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Abstract

Ad hoc dataset retrieval has become an impor-
tant way of finding data on the Web, where
the underlying problem is how to measure the
relevance of a dataset to a query. State-of-
the-art solutions for this task are still lexical
methods, which cannot capture semantic simi-
larity. Semantics-aware knowledge-enhanced
retrieval methods, which achieved promising
results on other tasks, have yet to be systemat-
ically studied on this specialized task. To fill
the gap, in this paper, we present an empirical
investigation of the task where we implement
and evaluate, on two test collections, a set of
implicit and explicit knowledge-enhancement
retrieval methods in various settings. Our re-
sults reveal the unique features of the task and
suggest an interpolation of different kinds of
methods as the current best practice.

1 Introduction

Tens of millions of datasets have been published
on the Web (Benjelloun et al., 2020), providing
government data, scientific data, etc. Accordingly,
ad hoc dataset retrieval is becoming an important
specialized information retrieval task (Kato et al.,
2021; Lin et al., 2022), aiming at finding datasets
that are relevant to a user’s query, which is ad hoc
since the number of possible queries is huge. Due
to the magnitude and heterogeneity of dataset con-
tents, existing solutions such as Google Dataset
Search (Brickley et al., 2019) rely on the retrieval
of dataset metadata provided by data publishers for
describing their datasets, as illustrated in Table 1
which is a real example taken from the NTCIR-E
test collection (Kato et al., 2021).

Motivation. The metadata of a dataset resem-
bles a structured multi-field document, and cur-
rent implementations of ad hoc dataset retrieval
are mainly adapted from conventional document
retrieval methods like BM25 or FSDM (Chapman
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Table 1: A query and the metadata of a relevant dataset.

american intake daily

USDA National Database for

Standard Reference Dataset for What We

Eat In America, NHANES (Survey-SR)

The dataset, Survey-SR, provides the
data for assessing dietary intakes

from the national survey What We Eat In

America...

food-composition, food-consumption...

Query
Title

Description

Tags

et al., 2020; Lin et al., 2022). It is well-known that
such lexical retrieval methods cannot identify se-
mantic matches and hence fail to find datasets that
are lexically disjointed with but semantically rele-
vant to the query. The problem can be alleviated
by incorporating knowledge into retrieval—either
implicit knowledge encoded in a pre-trained lan-
guage model (PLM) or explicit knowledge stored
in an encyclopedic knowledge base. For exam-
ple, to identify the semantic connection between
“protein” in the query and “nutrient” in the dataset
in Table 1, implicit knowledge-enhanced retrieval
methods may achieve it by measuring the similar-
ity between their word embeddings, while explicit
methods may employ the similarity between their
linked entities in a knowledge base. However, to
the best of our knowledge, the effectiveness of in-
corporating knowledge into the emerging task of
ad hoc dataset retrieval has not been systemati-
cally investigated. In particular, the following three
research questions remain open.

RQ1. Despite a few preliminary PLM-based
implementations (Kato et al., 2021), they were fine-
tuned on a small training set. Researches on ad hoc
dataset retrieval are still in their infancy, and exist-
ing test collections provide less than 300 queries
for training (Kato et al., 2021; Lin et al., 2022). The
performance of PLM-based methods fine-tuned in
such an in-domain setting may not be generaliz-
able to practical settings. Will implicit knowledge-
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enhanced retrieval methods remain effective in ad
hoc dataset retrieval in an out-of-domain setting?

RQ2. The high-quality encyclopedic knowledge
bases available today, like Wikipedia and Wikidata,
can be used to annotate query and dataset metadata
so that their semantic similarity can be measured
to enhance lexical retrieval. More importantly, this
is unsupervised and not limited by the availability
of training data. However, such methods are so far
under-studied and their effectiveness remains un-
known. Will explicit knowledge-enhanced retrieval
methods be effective in ad hoc dataset retrieval ?

RQ3. Lexical matching, implicit knowledge,
and explicit knowledge—they have the potential to
capture different signals in retrieval. While each
of them alone may not exhibit superb performance,
their appropriate combination may produce better
results, e.g., by an interpolation of their retrieval
scores. Will interpolated methods be more effective
in ad hoc dataset retrieval?

Our Work and Contribution. To answer the
above questions, we conducted a systematic investi-
gation of implicit and explicit knowledge-enhanced
methods for ad hoc dataset retrieval on two test col-
lections (Kato et al., 2021; Lin et al., 2022). For
implicit knowledge, we evaluated five PLM-based
methods in both in-domain and out-of-domain set-
tings. For explicit knowledge, we designed and
evaluated methods based on entity similarity com-
puted over two knowledge bases. We also explored
different interpolation strategies.

As the first empirical investigation of this kind,
our work fills the gap and our results will provide
practical guidelines for researchers and developers
working with ad hoc dataset retrieval, or even in-
formation retrieval in general. It helps establish an
empirical basis that will facilitate future studies on
this trending information retrieval task.

Code: https://github.com/nju-websoft/ AHDR-
KnowledgeEnhanced

Paper Structure. We will discuss related work
in Section 2, describe the evaluated methods in Sec-
tion 3, present our experimental setup and results
in Section 4 and Section 5, respectively, and finally
conclude the paper in Section 6.

2 Related Work
2.1 Ad Hoc Dataset Retrieval

Ad hoc dataset retrieval is a specialized informa-
tion retrieval task that aims to find the most rele-
vant datasets to a user’s query. The metadata of

a dataset provided by its publisher typically con-
sists of a set of fields such as title and description.
While existing retrieval methods commonly rely on
metadata (Chapman et al., 2020) which resembles
a structured document, the task of dataset retrieval
differs from document retrieval and has its unique
properties, e.g., queries often mention geospatial
and temporal entities (Kacprzak et al., 2019; Chen
et al., 2019), and metadata is relatively short and
often incomplete (Neumaier et al., 2016).

Knowledge-enhanced retrieval methods have the
potential to exploit these features, but they have
not been sufficiently studied for this task. Indeed,
in a recent benchmarking effort (Lin et al., 2022),
only a number of lexical retrieval methods were
implemented and evaluated. In Kato et al. (2021)
and Chen et al. (2023), a few PLM-based imple-
mentations were evaluated but were fine-tuned on
a small training set risking overfitting and their
reported performance might not be generalizable.

Our empirical investigation significantly extends
the above evaluation efforts. We systematically
evaluate a range of state-of-the-art PLM-based
methods for ad hoc dataset retrieval in both in-
domain and out-of-domain settings. Moreover, we
design and evaluate explicit knowledge-enhanced
methods, which are under-studied in the literature.

2.2 Implicit Knowledge-Enhanced Retrieval

PLMs encode knowledge into learnable dense vec-
tors (Talmor et al., 2020). PLM-based retrieval,
aka dense retrieval, has developed rapidly in re-
cent years and exhibited powerful text understand-
ing capabilities which helped improve the accu-
racy of document retrieval (Zhao et al., 2022).
Among others, monoBERT (Nogueira and Cho,
2019) directly leverages the text classification ca-
pability of BERT (Devlin et al., 2019) to rank doc-
uments. DPR (Karpukhin et al., 2020) adopts a
dual-encoder architecture that employs the implicit
knowledge in PLM and performs metric learn-
ing. Other dense retrieval models such as Col-
BERT (Khattab and Zaharia, 2020) and COIL (Gao
et al., 2021) further exploit the implicit knowl-
edge in PLMs by computing token-level match-
ing through multiple vectors. Xiong et al. (2021)
proposes ANCE which features dynamic negative
sampling to improve the informativeness of train-
ing data. Condenser (Gao and Callan, 2021) adopts
a novel pre-training architecture to compress infor-
mation in the text. Further, coCondenser (Gao and
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Callan, 2022) extends Condenser by pre-training
with a query-agnostic contrastive loss.

These state-of-the-art dense retrieval methods
have not been applied to ad hoc dataset retrieval.
We adapt them to this new task and thoroughly
analyze their effectiveness in various settings.

2.3 Explicit Knowledge-Enhanced Retrieval

Since the introduction of the Semantic Web, it has
benefited information retrieval systems by incorpo-
rating explicit knowledge. In McCool and Miller
(2003), an early semantic search prototype named
TAP was presented, showing that knowledge bases
can enhance retrieval systems. For Web search, Lu
et al. (2009) demonstrated that ranking methods
can be improved by semantic features. For entity
search, researchers have employed entity linking
techniques to annotate queries and measured the se-
mantic relevance of a target entity to a query based
on their learned embeddings (Gerritse et al., 2020).

Such explicit knowledge-enhanced retrieval
methods have not received much attention in the
research of ad hoc dataset retrieval. We design a
method for this new task and evaluate its various
configurations using different knowledge bases, en-
tity linking tools, and entity embeddings.

3 Methods

We divide knowledge-enhanced methods for ad
hoc dataset retrieval into two types: using implicit
knowledge and using explicit knowledge. Employ-
ing implicit knowledge embodied in PLMs to en-
hance retrieval has been widely used, which we will
briefly review in Section 3.1. In Section 3.2 we will
present a method for employing explicit knowledge
in a knowledge base to enhance retrieval.

Problem Statement. Given a query ¢, the main
task in ad hoc dataset retrieval is to compute the
relevance of each dataset d to ¢ denoted by rel(d, q),
so that a ranked list of datasets can be returned.

3.1 Implicit Knowledge-Enhanced Retrieval

While the contents of different datasets can be
in different formats (e.g., TXT, CSV, JSON), the
metadata of a dataset typically consists of a set of
fields such as title and description which are com-
monly used in retrieval. For each dataset d, we
concatenate the textual values of its metadata fields
{T41,T42, ...} into a document 7:

Tg=Tyg1 DTy ® -, (D

where & represents concatenation.

Any dense retriever reviewed in Section 2.2 can
be used to compute the relevance of Ty to the
query q as the relevance score of d:

rel(d, g) = DenseRetrieval(Ty, q) , 2)

which exploits knowledge implicitly encoded by
PLMs into learnable dense vectors. Dense retriev-
ers are commonly supervised. Fine-tuning can be
performed on task-specific training data—referred
to as an in-domain setting, or on data for other
tasks—referred to as an out-of-domain setting.

3.2 Explicit Knowledge-Enhanced Retrieval

We assume that explicit knowledge is given as
a knowledge base describing a set of entities E.
To exploit such knowledge, we firstly link the
query ¢ and the document representation 7y for
each dataset d to two sets of entities in £, denoted
by £, C E'and E; C FE, respectively. Then we ag-
gregate the pairwise entity similarities between
and FE, as the relevance of d to ¢. Entity similarity
is measured based on their textual and structural
descriptions in the knowledge base.

3.2.1 Entity Linking

We link ¢ to a set of entities £/, C £ that are men-
tioned in ¢ to represent q. Analogously, we link 7y
to a set of entities £; C F that are mentioned in T
to represent d. Entity linking is an established re-
search problem (Shen et al., 2015, 2023) and we
use off-the-shelf tools in the experiments.

3.2.2 Entity Set Similarity

Let esim(e;, e;) be the similarity between two en-
tities e;,e; € F, which will be elaborated in
Section 3.2.3. Let S be an m x n dimensional
similarity matrix containing m = |E,| rows and
n = |Ey4| columns. For 1 < i < m and
1 < j < n, each element s; ; represents the en-
tity similarity between e; € E; and e; € Ey, i.e.,
s;; = esim(e;,ej). We aggregate the similarity
values in S as follows, also depicted in Figure 1.

For each entity e; € E,, we find its most similar
entity in E; and take their similarity value. We
calculate the arithmetic mean (arithmean) of such
similarity values over all the m entities in Ey:

s"" = arithmean{ max s, ; |1 <7 <m}, (3)

1<j<n

Analogously, we compute to what extent the

entities in F, can best “cover” the entities in Fy:

s = arithmean{ max s;; |1 <j <n}. (4
1<i<m '
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Figure 1: Aggregation of similarity matrix.

Finally, considering that two similar sets of en-
tities should both largely cover each other, we cal-
culate the harmonic mean (harmomean) of s™%
and s, which aggregates the similarity values
in S as the relevance score of d:

rel(d, ¢) = harmomean(s™¥, s°) . ®)

By the property of harmonic mean, rel(d, q) will
be high only if both s™" and 5! are high.

3.2.3 Entity Similarity

Now we elaborate esim(e;, €;), the similarity be-
tween two entities e;,e¢; € . We measure and
integrate their entity- and word-level similarities.
First, we measure the entity-level similarity be-
tween e; and e; based on their embedding vectors.
Representation learning is an established research
problem (Wang et al., 2017; Yang et al., 2022),
which encodes the textual and structural descrip-
tion of each entity in a knowledge base into a dense
vector. Let e;, e; be the embeddings of ¢;, e;, re-
spectively. We calculate their cosine similarity:

ent

Sl?]

= cos(e;, e;) . (6)

Second, we measure the word-level similarity
between e; and e; based on the embedding vec-
tors of their mentions. Specifically, let W;, W;
be the sets of words that appear in the mentions
of e;, e, respectively. We construct a |IW;| x |[Wj|
dimensional similarity matrix where each element
represents the cosine similarity between two word
embedding vectors. Then we aggregate the similar-
ity values in the matrix in a way that resembles the
aggregation process described in Section 3.2.2 and
Figure 1. The result is denoted by s;’?rd.

Finally, we integrate entity- and word-level simi-
larities by calculating their harmonic mean:

esim(e;, e;) = harmomean(s§’;, s;-”f;?rd) .

We choose harmonic mean because it empirically
outperforms several other combination functions
such as arithmetic mean, maximum, and minimum.
Table 7 in the appendix presents the results of using
different combination functions.

4 Experimental Setup

4.1 Test Collections

We conducted experiments on two test collections
for ad hoc dataset retrieval.

4.1.1 NTCIR-E

NTCIR-E! is the English version of the test col-
lection used in the NTCIR-15 Dataset Search task
(Kato et al., 2021), including 46,615 datasets and
192 queries. The datasets were collected from
Data.gov. The queries were crowdsourced, and
were originally split into 96 as the training set
and 96 as the test set. We further split the former
into 76 as our training set and 20 as our validation
set. The relevance of a dataset to a query has been
annotated as irrelevant (0), partially-relevant (1), or
relevant (2) as the gold standard.

4.1.2 ACORDAR

ACORDAR? is a test collection specifically
over RDF datasets (Lin et al., 2022), including
31,589 datasets and 493 queries. The datasets were
collected from 543 open data portals. The queries
were partially crowdsourced and partially collected
from TREC, and were split into five subsets for five-
fold cross-validation, each fold using three subsets
as the training set, one subset as the validation set,
and one subset as the test set. Similar to NTCIR-E,
the relevance of a dataset to a query has been an-
notated as irrelevant (0), partially-relevant (1), or
relevant (2) as the gold standard.

4.2 Evaluation Metrics

Retrieval on NTCIR-E relied on two metadata
fields: title and description. ACORDAR further
included two other fields: author and tags. Both
NTCIR-E and ACORDAR have provided top-10
retrieval results returned by (field-weighted) BM25
over these fields. Based on these first-stage retrieval
results, we investigated the reranking performance
of knowledge-enhanced retrieval methods.

Two evaluation metrics were used: normalized
discounted cumulative gain (NDCG) and mean

"https://ntcir.datasearch jp/data_search_1/
Zhttps://github.com/nju-websoft/ ACORDAR
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average precision (MAP). When calculating MAP
scores, both partially-relevant and relevant in the
gold standard were considered as relevant.

4.3 Implementation Details
4.3.1 Implicit Knowledge-Enhanced Retrieval

We used five popular PLM-based methods for
our experiments: monoBERT-large (Nogueira
and Cho, 2019),3 monoT5-large (Nogueira et al.,
2020),* coCondenser (Gao and Callan, 2022),’
ColBERT-v2 (Khattab and Zaharia, 2020),°
and ANCE (Xiong et al., 2021)’. For each
model, we used its checkpoint pre-trained on
MS MARCO (Nguyen et al., 2016), and reported
its performance on the test set of each test col-
lection to measure its performance in an out-of-
domain (OOD) setting. We also fine-tuned it on the
training and validation sets of each test collection
and then measured its performance on the test set in
an in-domain (ID) setting, where partially-relevant
and relevant datasets in the training set were used as
positive samples, and irrelevant datasets were used
as negative samples. It is worth noting that we fine-
tuned and used all these methods as black boxes,
e.g., ANCE’s special negative sampling strategy as
well as all the other special strategies incorporated
into these methods were executed.

For hyperparameter tuning in the in-domain set-
ting, monoBERT and monoT5 were tuned with
learning rate from {3e-5, 5e-5, le-4} and batch
size from {16, 24}. coCondenser, ColBERT, and
ANCE were tuned with learning rate from {1e-6,
3e-6, 5e-6} and batch size from {32, 64}, {8, 16},
and {4, 8}, respectively. Each model was trained
for 10 epochs. The best-performing configuration
on the validation set was selected to run on the test
set. We used NVIDIA GeForce RTX 3090 GPUs.

4.3.2 Explicit Knowledge-Enhanced Retrieval

We used two well-known encyclopedic knowledge
bases, Wikipedia and Wikidata, and used their
corresponding entity linking tools and embeddings.

For Wikipedia, we used TAGME (Ferragina and
Scaiella, 2010)® for entity linking; we also reported

*https://huggingface.co/castorini/monobert-large-
msmarco
*https://huggingface.co/castorini/monot5-large-msmarco
>https://huggingface.co/Luyu/co-condenser-marco
Shttps://downloads.cs.stanford.edu/nlp/data/colbert/
colbertv2/colbertv2.0.tar.gz
"https://huggingface.co/castorini/ance-msmarco-passage
8https://tagme.d4science.org/tagme/

the results using REL (Van Hulst et al., 2020)° for
comparison. We collected entity embeddings from
Wikipedia2vec (Yamada et al., 2018).'°

For Wikidata, we used Falcon 2.0 (Sakor et al.,
2020)'! for entity linking. We collected entity
embeddings from KGTK (Ilievski et al., 2021)'?
(the text version); we also reported the results
using RDF2vec (Ristoski et al., 2019)!3 (the
sg_200_5_5_15_4_500 version) for comparison.

For word embeddings, we consistently collected
from Wikipedia2vec.

5 Experimental Results

Each of the following three subsections reported
experimental results to answer one of the three
research questions raised in Section 1.

5.1 Implicit Knowledge-Enhanced Retrieval

As shown in Table 2, in an in-domain setting,
reranking by coCondenser, ColBERT, and ANCE
achieved significant improvements on both test
collections in terms of NDCG@5. However, for
monoBERT the improvement was marginal on
NTCIR-E, and for monoT5 we even observed a
performance drop on ACORDAR. The results in-
dicated that the fine-tuned PLM-based methods
might have overfitted the small training sets of
existing test collections for ad hoc dataset re-
trieval. monoBERT and monoT5 performed exten-
sive query-document interaction, probably leading
to more severe overfitting and worse test results.
The out-of-domain setting analyzed the general-
izability of PLM-based methods. While reranking
by monoT5, coCondenser, and ANCE achieved
significant improvements on NTCIR-E in terms of
NDCG@5, only monoT5 also achieved a signif-
icant improvement on ACORDAR, and for Col-
BERT we even observed a performance drop
on both test collections. The results suggested
that only a few domain-adapted PLM-based meth-
ods could directly generalize to the task of ad
hoc dataset retrieval having its unique features.
ColBERT which relies on word-level matching
achieved relatively poor results possibly due to
some ambiguous query words such as "MCI” which
could be mistakenly matched with the same word

“https://github.com/informagi/REL
https://wikipedia2vec.github.io/wikipedia2vec/
Uhttps://github.com/SDM-TIB/falcon2.0
Phttps://github.com/usc-isi-i2/kgtk-similarity
Bhttps://data.dws.informatik.uni-
mannheim.de/rdf2vec/models/Wikidata/4depth/skipgram/
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Table 2: Performance of implicit knowledge-enhancement retrieval methods, with * indicating a significant
improvement after reranking (according to paired t-test under p < 0.05).

Test collection  Reranking method NDCG@5 NDCG@10 MAP@S5 MAP@I10

before reranking 0.2252 0.2385 0.1232 0.1556
monoBERT (ID) 0.2280 0.2364 0.1188 0.1494
monoBERT (OOD)  0.2554 0.2513 0.1361 0.1645
monoT5 (ID) 0.2532 0.2497 0.1415 0.1694
monoT5 (OOD) 0.2833* 0.2702* 0.1593*  0.1852*
NTCIR-E coCondenser (ID) 0.2903 0.2760™ 0.1756  0.1981%F
coCondenser (OOD)  0.2933* 0.2775* 0.1785%  0.2001*
CoIBERT (ID) 0.2664% 0.2604 0.1522 0.1797
CoIBERT (OOD) 0.2121 0.2217 0.1047 0.1351
ANCE (ID) 0.3024% 0.2794% 0.1803%  0.2023%
ANCE (OOD) 0.2764* 0.2650 0.1601 0.1851
before reranking 0.5045 0.5249 0.2859 0.3837
monoBERT (ID) 0.5521%F 0.5511% 0.3239%  0.4130F
monoBERT (OOD)  0.5133 0.5305 0.2855 0.3835
monoT5 (ID) 0.3570 0.4418 0.1904 0.3056
monoT5 (OOD) 0.5262* 0.5338 0.3049%  0.3981
ACORDAR coCondenser (ID) 0.5300% 0.5360 03076 0.3998%
coCondenser (OOD)  0.5144 0.5259 0.2963 0.3901
ColBERT (ID) 0.5273% 0.5372 0.3080%  0.4010%
CoIBERT (OOD) 0.4451 0.4889 0.2430 0.3473
ANCE (ID) 0.5327F 0.5416™ 0.3123%  0.4048%
ANCE (OOD) 0.5125 0.5289 0.2892 0.3850

Table 3: Performance of explicit knowledge-enhancement retrieval methods, with * indicating a significant
improvement after reranking (according to paired t-test under p < 0.05).

Test collection  Reranking method NDCG@5 NDCG@10 MAP@5 MAP@10
before reranking 0.2252 0.2385 0.1232 0.1556
Wikipedia w/ TAGME ~ 0.2661* 0.2576 0.1521 0.1782

NTCIR-E Wikipedia w/ REL 0.2241 0.2378 0.1227 0.1551
Wikidata w/ KGTK 0.2314 0.2392 0.1211 0.1521
Wikidata w/ RDF2vec  0.2135 0.2337 0.1191 0.1518
before reranking 0.5045 0.5249 0.2859 0.3837
Wikipedia w/ TAGME  0.4963 0.5150 0.2746 0.3725

ACORDAR Wikipedia w/ REL 0.4636 0.5002 0.2519 0.3563
Wikidata w/ KGTK 0.4682 0.4968 0.2552 0.3558
Wikidata w/ RDF2vec ~ 0.4607 0.4964 0.2459 0.3516
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having a different meaning in an irrelevant docu-
ment. Other models relying on the global [CLS]
token representation were less influenced by such
individual word mismatches.

5.2 Explicit Knowledge-Enhanced Retrieval

As shown in Table 3, only reranking by using
Wikipedia knowledge with TAGME achieved a
significant improvement on NTCIR-E in terms of
NDCG@5. We observed performance drops in all
the other configurations, and observed noticeable
differences between the performance of using dif-
ferent entity linking tools (i.e., TAGME or REL)
and different entity embeddings (i.e., KGTK or
RDF2vec). The results suggested that reranking
with explicit knowledge could have the potential
but also require very careful implementation to ob-
tain effectiveness in ad hoc dataset retrieval.

More concretely, we attributed the relatively
good performance of TAGME to its higher recall
than REL. Indeed, the sparse Wikipedia links found
by REL could not sufficiently capture the semantics
of the original text. RDF2vec which mainly em-
ployed the graph structure of Wikidata was inferior
to KGTK whose text version used in our experi-
ments ignored graph structure and only exploited
the textual description of entities, which seemed to
be more helpful than the graph structure.

5.3 Score Interpolation
5.3.1 Interpolation with BM25 Scores

In Section 5.1 and Section 5.2, we directly used
the relevance scores computed by knowledge-
enhanced retrieval methods to rerank first-stage
retrieval results. Their unsatisfying results might
be partially related to their weak sensitivity to ex-
act lexical matches. Therefore, a straightforward
extension would be to interpolate their score with
BM25 score to enhance their capability of lexical
matching, i.e., by calculating the sum of the two
scores (both after min-max normalization). We
chose sum because it was empirically among the
best-performing fusion algorithms for interpola-
tion. Table 8 in the appendix presents the results
of using different fusion algorithms provided by
ranx (Bassani and Romelli, 2022).14

For implicit knowledge-enhanced retrieval meth-
ods, as shown in Table 4, interpolation helped
improve the performance of all the methods on
ACORDAR in an out-of-domain setting, and all

“https://amenra.github.io/ranx/fusion/

the improvements were significant in terms of
NDCG@5 (represented by 1). On NTCIR-E, inter-
polation improved the performance of monoBERT
and ColBERT, although it worsened the perfor-
mance of the other methods. With interpolation,
reranking by almost all the methods (except for
ColBERT) achieved significant improvements on
both test collections in terms of NDCG @5 (repre-
sented by *), whereas without interpolation only
monoT5 achieved that. The results demonstrated
that domain-adapted PLM-based methods interpo-
lated with BM25 scores could effectively generalize
to ad hoc dataset retrieval.

For explicit knowledge-enhanced retrieval meth-
ods, as shown in Table 5, interpolation helped
improve the performance of all the methods on
ACORDAR, and all the improvements were signifi-
cant (represented by 1). On NTCIR-E, interpolation
also noticeably improved the performance of us-
ing Wikidata knowledge, while its influence on the
methods using Wikipedia knowledge was minor.
With interpolation, reranking by using Wikipedia
knowledge with TAGME achieved significant im-
provements on both test collections in terms of
NDCG @5 (represented by *), whereas without in-
terpolation it achieved that only on NTCIR-E. The
results demonstrated that reranking with explicit
knowledge interpolated with BM25 scores could
effectively benefit ad hoc dataset retrieval.

5.3.2 Interpolation of Implicit and Explicit
Knowledge-Enhanced Retrieval

In Section 5.3.1, reranking with implicit and ex-
plicit knowledge interpolated with BM25 scores
both showed effectiveness, so we continued to ex-
plore whether the two kinds of knowledge could
complement each other by further interpolating
implicit knowledge-enhanced relevance score, ex-
plicit knowledge-enhanced relevance score, and
BM2S5 score, i.e., by calculating the sum of the
three scores (all after min-max normalization).
For a focused discussion, we reported the re-
sults of monoT5 and Wikipedia with TAGME, the
best-performing implicit and explicit knowledge-
enhanced retrieval methods interpolated with
BM25 scores according to Table 4 and Table 5,
respectively. Similar results were observed on the
other methods and hence omitted.

As shown in Table 6, such further interpolation
achieved the highest scores in all the settings. In
particular, compared with using explicit knowledge
interpolated with BM25 scores, incorporating im-
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Table 4: Performance of implicit knowledge-enhanced retrieval methods interpolated with BM25 scores, with
* indicating a significant improvement after reranking, and 1 indicating a significant improvement after interpolation
with BM25 scores (paired t-test with p < 0.05).

Test collection  Reranking method NDCG@5 NDCG@10 MAP@5 MAP@10
before reranking 0.2252 0.2385 0.1232 0.1556
monoBERT (OOD) 0.2554 0.2513 0.1361 0.1645
interpolated with BM25 ~ 0.2582* 0.2569 0.1422 0.1711
monoT5 (OOD) 0.2833% 0.2702% 0.1593%  0.1852F
interpolated with BM25  0.2697* 0.2616* 0.1498*  0.1778*

NTCIR-E coCondenser (OOD) 02933 02775 0.1785% 020017
interpolated with BM25  0.2693* 0.2638* 0.1600*  0.1855*
CoIBERT (OOD) 02121 0.2217 0.1047 0.1351
interpolated with BM25  0.2361 0.2467+ 0.1334 0.1657+
ANCE (OOD) 0.2764% 0.2650 0.1601 0.1851
interpolated with BM25  0.2648™ 0.2555* 0.1486*  0.1748*
before reranking 0.5045 0.5249 0.2859 0.3837
monoBERT (OOD) 0.5133 0.5305 0.2855 0.3835
interpolated with BM25  0.5324™f  0.5398™+ 0.3011%F  0.3952%%
monoT5 (OOD) 0.5262% 0.5338 03049  0.3981
interpolated with BM25  0.5496™+  0.5499*+ 0.3212%+  0.4126%%

ACORDAR  —¢5Condenser (OOD) 05144 0.5259 0.2963 0.3901
interpolated with BM25  0.5378*+  0.5386™ 0.3101%+  0.4000*
CoIBERT (OOD) 0.4451 0.4889 0.2430 0.3473
interpolated with BM25 ~ 0.50037 0.5210% 0.2833f  0.3800%
ANCE (00D) 0.5125 0.5289 0.2892 0.3850
interpolated with BM25  0.5368*+  0.5427*+ 0.3149%F  0.4056™ 1

Table 5: Performance of explicit knowledge-enhanced retrieval methods interpolated with BM25 scores, with
* indicating a significant improvement after reranking, and ¥ indicating a significant improvement after interpolation
with BM25 scores (paired t-test with p < 0.05).

Test collection ~ Reranking method NDCG@5 NDCG@10 MAP@5 MAP@10
before reranking 0.2252 0.2385 0.1232 0.1556
Wikipedia w/ TAGME ~ 0.26617 0.2576 0.1521 0.1782
interpolated with BM25  0.2634* 0.2565* 0.1490*  0.1755*
Wikipedia w/ REL 0.2241 0.2378 0.1227 0.1551

NTCIR-E interpolated with BM25  0.2252 0.2385 0.1232 0.1556
Wikidata w/ KGTK 0.2314 0.2392 0.1211 0.1521
interpolated with BM25  0.2590 0.2557 0.1468 0.1737
Wikidata w/ RDF2vec  0.2135 0.2337 0.1191 0.1518
interpolated with BM25 ~ 0.2310 0.2435 0.1328 0.1634
before reranking 0.5045 0.5249 0.2859 0.3837
Wikipedia w/ TAGME _ 0.4963 0.5150 0.2746 0.3725
interpolated with BM25  0.5243%f  0.5347"+% 0.3003*F  0.3952%%
Wikipedia w/ REL 0.4636 0.5002 0.2519 0.3563

ACORDAR interpolated with BM25  0.4987+ 0.52187% 028011  0.3794%
Wikidata w/ KGTK 0.4682 0.4968 0.2552 0.3558
interpolated with BM25  0.5103%+  0.5274*% 0.2912%+  0.3885%%
Wikidata w/ RDF2vec  0.4607 0.4964 0.2459 03516
interpolated with BM25 ~ 0.5092% 0.5277% 0.2885t  0.3873%

Table 6: Performance of interpolation of implicit and explicit knowledge-enhanced retrieval methods, with * indi-
cating a significant improvement after reranking,  and f indicating a significant improvement after incorporating
explicit and implicit knowledge, respectively (paired t-test with p < 0.05).

Test collection  Reranking method NDCG@5 NDCG@10 MAP@5 MAP@I10
before reranking 0.2252 0.2385 0.1232 0.1556

NTCIR-E monoT5 (OOD), interpolated with BM25 0.2697* 0.2616™ 0.1498%  0.1778%
Wikipedia w/ TAGME, interpolated with BM25 0.2634* 0.2565* 0.1490*  0.1755*
interpolation of monoT5 (OOD), Wikipedia w/ TAGME, and BM25  0.2827* 0.2676* 0.1631*  0.1870*
before reranking 0.5045 0.5249 0.2859 0.3837

ACORDAR monoT5 (OOD), interpolated with BM25 0.5496™ 0.5499™ 0.3212%  0.4126F
Wikipedia w/ TAGME, interpolated with BM25 0.5243* 0.5347* 0.3003*  0.3952*
interpolation of monoT5 (OOD), Wikipedia w/ TAGME, and BM25  0.5570%%  0.5523*% 0.3244%%  0.4139*%
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plicit knowledge brought significant improvements
on ACORDAR (represented by 1), while their com-
plementarity in the other settings was not strong.
The results suggested that using both implicit and
explicit knowledge interpolated with first-stage lexi-
cal retrieval scores could represent the current best
practice in reranking for ad hoc dataset retrieval.

6 Conclusion and Future Work

We summarize our empirical findings to answer the
three research questions raised in Section 1.

RQ1: Will implicit knowledge-enhanced re-
trieval methods remain effective in ad hoc dataset
retrieval in an out-of-domain setting? Accord-
ing to the results presented in Section 5.1, only
monoT5 remained effective on its own, whereas
other PLM-based methods could not consistently
bring improvements. However, interpolated with
BM25 scores, most of these methods effectively
generalized to this new task as shown by the results
in Section 5.3.1. It demonstrates the necessity of
combining dense and sparse retrieval for this task.

RQ2: Will explicit knowledge-enhanced retrieval
methods be effective in ad hoc dataset retrieval?
According to the results presented in Section 5.2
and Section 5.3.1, reranking with explicit knowl-
edge could be beneficial to this task only when per-
forming interpolation with BM25 scores, and sig-
nificant improvements were consistently observed
only for the configuration using Wikipedia knowl-
edge with TAGME for entity linking. It suggests
that the incorporation of explicit knowledge into
this task should be carefully designed, and calls for
more effective implementations in the future.

RQ3: Will interpolated methods be more effec-
tive in ad hoc dataset retrieval? According to the
results presented in Section 5.3.1 and Section 5.3.2,
not only interpolation with BM25 scores was help-
ful, but also implicit and explicit knowledge ex-
hibited complementarity. A combination of lexical
matching, implicit knowledge, and explicit knowl-
edge consistently achieved the best performance
in our experiments, representing the current best
practice for solving this task.

Hopefully our empirical findings and conclu-
sions should provide useful guidelines for the com-
munity to research and practice ad hoc dataset re-
trieval. In future work, we will continue to explore
and address the unique challenges of this impor-
tant task. Regarding implicit knowledge-enhanced
retrieval, we are interested in constructing a large

test collection to support in-domain supervision
of more generalizable PLM-based retrieval meth-
ods. We also plan to apply PLM-based methods to
not only dataset metadata but also dataset contents
which are large and heterogeneous, thus posing
great challenges. A related trending research direc-
tion is to explore the effectiveness of large language
models in ad hoc dataset retrieval. Regarding ex-
plicit knowledge-enhanced retrieval, since the accu-
racy of entity linking observed in our experiments
was not satisfactory and might distort the results, an
idea is to extend existing test collections with man-
ually annotated entities, which would also provide
a useful resource for entity linking research.

Acknowledgements

This work was supported by the NSFC (62072224).

Limitations

First, although we have already used two test col-
lections for ad hoc dataset retrieval, there was the
possibility that our results were still biased due to
the small number of queries (less than a few hun-
dred) in these test collections. The generalizability
of our conclusions could be improved in the future
when new and larger test collections are available.

Second, some observations in our experiments
have yet to be justified. For example, while rerank-
ing by most PLM-based methods interpolated with
BM25 scores showed effectiveness, it remains un-
clear why ColBERT was an exception. Exploring
such reasons could help deepen our understanding
of this task as well as the strengths and weaknesses
of existing retrieval methods.

Third, our score interpolation performed in the
experiments was helpful but simple. There could
be more effective interpolation strategies. For ex-
ample, instead of score interpolation, implicit and
explicit knowledge could be integrated into a single
model. We have witnessed the emergence of such
efforts, which will be evaluated in our future work.

Fourth, following common practice in the lit-
erature, we only considered dataset metadata in
retrieval without using dataset contents due to their
magnitude and heterogeneity, which could not be
effectively handled by current PLMs. It remains
an open question as to whether and how dataset
content should be exploited in retrieval.
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Table 7: Performance of explicit knowledge-enhanced retrieval (Wikipedia w/ TAGME) using different functions
for combining entity- and word-level similarities.

Test collection Combination NDCG@5 NDCG@10 MAP@5 MAP@I10
arithmean 0.2641 0.2578 0.1511 0.1779
harmomean 0.2661 0.2576 0.1521 0.1782

NTCIR-E geomemean 0.2661 0.2576 0.1521 0.1781
max 0.2472 0.2450 0.1317 0.1619
min 0.2538 0.2524 0.1434 0.1719
arithmean 0.4936 0.5149 0.2752 0.3735
harmomean 0.4963 0.5150 0.2746 0.3725

ACORDAR geomemean 0.4948 0.5144 0.2739 0.3719
max 0.4767 0.5019 0.2586 0.3585
min 0.4900 0.5117 0.2707 0.3697

Table 8: Performance of implicit knowledge-enhanced retrieval methods interpolated with BM25 scores using
different fusion algorithms for interpolation.

Test collection  Reranking method Fusion NDCG@5 NDCG@10 MAP@5 MAP@10
sum 02494 0.2561 0.1408  0.1707
. , ref 02501 0.2499 0.1389  0.1666
monoBERT (ID) interpolated with BM25 wmnz 0.2494 02561 0.1408 01707
wsum  0.2609 0.2618 0.1498  0.1781
swam 02621 02553 01502 0.1760
. . rrf 0.2457 02498 0.1361  0.1658
monoT5 (ID) interpolated with BM25 wmnz 02621 02553 01502  0.1760
wsum 02583 0.2568 0.1484 01771
wm 02794 0.2709 0.1705  0.1943
. . rrf 0.2695 0.2609 0.1583  0.1824
NTCIR-E coCondenser (ID) interpolated with BM25 wmnz 0.2794 0.2709 0.1705 0.1943
wsum 02252 02385 01232 0.1556
swam 02741 0.2685 0.1608  0.1883
. . rrf 0.2657 0.2598 0.1503  0.1784
ColBERT (ID) interpolated with BM25 0/ g 2741 0.2685 0.1608  0.1883
wsum 02673 02628 0.1520  0.1804
swam 02864 0.2693 0.1649  0.1891
. ‘ ref 0.2687 0.2656 0.1517  0.1815
ANCE (ID) interpolated with BM25 wmnz 02864 0.2693 0.1649  0.1891
wsum  0.3024 0.2766 0.1803  0.2010
sum 05625 0.5563 03307 0.4191
. , ref 0.5534 0.5504 03241 04124
monoBERT (ID) interpolated with BM25 wmnz 05616 0.5557 03303 04187
wsum 05305 0.5388 03066 03993
sam 04015 04657 02042 03323
. . ref 0.4236 0.4701 02288 03338
monoT5 (ID) interpolated with BM25 wmnz 04003 0.4649 02238 03319
wsum  0.4966 0.5195 02846  0.3820
swam 05502 0.5465 03206  0.4092
. . ref 0.5403 0.5423 03141 04042
ACORDAR coCondenser (ID) interpolated with BM25 wmnz 0.5493 0.5459 03202 04087
wsum 05156 0.5278 02984  0.3895
wm 05472 0.5486 03223 0.4132
. . rrf 0.5390 0.5403 03107 04014
ColBERT (ID) interpolated with BM25 wmnz 0.5463 0.5481 03219 04129
wsum 05087 0.5247 02898  0.3851
sum  0.5583 0.5552 03320 0.4196
. ‘ rrf 0.5419 0.5425 03160 0.4050
ANCE (ID) interpolated with BM25 wmnz 05574 0.5546 03317 04192
wsum 05076 0.5248 02902  0.3859

14360



