 in App. D).

Recall that our analysis is based on units that are
not only highly typical of a prompt type across rela-
tions, but also in the top gradient quartile, suggest-
ing that they significantly contribute to the model’s
output distribution. It is puzzling that units that
mostly respond to coding fragments or unusual
characters could lead the network to produce the
correct next token in the semantic tasks we are
studying. We conjecture that distributed activation
from such units might nudge the network towards
the right output semantic fields through connectiv-

7The selected typical human units occur in layers 4th to
last of OPT-350m and layers 2 to 14 of OPT-1.3b (counting
from 0). The M-disc units range from layers 3 to 10 of OPT-
350m and 2 to 13 of OPT-1.3b. The M-cont units are the only
ones where, as expected given the distribution illustrated in
Figure 3, a significant proportion occurs on the first (0-th)
layer (about one third for OPT-350m and one fourth for OPT-
1.3b), but the remaining two thirds/three fourths range from
layers 2 to 21 and 1 to 10, respectively.
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ity pathways that fortuitously arose during network
training. This is an important topic for future work.

6 Discussion

We have studied the phenomenon of linguisti-
cally and semantically opaque machine-generated
prompts from the perspective of how LMs process
them, compared to human-crafted ones. Our study
has important Limitations, that are discussed in
the relevant section below. However, at least for
the prompt generation methods, LMs and tasks we
explored, we can draw some general conclusions.

More than a “happy accident” Our evidence
suggests that the differences between human and
machine-generated prompts are not just superficial,
but affect all levels of network processing, and
result in the activations of qualitatively different
units. Some of these units are stable across seman-
tic tasks, suggesting that they are more generally
recruited to process any “unnatural” input. More-
over, contrary to what one could reasonably predict,
there is some evidence that machine prompts are
more robust than human ones, in the sense that they
achieve better output calibration.

It’s unlikely that the LM has been exposed to
anything like M-disc prompts during its initial train-
ing, and definitely it could not have seen out-of-
vocabulary M-cont prompts, so we can only as-
sume that the special pathways triggered by these
prompts arose through unforeseen side effects of
pre-training.8 However, they seem to be more than
just lucky connectivity accidents exploited by spe-
cific prompts to solve specific tasks, or else it would
be difficult to explain the overall low entropy of
machine prompt predictions and the commonali-
ties in the units they activate. Moreover, there is
evidence that M-disc prompts can transfer across
Transformer-based LMs (Rakotonirina et al., 2023;
Zou et al., 2023), suggesting that unnatural lan-
guage pathways might arise from the interaction
of general characteristics of the Transformer ar-
chitecture with Web-derived training data that are
partially shared across many current pre-trained
LMs. We must defer a better understanding of the
nature of these unnatural pathways to future work.

8We experimentally verified that model training is neces-
sary for effective unnatural prompts to arise. We ran both
Autoprompt and Optiprompt on 3 distinct random initializa-
tions of OPT-1.3b with the same hyperparameters as in our
main experiments, and found that the resulting M-disc prompts
achieved 0% accuracy in nearly all cases, whereas M-cont
where at best able to retrieve the majority output of a task.

In particular, we plan to zoom further in into the
processing of specific templates, tracking their pro-
cessing throughout the network with methods such
as the vocabulary-based unit analysis of Section 5.

On investigating unnatural language We be-
lieve that investigating “unnatural language” as we
did here (see also Khashabi et al., 2022; Ishibashi
et al., 2023; Rakotonirina et al., 2023) should be a
central concern to NLP for at least three reasons.

First, understanding why LMs work as well as
they do, and what are their failure modes, is one
of the questions with the broadest scientific and
societal implications we can ask today. It would
however be dangerously limiting to narrow our in-
vestigation to how LMs process natural language
only, ignoring their behaviour when presented in-
puts outside their training distribution.

Second, unnatural language can be exploited
for negative purposes, as shown by Wallace et al.
(2019) and Zou et al. (2023), who derived appar-
ently nonsensical prompts that could steer multiple
LMs’ responses towards harmful behaviour, such
as generating racist language.

Finally, there is recent interest in letting LMs di-
rectly communicate with each other to jointly solve
tasks or to build a community (Park et al., 2023;
Zeng et al., 2023). Based on our evidence, it might
be pointless to insist that LM-to-LM communica-
tion takes place in natural language, given that LMs
might share information more efficiently through
unnatural prompts. Conversely, if being able to
decode the communication flow is important (e.g.,
for safety reasons), care must be taken to stop LMs
from drifting into unnatural language.

For all these reasons, we hope that our prelimi-
nary contribution will encourage our community to
pay more attention to the phenomenon of unnatural
language processing.
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Limitations

• Main limitation: We presented an extended
study of how two pre-trained language models
process human and machine-generated inputs,
but we did not provide an account of why
we are observing the processing differences
we are seeing. We noticed, for example, that
M-cont prompts activate units associated to
punctuation marks and special characters. We
do not know, however, in which way these
units contribute to retrieving the correct an-
swer in the target semantic tasks, nor how the
optimization procedure chances upon them.
This is our priority for future work.

• Our work is limited to the OPT family of mod-
els trained on the English language, to the
LAMA semantic tasks and to the AutoPrompt
and OptiPrompt prompt extraction methods.
A straightforward direction for future work is
to extend our analysis to more models (includ-
ing instruction-tuned models, as instruction
tuning might have a significant impact on how
models respond to unnatural input), languages,
data-sets and prompt extraction algorithms.

Ethics Statement

The advent of publicly accessible LM interfaces
such as ChatGPT has heated up the debate around
the broader impact of LMs. While there is a variety
of possible societal issues to consider (Weidinger
et al., 2022), we believe that a better understanding
of how LMs process information is a crucial part
of bias and harm containment. If we do not under-
stand the models, we cannot control their behaviour,
and we are exposed to intentional adversarial at-
tacks and other forms of unintentional model mis-
use. The very existence of completely opaque but
empirically effective machine-generated prompts
is proof of how counterintuitive the behaviour of
LMs can be, and of how little we understand them.
We thus believe that our investigations of “unnatu-
ral language processing” fit well into the broader
program of improving our scientific understanding
of LMs, in order to make them more predictable,
controllable and, ultimately, safer.
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A Measuring the overlap of activated
knowledge neurons

In Section 4, we measure and compare which
knowledge neurons, that is, units found in the in-
termediate layers of the feed-forward Transformer
blocks (Dai et al., 2022; Geva et al., 2022), are ac-
tivated by different prompt types. In particular, we
measure the knowledge neuron activation overlap
(abbreviated as activation overlap). The following
algorithms in pseudo-code detail how this measure
is obtained.

First, we construct a Boolean matrix recording
which units are activated by a template. As shown
in the pseudo-code below, a unit is said to be ac-
tivated if its value is greater than 0 on more than
k = 20% of cases when instantiated with each
of the subjects associated to the template relation.
In the pseudo-code, Relations is the set of re-
lations available in our task set; given a relation,
Subjects provides the list of relevant subjects and
template(s) instantiates the template with subject
s. Model is the LM being used.

def get_act(template, relation):
cpt = 0
k = 0.2
# iterate across subject
for s in Subjects(relation):

inpt = template(s)
for u in Model(inpt).units:

cpt[u] += (u>0)
# u is activated if >0 for
# more than k% of inputs
act = cpt > k*len(Subjects(relation))
return act

Then, for each pair of templates (in Templates),
we compute the intersection over union of their
respective activation matrices:

overlap = {}
for r in Relations:

for t_A in Templates(r):
for t_B in Templates(r):

act_A = get_act(t_A,r)
act_B = get_act(t_B,r)
i = act_A & act_B
u = act_A | act_B
overlap[(t_A, t_B)] = i/u

Finally, we average these pairwise overlaps
while filtering by prompt type (e.g., only averag-

Layer 0, unit 248
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antidepress debian frieza
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Table 4: For each intermediate unit in the OPT’s feed-
forward layers we extract the set of items leading to
the strongest activation on the Wikipedia corpus. As an
illustration, we selected four different units with distinct
profiles and displayed them in this table, along with their
top 9 most associated input items, for OPT-350m. We
observe varying degrees of consistency and naturalness
across units.

ing the activation overlap for pairs containing one
human and one M-cont).

B Diagnostic classifiers

To complement the activation-overlap-based analy-
sis presented in Section 4.1 of the main paper, we
run a set of shallow linear “diagnostic” classifiers
(Giulianelli et al., 2018) of the activations gener-
ated by the models on each layer in response to
inputs from each prompt type. As usual, we focus
on the activation of knowledge neurons.

Data As in the main paper, we use all templates
with LAMA accuracy >= 10%, filtering out a ran-
dom subset of the LAMA P176 relation human tem-
plates, as this relation is greatly over-represented.
We are left with 21 and 24 tasks for OPT-350m
and OPT-1.3b, respectively. As we are interested in
units inherently distinguishing prompt types inde-
pendently of lexico-semantic aspects associated to
specific templates or tasks, we partition the data so
that the training and test data contain disjoint tasks
(and, a fortiori, disjoint templates). We consider
4 such partitions, each time using data from 16
(OPT-350m)/18 (OPT-1.3b) tasks for training and
5 (OPT-350m) /6 (OPT-1.3b) for testing, such that
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there is no test task overlap across the partitions.9

We instantiate each template with 10 randomly se-
lected subjects from the corresponding LAMA lists.
For each pairwise classification task, we balance
the test instances by downsampling the larger class,
so that chance/majority/minority accuracies (“base-
lines” in Figure 4) are at 50%.

Classifier We use a logistic regression classifier
with L1 regularization (to encourage sparseness),
with the L1 term coefficient fixed at α = 0.01. We
fit the classifier with stochastic gradient descent, us-
ing the Scikit-learn toolkit (Pedregosa et al., 2011).
For each of the 4 training partitions, we repeat the
experiment with 5 different seeds, resulting in a
total of 20 runs for each layer.

Results. Figure 4 reports average per-layer clas-
sification accuracies for each pairwise prompt type
comparison, with standard deviations across the 20
runs. In all cases, accuracy values are well above
baseline level, and typically very high. We con-
clude that each single layer contains units whose
activation is sufficiently discriminative for each
prompt type to successfully train the classifiers, de-
spite the challenging setup in which training and
test tasks (and consequently templates) are com-
pletely disjoint. Interestingly, few units on each
layer suffice to discriminate prompt types (the aver-
age classifier weight sparsity across all experiments
is at 99.5% with 0.2% standard deviation for OPT-
350m and 99.6% with 0.4% s.d. for OPT-1.3b). The
easiest distinctions involve M-cont as one of the
classes, confirming that out-of-vocabulary embed-
dings make continuous prompts particularly differ-
ent from natural language. Indeed, it’s remarkable
that distinguishing M-disc from M-cont is gener-
ally easier than distinguishing between M-disc and
human prompts.

To conclude, the classification experiments bring
strong convergent evidence that genuinely differ-
ent pathways characterize different prompt types
across all layers of the network.

C Unit/vocabulary item association

Implementation details When extracting
unit/vocabulary-item association, we empirically
set the window size to 15. This value is reason-
able close to prompt size (5 in average), while
containing a sufficient amount of tokens to get a

9As we have 21 total tasks meeting our conditions for OPT-
350m, one of the 4 partitions used for this model consists of
15 training and 6 test tasks

meaningful context. In addition, we set the window
stride to 15 to save computation time. Furthermore,
due to our limited computation resources, and
given the size of the Wikipedia corpus (6B), we
only used 66% of the data for OPT-1.3b.

Samples As illustrated in Table 4, we came up
with a large diversity of unit profiles, some of them
being associated to more or less linguistically valid
items, and with varying degree of semantic consis-
tency.

D Profiling typical units by output
vocabulary analysis

Table 3 in the main paper reports the 30 input vo-
cabulary items with the largest LMI with respect to
each prompt type. Table 5 here reports the top-
30 output items. We largely confirm the same
trends, although we do notice an overall tendency
for the units triggered by machine prompts to be
associated to more “language-like” output material,
which makes sense as ultimately these prompts do
produce well-formed task-relevant outputs.
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Figure 4: Average accuracies and standard deviations for 20 runs of the pairwise prompt-type classification
experiments across the 24 layers of the networks.
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Table 5: Top 30 output items associated to each prompt type ranked by LMI. Some strings have been abbreviated to
fit column width.
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