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Abstract

One major challenge of translating code be-
tween programming languages is that parallel
training data is often limited. To overcome
this challenge, we present two data augmen-
tation techniques, one that builds comparable
corpora (i.e., code pairs with similar function-
ality), and another that augments existing par-
allel data with multiple reference translations.
Specifically, we build and analyze multiple
types of comparable corpora, including pro-
grams generated from natural language docu-
mentation using a code generation model. Fur-
thermore, to reduce overfitting to a single ref-
erence translation, we automatically generate
additional translation references for available
parallel data and filter the translations by unit
tests, which increases variation in target transla-
tions. Experiments show that our data augmen-
tation techniques significantly improve CodeT5
for translation between Java, Python, and C++
by an average of 7.5% Computational Accu-
racy (CA@1), which verifies the correctness of
translations by execution.1

1 Introduction

Code translation is a special type of machine trans-
lation that translates between programming lan-
guages. It is widely applied in software engineering
to migrate a codebase into another programming
language. Recent code translation models typically
follow the pretrain-finetune pipeline, as shown in
Figure 1. In pretraining, with denoising objectives
such as masked span or identifier prediction (Ah-
mad et al., 2021a; Wang et al., 2021; Roziere et al.,
2020), the model learns to produce sequences in
both languages. When finetuned on parallel data
(Ahmad et al., 2021b), which are program pairs in
the source and target language that are aligned line-
by-line, the model learns functional equivalence:
identifying programs with the same functionality,

1Code available at https://github.com/Veronicium/CMTrans.
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Figure 1: The standard pipeline for code translation
and the pipeline of CMTrans . The comparable corpora
are both naturally occurring and model generated. We
generate multiple references by our method.

either in the same language or between languages.
We show an example of parallel data in Figure 2.

One major challenge of code translation is that
parallel data is typically limited. For instance, the
TransCoder dataset (Roziere et al., 2020) only con-
tains 466 Python-C++ pairs. Constructing parallel
data requires substantial human effort and cannot
be easily scaled. With limited fine-tuning examples,
it is difficult for a model to learn functional equiva-
lence across programming styles and domains.

To mitigate the data scarcity issue, we hypoth-
esize that the functional equivalence between lan-
guages can also be learned from comparable cor-
pora, a term we borrow from natural language
translation, where it refers to texts on similar top-
ics in different languages (Gete and Etchegoyhen,
2022; Irvine, 2014). Here, we use it to refer to
programs with similar functionality in different lan-
guages (Ahmad et al., 2021b; Khan et al., 2023).
As shown in Figure 2, although the programs paired
in a comparable example may have different algo-
rithms and structures (e.g., global code vs. class
functions), they are likely to have similar constructs
and may even have some lines that can be matched.

In this paper, we study what the model learns
from comparable corpora by building three types
of comparable examples: (1) Naturally existing,
where we leverage independently-written solutions
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import java.util.*;
import java.lang.*;
import java.io.*;
public class Ideone {
  public static void main( String[] args ){
    Scanner in = new Scanner( System.in );
    int f = 0;
    for( int i = 0; i < 8; i++ ){
      String s = in.next();
      in.nextLine();
      for ( int j = 0; j < 7; j++ ){
        if ( s.charAt(j) == s.charAt(j+1) ){
          f++;
        }
      }
    }
    if(f == 0) System.out.println( "YES" );
    else System.out.println( "NO" );
  }
}

Comparable (Java)board = []
check = False

for i in range (8):
    board.append( str(input()) )
for x in board:

    if "BB" in x or "WW" in x:
        print ( "NO" )
        check = True
        break

    if x != "BW"*4:
        if x != "WB”*4:
            print( "NO" )
            check = True
            break

if check == False:
    print( "YES" )

Source (Python) String[] board = new String[8];
Boolean check = false;
Scanner in = new Scanner( System.in );
for( int i = 0; i < 8; i++ )
    board[i] = in.next();
for (int i = 0; i < 8; i++){
    String x = board[i];
    if (x.contains(“BB") || x.contains("WW")){
        System.out.println( "NO" );
        check = true;
        break;
    }
    if (!x.equals("BW".repeat(4)))
        if (!x.equals("WB".repeat(4))){
            System.out.println( "NO" );
            check = true;
            break;
        }
}
if (check == false)
    System.out.println( "YES" );

Parallel (Java)

Figure 2: An example of parallel and comparable data. Parallel examples are line-by-line aligned. Programs in a
comparable example may have different algorithms and structures (e.g., global code vs. class in this case), but may
still contain lines that can be matched, as highlighted in yellow, green, and blue.

of the same coding problem; (2) Generated, where
we collect programs with docstrings in one lan-
guage and apply a code generation model to gen-
erate programs in another language; and (3) Re-
trieved, where we either retrieve a program’s k
nearest neighbors (KNN) or simply choose a ran-
dom program in another language. Among them,
(1) contains cleaner examples, which are guaran-
teed to be bug-free. (3) covers programs from a
larger variety of sources, providing more diverse
training signals.

In addition to the functional equivalence between
languages, the model should also learn the equiva-
lence between different programs in the target lan-
guage. This is challenging due to limited finetuning
data. Furthermore, the majority of finetuning data
only have one reference translation (e.g., 82.5%
in AVATAR, Ahmad et al. 2021b), which is likely
to cause overfitting to a single translation without
fully capturing its semantics.

As a result, in this paper, we generate multi-
ple translation references for the finetuning data.
Specifically, after training on comparable corpora,
we finetune a model on the original parallel data,
generate multiple translations for each example,
and use automatically generated test cases to filter
out incorrect translations. By training on different
functionally equivalent programs, we reduce over-
fitting to a single output and improve the modeling
of the target language.

Combining the two techniques, we name our
full approach CMTrans, a code Translation model
trained with Comparable corpora and Multiple ref-
erences. Extensive experiments show that CM-
Trans significantly improves CodeT5 (Wang et al.,

2021), which is initialized from the same pretrained
checkpoint, for an average of 7.5% Computational
Accuracy (CA@1) over translation between 6 lan-
guage pairs. CMTrans also significantly outper-
forms the state-of-the-art method in 5 out of 6 lan-
guage pairs, while reaching parity on the other one.

Analyses of our two techniques suggest that: (1)
All three types of comparable corpora (including
random program pairs) improve the syntax accu-
racy and perplexity of the translation outputs and
lead to better final performance. (2) Both natu-
rally existing and generated comparable corpora
help the model generate constructs that match the
input. The combination of them gives the largest
performance gain. (3) By training with multiple
references, the model generates more unique cor-
rect translations within a certain budget, which
indicates better functional equivalence of the target
language is learned.
Contributions. (1) We build and study three types
of comparable corpora for code translation. (2)
We improve the modeling of target language by
generating, verifying, and selecting additional ref-
erences for existing parallel translation data. (3)
We demonstrate that our model significantly outper-
forms state-of-the-art methods on 5 language pairs.
Our analyses provide insights into what the model
learns in code translation for future researchers.

2 Related Work

Code Translation. Previous work has tackled the
problem of translating code written in one program-
ming language to another. Karaivanov et al. (2014),
Nguyen et al. (2013, 2015), Phan et al. (2017); Oda
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et al. (2015) applied statistical machine translation
techniques to code translation, while Chen et al.
(2018) introduced a tree-to-tree neural translation
approach. Further improvements were achieved by
pre-trained language models of code such as Code-
BERT (Feng et al., 2020), PLBART (Ahmad et al.,
2021a), and CodeT5 (Wang et al., 2021). However,
the above approaches require finetuning on parallel
data, which is often scarce.

Data Scarcity in Code Translation. To tackle
the data scarcity issue, TransCoder (Roziere
et al., 2020) uses back translation for unsuper-
vised code translation. DOBF (Lachaux et al.,
2021), TransCoder-ST (Roziere et al., 2022), and
S&G (Ahmad et al., 2022) respectively improve
TransCoder with de-obfuscation pre-training, self-
training, and pairing up the model with a generation
and a summarization model. However, the best-
performing approach, TransCoder-ST, is only able
to generate parallel data for standalone functions
where the model can already generate a correct so-
lution within a limited budget. In contrast, the com-
parable corpora we use to train CMTrans include
code with arbitrary structure and content. CMTrans
also has much better efficiency, as self-training re-
quires running a much larger number of test cases
than generating multiple references. MultiPL-E
(Cassano et al., 2022) also automatically generates
test cases, but retries until the output passes all test
cases. We do not directly compare to it since it
requires multiple rounds of translation.

Data Augmentation for Natural Language
Translation. The lack of parallel training data
is a fundamental problem in the field of transla-
tion, which has led the NLP community to develop
several data augmentation techniques in response.
Comparable Corpora, as defined by Munteanu and
Marcu (2005), “are texts that, while not parallel in
the strict sense, are somewhat related and convey
overlapping information”. Paramita et al. (2013)
and Wołk et al. (2015) present methods for collect-
ing comparable corpora to study when and how
to use them. Etchegoyhen and Gete (2020) and
Gete and Etchegoyhen (2022) identify information
balance, alignment, and length differences between
source and target as key factors affecting translation
quality. In this work, we extend the study of com-
parable corpora to code translation. We show that
code translation can benefit from multiple types of
comparable corpora even if there is already high-
quality parallel data. We also provide analyses on

why comparable corpora are beneficial.
Another data augmentation strategy is using mul-

tiple translation references. Qin and Specia (2015)
and Khayrallah et al. (2020) found that using mul-
tiple references can be beneficial in low-resource
settings. An advantage of working with code is
that test cases can be used to filter model-generated
translated references to ensure functional equiva-
lence to the source, which we exploit in CMTrans.

3 Methodology

In this section, we introduce our data augmentation
method that trains the model first on comparable
corpora, which are either naturally existing, gener-
ated, or retrieved (Section 3.2) and then on parallel
data with additional references generated by our
model (Section 3.3).

3.1 Problem Formulation

We formulate code translation as a sequence-to-
sequence (Seq2Seq) generation problem following
existing work (Lu et al., 2021; Ahmad et al., 2021b;
Roziere et al., 2020). The input is the code in the
source language S = {s1, s2, ..., sn}, which is a se-
quence of tokens. We apply a model to translate the
input code into the target language T = Mθ(S) =
{t1, t2, ..., tm}, where the model Mθ is typically
finetuned for code translation. Alternatively, the
model may generate k candidate outputs for each
input: Mθ(S, k) = T = {T (1), T (2), ..., T (k)}.

3.2 Training on Comparable Corpora

As shown in Figure 3, we study three types of com-
parable corpora: naturally existing, generated, and
retrieved ones. Here we introduce how we build
each type of comparable examples and train our
model on them. We provide details of the compara-
ble corpora datasets we use or build in Section 4.1
and provide examples in Appendix A.3.
Naturally Existing Comparable Examples. We
make use of comparable corpora collected from
programming contests by existing datasets (Ahmad
et al., 2021b; Khan et al., 2023; Puri et al., 2021),
which mainly consist of solutions to the same con-
test problems written in different languages. These
comparable examples are typically confined to spe-
cific domains such as dynamic programming or
graph theory.
Generated Comparable Examples. To cover
programs in more diverse domains, we present a
method that automatically generates comparable
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def 
copy(
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   try:
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Figure 3: An example of CMTrans for Java-to-Python translation. We compare the pipeline of CMTrans to the
standard pipeline of code translation (e.g., CodeT5, Wang et al. 2021) and the self-supervision-and-fine-tuning
method of TransCoder-ST (Roziere et al. 2022).

examples using natural-language-to-code genera-
tion models.

Specifically, we leverage a monolingual corpus
of functions with natural language documentation
(i.e., docstrings) to describe their functionality. In
our experiments, we use GitHub functions with
docstrings extracted by CodeSearchNet (Husain
et al., 2020). For each function Sc in the cor-
pus, we feed the natural language documentation
to a code generation model finetuned in the other
language, which is trained to generate a program
based on the given natural language description.
Similarly to code translation, the code generation
model can generate multiple candidate outputs
{T (1)

c , T
(2)
c , ..., T

(k)
c }. We then select the one with

the highest probability, which is paired up with the
extracted program as a comparable example.

Retrieved Comparable Examples. To study the
effect of the quality of comparable corpora, we
further build KNN Comparable Corpora. We
compute the embedding of all the programs in
the source and target language in the dataset us-
ing a finetuned code retrieval model (Husain et al.,
2020). For each program S in the source language
with embedding emb(S), we retrieve its k nearest
neighbors in the target language by the cosine sim-
ilarity between their embeddings: sim(S, T ) =
⟨emb(S), emb(T )⟩.

Finally, we build Random Comparable Cor-
pora by pairing random programs in the source and
target language. In principle, such program pairs

do not contain any information on functional equiv-
alence and allow us to better understand whether
comparable corpora can improve the modeling of
the target language and hence improve the transla-
tion quality.
Model Training. After constructing a corpus of
comparable examples Dc = {(Sc, Tc)}, we input
the program in the source language Sc into our
model Mθ and maximize the log-likelihood of its
corresponding program in the target language Tc =
{tc,1, tc,2, ..., tc,m}:

LMT (Dc) =
∑

(Sc,Tc)∈Dc

Pθ(Tc|Sc)

Pθ(Tc|Sc) = −
∑

i

log (Pθ (tc,i|Sc, tc,1 . . . tc,i−1))

(1)

Here θ is the parameters of Mθ, which is initial-
ized from an encoder-decoder model pretrained on
code (Wang et al., 2021). After training the model
on the corpus comparable examples Dc till conver-
gence, we finetune it on the dataset of parallel ex-
amples Dp, where the loss LMT (Dp) is computed
by Equation 1 as well.

By maximizing the probability of the target Tc,
the model will learn to generate fluent code in the
target language. Furthermore, in general, programs
in a comparable example often exhibit the same
types of constructs. In the examples in Figure 2,
to check whether a board is valid, no matter what
algorithm is used, the program will always need
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Dataset → Train (Comparable) Train (Parallel) Test

Gen-comp XCodeEval AVATAR-comp AVATAR-para TransCoder-test

# C++ ↔ Java 4,053* 3,414 – 3,226* 482 C-to-J, 467 J-to-C
# C++ ↔ Python 4,053* 4,376 – 3,226* 464 C-to-P, 467 P-to-C
# Java ↔ Python 22,181* – 5,937 3,391 464 J-to-P, 482 P-to-J

Source Github (Java ↔ Python)
AIZU, AtCoder (Others)

Codeforces
AtCoder, Codeforces, ProjectEuler,

CodeJam, GeeksforGeeks, LeetCode,
GeeksforGeeks GeeksforGeeks

Table 1: Number of problems per dataset. “Gen-comp” is the comparable corpora dataset we generate. C-to-J,
C-to-P, ... denote the test examples of C++-to-Java, C++-to-Python translation, etc. * denotes data we build.

a loop to read the board and use if statements for
the validity check. As a result, in principle, the
model can also learn to generate the same types
of constructs as the input program Sc, which is
beneficial for generating accurate translations.

3.3 Finetuning with Multiple References
In addition to comparable corpora, we also provide
our model with more diverse training signals by
finetuning with multiple references. By providing
the model with programs with the same functional-
ity, we encourage the model to learn a better repre-
sentation space for the target language and hence
benefit the translation.

Since the majority of source programs only have
one reference in existing datasets of parallel ex-
amples (Ahmad et al., 2021b), we apply a series
of steps to generate additional references, which
are illustrated in Figure 3. The first step is to fine-
tune a model with the original parallel data, and
then use the finetuned model to generate multi-
ple translation candidates {T (1)

c , T
(2)
c , ..., T

(k)
c } for

each source program in the parallel data.
In the second and third steps, similar to

TransCoder-ST (Roziere et al., 2022), we lever-
age automatically generated unit tests to filter out
candidates with different behaviors as the source
program. Specifically, we extract the input argu-
ments of the source programs, randomly produce a
set of test inputs based on the argument types, and
feed the test inputs to the source program. We filter
out test inputs that cause compilation or runtime
errors. Finally, we feed the remaining test inputs
to each candidate and only keep the ones that have
exactly the same output as the source program.

Notice that some of the translations may only
have small differences (e.g., i++ vs. i+=1). To
obtain a diverse subset of references, we select the
most distinct k translations for each source pro-
gram by their string edit distance. These k trans-
lations are added as additional references to the
finetuning set.

4 Experiments

In this section, we conduct experiments to answer
four research questions: (RQ1) How do CMTrans
and its ablations perform compared against state-
of-the-art approaches for code translation? (RQ2)
What can the model learn from comparable cor-
pora? (RQ3) What can the model learn from multi-
ple references? (RQ4) How is CMTrans affected
by the size of comparable corpora and the number
of references?

4.1 Experimental Setup

We initialize CMTrans from the pretrained check-
point of CodeT5 (Wang et al., 2021), an encoder-
decoder model pretrained on code files from varied
languages with denoising objectives.
Datasets. We list the dataset statistics in Table 1.
All the methods are evaluated on the TransCoder-
test dataset (Roziere et al., 2020). We train our
method on xCodeEval (Khan et al., 2023), a compa-
rable corpora dataset, and AVATAR (Ahmad et al.,
2021b), which contain both comparable corpora
and parallel functions (denoted as AVATAR-comp
and AVATAR-para, respectively). All the super-
vised baseline methods are finetuned on AVATAR-
para before evaluation.

Since AVATAR-para does not contain C++ func-
tions, we add a parallel C++ function for each train-
ing example in AVATAR-para. Specifically, we
generate 50 C++ translations for each Java func-
tion by TransCoder-ST, TransCoder, and finetuned
CodeT5 and filter the translations with unit tests.
Construction of Comparable Corpora. We con-
duct the study on different types of comparable cor-
pora (Comp-Corp) on Java ↔ Python translation.
We use AVATAR-comp2 as the naturally existing
Comp-Corp. KNN and random Comp-Corp are
also retrieved from AVATAR-comp. To build the

2There are two versions of AVATAR-comp with slight dif-
ferences. We use the first version because most of our experi-
ments were finished before the second version was released.
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Model ↓ Java-to-Python Python-to-Java Avg of 6 Pairs

BLEU CB CA@1 BLEU CB CA@1 BLEU CB CA@1

TransCoder (Roziere et al., 2020) 72.4 67.9 49.1 65.4 70.7 35.7 72.0 75.0 51.7
DOBF (Lachaux et al., 2021) 72.2 67.5 52.2 67.7 71.2 44.4 — — —
TransCoder-ST (Roziere et al., 2022) 73.1 68.7 68.5 70.0 71.9 58.1 71.3 74.9 66.3

CodeBERT (Feng et al., 2020) 52.0 48.9 10.4 45.4 45.0 4.2 — — —
CodeT5 (Wang et al., 2021) 79.4 72.5 61.0 79.0 75.9 52.7 83.6 80.0 62.6
PLBART (Ahmad et al., 2021a) 79.9 73.2 68.9 80.5 76.8 57.5 — — —
TransCoder-ST-ft (Roziere et al., 2022) 79.3 72.9 69.4 81.4 78.4 62.0 81.8 80.2 67.6

CMTrans 80.1 74.2 73.5 84.3 82.1 66.0 84.9 82.0 70.1

Table 2: Java-Python translation results on TransCoder-test. We copy the results of all the baselines reported by
Ahmad et al. (2021b). CB and CA@1 stand for CodeBLEU and Computational Accuracy. We highlight the best
results under each metric with Bold and underline the second-best results.

Model ↓ C++-to-Java C++-to-Python Java-to-C++ Python-to-C++

BLEU CB CA@1 BLEU CB CA@1 BLEU CB CA@1 BLEU CB CA@1

TransCoder (Roziere et al., 2020) 84.0 86.7 65.1 75.2 73.4 47.1 83.6 85.4 79.8 51.6 65.7 32.6
TransCoder-ST (Roziere et al., 2022) 78.8 85.2 68.0 73.1 73.0 61.3 76.7 83.7 84.6 55.8 67.1 56.7

CodeT5 (Wang et al., 2021) 90.9 90.0 65.1 82.9 75.4 56.5 89.1 88.5 81.6 79.8 77.9 58.5
TransCoder-ST-ft (Roziere et al., 2022) 88.7 90.1 68.3 75.4 74.3 62.5 89.3 87.8 84.6 76.7 77.6 59.1

CMTrans 91.6 90.5 71.4 83.7 77.2 64.2 89.7 88.4 84.4 82.0 79.3 61.2

Table 3: Java-C++ and Python-C++ translation results on TransCoder-test. The CA@1 results of TransCoder and
TransCoder-ST are copied from the TransCoder-ST paper. We evaluate BLEU and CodeBLEU using their released
checkpoints. We finetune and evaluate CodeT5 and TransCoder-ST-ft on our own.

dataset of generated Comp-Corp (denoted as Gen-
Comp), we generate from functions with docstrings
in the CodeSearchNet (Husain et al., 2020) dataset.

We train CMTrans first on the best combination
of comparable corpora, which is natural and gener-
ated Comp-Corp, and then finetuned on AVATAR-
para. For language pairs other than Java ↔ Python,
we use xCodeEval as naturally existing Comp-Corp
and generate Comp-Corp from CodeNet (Puri et al.,
2021). More details can be found in Appendix A.1.
Evaluation metrics. Our primary metric is the
Computational Accuracy (CA@k), which evalu-
ates whether at least 1 out of k translation candi-
dates generates the same outputs as the reference
for all the given test inputs. Following previous
work (Ahmad et al., 2021b), we report CA@1 re-
sults and also report BLEU, which computes the
overlap between candidate and reference transla-
tions (Papineni et al., 2002), and CodeBLEU: the
weighted average of token level match, syntax level
match, and Dataflow match (Ren et al., 2020).

Appendix A.1 contains more details about the
implementation and baselines.

4.2 Main results

Table 2 and Table 3 show the code translation re-
sults on TransCoder-test.

CMTrans substantially outperforms CodeT5,
which is initialized from the same pretrained check-
point and finetuned with the original parallel data,
by an average improvement of 7.5% CA@1. CM-
Trans also significantly outperforms the state-of-
the-art methods, TransCoder-ST-ft, on 5 out of 6
language pairs, and reaches parity on Java-to-C++
translation. Note that TransCoder-ST-ft generates
test cases for 103,488 functions and executes these
test cases over 4 iterations of training. In compari-
son, our method only generates test cases for 3,391
functions and executes the test cases once, resulting
in better efficiency.

Our results show that the advantage of CMTrans
is larger on translations between Java and Python.
The reason may be that the parallel data we gener-
ate for translations involving C++ are only verified
by automatically generated test cases, which might
not cover all the boundary cases and could intro-
duce noise to the finetuning set.

Following previous work (Roziere et al., 2022;
Ahmad et al., 2021b), we report the results of
one checkpoint. We also conduct the t-test in Ap-
pendix A.2, which indicates that CMTrans signif-
icantly outperforms the best baseline over CA@1
with p-value < 0.01 for 4 out of 6 language pairs
and with p-value < 0.05 for one language pair.
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Model ↓ J-to-P CA@1 P-to-J CA@1

CodeT5 61.0 52.0
+ Random Comp-Corp 64.7 54.6
+ KNN Comp-Corp 63.8 55.4
+ Generated Comp-Corp 64.0 63.1
+ Natural Comp-Corp 68.8 62.9

+ All Comp-Corp 62.5 55.4
+ Natural & Generated 70.0 64.1
+ Multi-Ref 68.1 61.6
CMTrans 73.5 66.0

Table 4: Ablation studies of CMTrans. We report CA@1
results. J-to-P and P-to-J stand for Java-to-Python and
Python-to-Java results. We put the experiments on each
type of comparable corpora in an individual block.

4.3 Performance Analysis

Ablation studies. Table 4 presents the ablations of
our approach. We first study the effectiveness of
each type of comparable corpora and some combi-
nations of them. All the “+ Comp-Corp” ablations
denote training CodeT5 on comparable corpora and
then finetuneing on AVATAR-para. We also ablate
“+ Multi-Ref”, which is finetuned on multiple refer-
ences directly after pretraining. The results show
that both Multi-Ref and the best Comp-Corp pro-
vide a large performance gain and stacking them
(the full CMTrans) has the best performance.

As for the effectiveness of different Comp-Corp,
we can see that code translation can benefit from
all these types of Comp-Corp. The combination
of Natural and generated Comp-Corp has the best
performance. The reason might be both Comp-
Corp have relatively high data quality and further
adding the other two Comp-Corp in training intro-
duces noise to the model and hinders the learning
of functional equivalence.

Notice that with the same finetuning set, Comp-
Corp Only still outperforms TransCoder-ST-ft,
which indicates that compared to self-training,
training on comparable corpora has not only better
efficiency but better effectiveness. We hypothesize
that the reason may be that the comparable corpora
contain more diverse structures and contents. This
provides more diverse training signals to the model
and hence improves the generalization.
Translation with Limited Parallel Data. To ana-
lyze how well our method tackles the data scarcity
challenge, we compare the performance of CodeT5
and CMTrans when finetuned on parallel data with
different sizes. For simplicity, we use CMTrans
(Comp-Corp Only) to denote the “CodeT5 + Natu-
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Figure 4: Translation results with different amount of
parallel data. We mark the relative gain of CMTrans
over CodeT5.
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Figure 5: Perplexity of validation set during finetuning.

ral & Generated” ablation and use CMTrans (Multi-
Ref Only) to denote “CodeT5 + Multi-Ref”.

As shown in Figure 4, the relative gains of CM-
Trans as well as our ablations are more pronounced
when the parallel data is more limited. For example,
when there are only 100 parallel examples for Java-
to-Python translation, CodeT5 obtains 6.5 CA@1
while CMTrans, (Comp-Corp Only), and (Multi-
Ref Only) obtain 43.1, 39.7, and 26.9 CA@1, re-
spectively. This demonstrates the effectiveness of
our two data augmentation techniques to tackle
data scarcity.

4.4 Influence of Comparable Corpora

To answer RQ2, we hypothesize that training on
comparable corpora allows the model to produce
fluent code in the target language while using simi-
lar constructs as the input.
Fluency of outputs. To validate our hypothesis,
we compare the perplexity of the reference trans-
lations (in the target language) during finetuning,
which reflects the fluency of outputs. As shown
in Figure 5, after training on comparable corpora,
the perplexity is substantially reduced before fine-
tuning. It also converges to a lower value after
finetuning on parallel data.

Similarly, Table 6 shows that in most scenarios,
training on comparable corpora leads to fewer syn-
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Model ↓
Java-to-Python Python-to-Java

LOOP IF ELSE IF LOOP IF ELSE IF

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CodeT5 (No finetune) 100.0 28.5 44.4 99.1 35.4 52.2 0.0 0.0 0.0 100.0 14.6 25.5 100.0 36.6 53.6 0.0 0.0 0.0
+ KNN Comp-Corp 89.4 94.6 91.9 82.1 64.3 72.1 41.6 57.6 48.3 87.9 98.9 93.1 90.2 50.9 65.1 30.5 16.4 21.3
+ Generated Comp-Corp 99.9 98.9 99.4 99.0 93.2 96.0 84.6 79.2 81.8 98.3 96.7 97.5 98.7 94.8 96.7 83.3 86.4 84.8
+ Natural Comp-Corp 95.8 85.4 90.3 91.2 73.9 81.6 50.0 49.6 49.8 87.4 98.9 92.8 88.2 80.4 84.1 57.8 33.6 42.5

Table 5: The overlap between the types of constructs in the translation outputs and the ground truth translations.

Model ↓ J-to-P SA P-to-J SA
No finetuning

CodeT5 (Wang et al., 2021) 1.1 1.7
+ Random Comp-Corp 20.0 41.3
+ KNN Comp-Corp 22.0 56.4
+ Generated Comp-Corp 41.4 43.2
+ Natural Comp-Corp 34.1 54.6

With finetuning

CodeT5 (Wang et al., 2021) 95.3 69.7
+ Random Comp-Corp 96.3 69.7
+ KNN Comp-Corp 96.3 71.0
+ Generated Comp-Corp 97.6 71.2
+ Natural Comp-Corp 97.4 76.4

Table 6: Syntax Accuracy (SA) on TransCoder-test be-
fore finetuning, which evaluates whether the program
can be compiled without syntax errors.

tax errors both before and after finetuning, which
means the programs our method generates not only
have a high token-level overlap with the reference
translations but are also syntactically correct. The
reason might be comparable corpora (including the
random Comp-Corp) train the model to maximize
the probability of a complete program in the target
language, improving its language modeling ability.
Generation of matching constructs. We observe
that programs in a comparable pair typically con-
tain similar constructs (e.g., in AVATAR-comp,
for 83.41% of Java programs with if statements,
the corresponding Python programs also contain
if statements). To assess whether our model also
learns to generate the correct types of constructs,
for each type of construct, we consider whether the
reference translation has this type of construct as
the ground truth and whether the translation output
has it as the predictions. Then we compute the
accuracy, recall, and F1 scores.

As shown in Table 5, after training on KNN,
generated, and natural Comp-Corp, the F1 score is
highly improved. The generated Comp-Corp has
the highest F1 scores. The reason might be we
input both the documentation and the program to
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Figure 6: Number of unique correct translations in 20
candidates for each test example. We use beam search
for each method, so the generated candidates are guar-
anteed to be distinct.

the generation model, so the generated program
follows the same algorithm as the input program,
which results in a larger percent of comparable
examples that share the same types of constructs.

4.5 Influence of Multiple References

As for RQ3, we hypothesize that training on addi-
tional references can reduce overfitting to a single
translation. To validate this hypothesis, we show in
Figure 6 that when trained with multiple references,
our model can generate more unique correct transla-
tions using beam search within the same number of
candidate outputs. For instance, in Java-to-Python
translation, there are 214 test examples where our
model generates ≥ 16 unique translations, while
there are only 145 and 146 examples for CodeT5
and TransCoder-ST-ft, respectively. Furthermore,
the scores under the “0” group indicate that after
training with multiple references, the model gen-
erates at least one correct translation for more test
examples. In other words, in addition to CA@1,
training CodeT5 on multiple references also im-
proves on CA@20.

4.6 Hyper-parameter analysis

To answer RQ4, we analyze two hyper-parameters:
Size of comparable corpora. We sample the same
percentage of comparable examples from AVATAR-
comp and Gen-comp and combine the sampled
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Returns a {@link Config} object from the supplied list with the supplied name, if it exists. If it exists, the supplied 
list of {@code configs} will be modified such that it no longer contains the returned value. <Input NL Documentation>

public static Config getAndRemoveConfig(List <Config> configs, String name){
    final Config config = getConfigWithName(configs, name);
    if ( config != null ){ configs.remove( config ); }
    return config;
}

<Input Java>

def getAndRemoveConfig(configs, name):
  for i in configs :
    if i.name == name :
      configs.remove( i )
      return i
  return None <Generated Python>

Figure 7: Case study: a comparable example generated by our method with a NL-to-code generation model. We
highlight the lines in the Java program and the generated Python program that can be matched.
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Figure 8: The CA@1 score for CMTrans and its ablations with different hyper-parameters.

data. CMTrans is finetuned with at most 5 refer-
ences in all trials. As shown in Figure 8a, as we
increase the size of comparable corpora, CMTrans
(Comp-Corp Only) always has better performance.
While the trends are not monotonic for CMTrans,
it still obtains the best performance with full com-
parable corpora.
Number of references. We also examine the ef-
fect of the maximum number of references for each
parallel example in finetuning. We observe that the
performance of CMTrans does not always increase
when finetuned with more references. The reason
might be our model may generate more unique cor-
rect translations for some training examples than
others. As a result, the training signals the model
received from different examples could be unbal-
anced, especially when the maximum number of
references for each example is large.

4.7 Case Studies

We show a constructed comparable example in Fig-
ure 7. More case studies for comparable corpora
and generated references can be found in Appen-
dices A.3 and A.4. As shown in Figure 7, both the
Java function extracted from GitHub and the gen-
erated Python function remove a config by name
and return this config. The only difference is the
Java function obtains the name of each config by a
helper function, while the generated Python func-
tion directly accesses the “name” attribute. We
also observe that this function is likely to belong

to a large software project, which has a different
nature from coding problems (e.g., the example in
Figure 2). As a result, combining collected and
generated comparable examples provides diverse
training signals to our model.

5 Conclusion and Future Work

We present two data augmentation techniques for
code translation: comparable corpora and multiple
references. We study multiple ways of building
comparable corpora, such as feeding natural lan-
guage code documentation to code generation mod-
els. Additionally, we generate multiple reference
translations using our model and filter references
using automatically generated unit tests. Experi-
ments on translation between 6 language pairs show
that our two techniques improve CodeT5 substan-
tially, by an average of 7.5% CA@1. Our analyses
further show that after training on comparable cor-
pora, the model learns to generate more fluent code
with the same types of constructs. With multiple
references, the model learns to generate a larger
number of unique correct translations.

Following our analyses of what the model learns
from comparable corpora, future work may con-
duct a more comprehensive study on what the
model learns in code translation. One may also ex-
plore combining our data augmentation techniques
with data distillation from large language models
(LLMs), where LLM may generate data with higher
quality, but our techniques are less expensive.
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Limitations

Despite the empirical advantages of using compara-
ble corpora (Comp-Corp) shown in our work, there
are some inherent biases and limitations in how we
collect and construct them. The collected Comp-
Corp are from competitive programming websites,
leading to a biased data distribution. The Comp-
Corp constructed using code generation models
are also biased by the training data seen by these
models and can potentially contain errors. Further-
more, we only evaluate methods on the TransCoder
dataset, which is currently the largest code transla-
tion dataset with test cases. The TransCoder dataset
only contains standalone functions that don’t con-
tain any imports outside the standard libraries for
each language. Translation of longer code with
arbitrary external modules is an extension we plan
to explore in future work. Another possible risk in
our system is that the data may also contain infor-
mation that uniquely identifies users or is offensive.
For example, we generate comparable examples
based on users’ comments, which could contain
inappropriate content.

Ethics Statement

License. We use public datasets AVATAR (Ah-
mad et al., 2021b), xCodeEval (Khan et al., 2023),
and TransCoder (Roziere et al., 2020) in our ex-
periments. The data of AVATAR, xCodeEval, and
TransCoder are all distributed under a CC BY-NC
4.0 license.

Carbon Footprint. We avoided the usage of large
language models when constructing our models.
CMTrans has the same architecture as CodeT5-
base, which has 220 million parameters. The two
models we use to construct comparable corpora
have the same architecture as CodeT5-base and
CodeT5-large, which have 220 million and 770 mil-
lion parameters, respectively. We train CMTrans
first on the comparable corpora and then the paral-
lel data. Training on comparable corpora took 4-5
hours on average and training on parallel data took
less than one hour on one RTX A6000 GPU. There-
fore, training CMTrans results in approximately
0.78kg of carbon emission into the environment.3

3Estimations were conducted using the MachineLearning
Impact calculator presented in Lacoste et al. (2019). We use
Amazon Web Services as the provider.
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A Appendix

A.1 Experimental Details

Implementation details. To generate the com-
parable corpora dataset (denoted as “Gen-comp”
in Table 1), for Java ↔ Python translation, we
obtain Java functions with Docstrings from Code-
SearchNet (Husain et al., 2020) and use CodeRL
(Le et al., 2022) finetuned on MBPP (Austin et al.,
2021) to generate Python programs. For Cpp ↔
Java translation, we obtain Cpp solutions with prob-
lem descriptions from CodeNet (Puri et al., 2021)
and use CodeT5 (Wang et al., 2021) finetuned on
CONCODE (Iyer et al., 2018) to generate Java pro-
grams. For Cpp ↔ Python translation, we again
obtain Cpp programs from CodeNet and use the
finetuned CodeRL model to generate Python pro-
grams.

To train CMTrans, we tune the number of
source/target programs per problem in the range
of [1, 3, 5] and tune the maximum number of gen-
erated references for finetuning in the range of [5,
10]. For the training on both comparable corpora
and AVATAR-para, we train CMTrans with a learn-
ing rate of 1e-4 and batch size of 32 for at most 20
epochs. As for the baselines, we finetune CodeT5
with a learning rate of 1e-4 and batch size of 32 for
at most 20 epochs. We finetune TransCoder-ST-ft
with a learning rate of 1e-4 and batch size of 64 for
at most 20 epochs.

Baselines. We compare CMTrans with unsu-
pervised and self-supervised models, including
TransCoder (Roziere et al., 2020), DOBF (Lachaux
et al., 2021), and TransCoder-ST (Roziere et al.,
2022). We also compare with supervised models,
which are initialized from CodeBERT (Feng et al.,
2020), PLBART (Ahmad et al., 2021a), CodeT5
(Wang et al., 2021), or TransCoder-ST (Roziere
et al., 2022) (denoted as TransCoder-ST-ft) and
finetuned on AVATAR-para. We only compare
with DOBF, CodeBERT, and PLBART on Java ↔
Python translation because these models are not
pretrained on Cpp.

A.2 Statistical Significance Test

We present the t-test results in Table 7, where we
run each experiment with 3 random seeds when
finetuning on AVATAR-para.

A.3 Case Studies for Naturally Existing and
Generated Comparable Corpora

We show case studies of naturally existing and
generated comparable examples in Figure 9 and
Figure 10. The example in Figure 9 is from the
xCodeEval dataset, which contains different users’
submissions of the “Food for Animals” problem
on Codeforces. In Figure 10, the Java function and
its docstring are from the CodeSearchNet dataset.
The Python program is generated by our method.
Quality of the Generated Comparable Exam-
ple. As shown in Figure 10, the Python program
we generate has similar functionality as the input
Java program. Specifically, both programs define
a list of variables, compare the sum of term off-
set and aligned length with the term length, and
return an offset of the term. The major differ-
ences are that the Java program calls a global func-
tion “getAndAddRawTail” to compute the value of
“rawTail”, while the generated Python program
calls a class function “termBuffer.active()”.
Both functions are not defined in the context.
Also, the Java program calls another function,
“handleEndOfLogCondition”, without defining it,
while our method also generates the content of
“handleEndOfLogCondition”.

We notice that a large percentage of differences
between the generated and input program are due
to calling functions without presenting their defi-
nitions in the input. Such input programs contain
limited information on the purpose of these func-
tions. As a result, it is challenging for the code
generation model to generate code with exactly the
same functionality.
Comparison Between Naturally Existing and
Generated Comparable Examples. We can ob-
serve that the naturally existing and generated com-
parable examples are different in several ways. For
instance, the naturally existing comparable exam-
ples are mainly collected from coding problems,
while the generated examples can belong to other
sources, such as a large software project. In addi-
tion, the programs in the naturally existing example
are self-contained, while both the Java and Python
programs in the generated example contain user-
defined classes and external functions that are de-
fined elsewhere, including “HeaderWriter”, “Head-
erWriter.write()”, and “align()”. Besides, programs
in one naturally existing comparable example typi-
cally have the same output format (e.g., “YES” or
“NO” in this case), while programs we generate
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Java-to-Python Python-to-Java

BLEU CB CA@1 BLEU CB CA@1

Best baseline 79.9 73.2 69.4 81.4 78.4 62.0
CMTrans 82.1 ± 0.4** 76.1 ± 1.4** 72.1 ± 1.6** 84.3 ± 0.4** 82.0 ± 0.5** 64.6 ± 1.0**

C++-to-Python Python-to-C++

BLEU CB CA@1 BLEU CB CA@1

Best baseline 82.9 75.4 62.5 79.8 77.9 59.1
CMTrans 83.8 ± 0.6** 76.8 ± 0.3** 64.6 ± 0.8** 82.1 ± 0.9** 79.8 ± 0.5** 63.2 ± 1.4**

Java-to-C++ C++-to-Java

BLEU CB CA@1 BLEU CB CA@1

Best baseline 89.3 88.5 84.6 90.9 90.1 68.3
CMTrans 89.9 ± 0.4* 88.1 ± 0.2 83.7 ± 1.1 91.1 ± 0.4 90.3 ± 0.1** 69.9 ± 1.1*

Table 7: T-test results. We copy the results from the papers of the best baselines and run CMTrans for 3 different
random seeds. **means significant results with p-value < 0.01. *means significant results with p-value < 0.05.

from the documentation may have different output
formats, especially when the docstring is unclear
about the return value. With all the differences,
the combination of naturally existing and gener-
ated comparable corpora cover programs with a
large variety of styles and domains, which provides
diverse training signals to our model.

A.4 Case Studies for Model-generated
References

Figure 11 shows an example of the multiple refer-
ences generated by CMTrans. The example is from
the AVATAR-para dataset. We use our model to
generate 50 candidate translations, 23 of which are
correct (i.e., have exactly the same output as the
source program on all the automatically generated
test cases). We show the 9 correct translations with
the highest probabilities, 4 of which are selected to
the reference set.
Quality of the Generated References. In this
example, the source program contains a for loop
and an if statement. Note that the for loop has “≤
high” as the end condition. When we translate it
to the “for $ITER_VAR in range()” grammar
in Python, we have to instead use “high + 1” as
the end value. This is correctly handled in several
different candidate translations.
Diversity of the Generated References. There
are two main options for translating a loop: using
either a for loop or a while loop. In the example
in Figure 11, the selected reference set contains 2
translations with a while loop and 3 with a for loop,

including the ground truth translation.
We can observe that the differences between two

candidates can be as small as adding or deleting
parentheses and semicolons. For instance, the only
difference between Candidate #3 and Candidate
#9 is the parentheses around “i%10 == k”. In
this example, by computing the string edit distance,
we avoid having both Candidate #3 and #9 in the
reference set.
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#include <iostream>
#include<cstdio>
using namespace std;
int main(){
  int a, b, c, x, y, t;
  cin >> t;
  while ( t -- ){
    cin >> a >> b >> c >> x >> y;
    if ( a + c >= x ){
      if ( a >= x ) c = c;
      else c -= x - a;
      if (b + c >= y) cout << "YES\n";
      else cout << "NO\n";
    }
    else cout << "NO\n";
  }
}

import java.util.*;
public class Main{
 public static void main(String[] args){
   Scanner sc = new Scanner(System.in);
    
   for (int t = sc.nextInt(); t-->0;)
   {
     int a=sc.nextInt(),
     b=sc.nextInt(), c=sc.nextInt(),
     x=sc.nextInt(), y=sc.nextInt();
     int A = Math.max(0, x-a);
     int B = Math.max(0, y-b);
     System.out.println(
       c >= A + B ? "YES" : "NO");
   }
 }
}

for _ in range(int(input())):
  a, b, c, x, y = 
    map(int, input().split())
  if a >= x and b >= y:
    print( 'YES' )
  elif a >= x and b < y:
    if b + c < y:
        print( 'NO' )
    else:
        print( 'YES' )
  elif a < x and b >= y:
    if a + c < x:
        print( 'NO' )
    else:
        print( 'YES' )
  else:
    v = c - ((x-a) + (y-b))
    if v >= 0 :
        print( 'YES' )
    else :
        print( 'NO' )

Obviously, the best way to buy food for every pet is to buy maximum possible food 
for dogs and cats, then max(0, x-a) dogs and max(0, y-b) cats will not get food. 
We will buy universal food for these dogs and cats. Then the answer is YES, if 
max(0,x-a)+max(0,y-b)<=c, and NO else.

<NL Instruction of the Coding Problem>

<Java Solution (User B)> <Python Solution (User C)><C++ Solution (User A)>

Figure 9: A comparable example collected from a coding problem. We highlight the lines in the user-written C++,
Java, and Python programs that can be matched.

public int claim(final HeaderWriter header, final int length, 
      final BufferClaim bufferClaim, final int activeTermId){
 final int frameLength = length + HEADER_LENGTH;
 final int alignedLength = align(frameLength, FRAME_ALIGNMENT);
 final UnsafeBuffer termBuffer = this.termBuffer;
 final int termLength = termBuffer.capacity ();
 final long rawTail = getAndAddRawTail(alignedLength);
 final int termId = termId(rawTail);
 final long termOffset = rawTail & 0xFFFF_FFFFL;
 checkTerm ( activeTermId, termId );
 long resultingOffset = termOffset + alignedLength;
 if ( resultingOffset > termLength ){
   resultingOffset = handleEndOfLogCondition(termBuffer, 
                       termOffset, header, termLength, termId);
 }
 else {
  final int frameOffset = (int)termOffset;
  header.write(termBuffer, frameOffset, frameLength, termId);
  bufferClaim.wrap(termBuffer, frameOffset, frameLength);
 }
 return (int)resultingOffset;
}

def claim(header, length, bufferClaim, activeTermId):
  frameLength = length + HEADER_LENGTH
  alignedLength = align(frameLength, FRAME_ALIGNMENT)
  termBuffer = bufferClaim.termBuffer
  termLength = termBuffer.capacity()
  termId = termBuffer.active[activeTermId]
  termOffset = termBuffer.active[activeTermId] & 0xFFFF_FFFFL
  termOffset = handleEndOfLogCondition(termBuffer, termOffset,
                            header, termLength, termId);
  return termOffset
def handleEndOfLogCondition(termBuffer, termOffset, 
                         header,termLength,termId):
  if termOffset + alignedLength > termLength:
     return termLength
  else :
     termBuffer.active[ activeTermId ] += 1
     termBuffer.active[ activeTermId ] %= termLength
     frameLength = termLength + FRAME_ALIGNMENT
     header.write(termBuffer, termOffset, frameLength, termId)
     bufferClaim.wrap( termBuffer, termOffset, frameLength)
     termBuffer.active[ activeTermId ] = 0
     termOffset += FRAME_ALIGNMENT
     return termOffset

Claim length of the term buffer for writing in the message with zero copy semantics.
@Parameters:
header - for writing the default header. 
length - of the message to be written. 
bufferClaim - to be updated with the claimed region. 
activeTermId - used for flow control.
@Returns: the resulting offset of the term after the append on success otherwise FAILED. <Input NL Documentation>

<Input Java> <Generated Python>

Figure 10: A comparable example generated by our method. The natural language documentation is the docstring
of the Java program. We highlight the lines in the Java program and the generated Python program that can be
matched.

13738



public static int counLastDigitK(int low, int high, int k){
  int count = 0;
  for ( int i = low; i <= high; i ++ ) 
    if ( i%10 == k ) count ++;
  return count ;
}

def counLastDigitK(low, high, k):
    count = 0
    for i in range( low, high+1 ):
        if ( i%10 == k ) :
            count += 1
    return count

def countLastDigitK(low, high, k):
    count = 0
    for i in range(low, high+1 ):
        if ( i%10 == k ):
            count += 1
    return count

def counLastDigitK(low, high, k):
    count = 0
    for i in range(low, high+1):
        if i%10 == k:
            count = count + 1
    return count

def counLastDigitK(low, high, k):
    count = 0
    for i in range(low, high+1, 1):
        if i%10 == k:
            count += 1
    return count

def counLastDigitK(low, high, k):
    count = 0
    i = low
    while i <= high :
        if ( i%10 == k ):
            count += 1
        i = i + 1
    return count

def counLastDigitK(low, high, k):
    count = 0
    i = low
    while ( i <= high ):
        if ( i%10 == k ):
            count += 1
        i = i + 1
    return count

def counLastDigitK(low, high, k):
    count = 0;
    i = low;
    while i <= high:
        if i%10 == k:
            count += 1;
        i += 1;
    return count;

def counLastDigitK(low, high, k):
    count = 0
    i = low
    while ( i <= high ):
        if ( i%10 == k ):
            count += 1
        i += 1
    return count

def counLastDigitK(low, high, k):
    count = 0;
    i = low;
    while ( i <= high ):
        if ( i%10 == k ):
            count += 1;
        i += 1;
    return count;

def counLastDigitK(low, high, k):
    count = 0
    for i in range(low, high+1, 1):
        if ( i%10 == k ):
            count += 1
    return count

Input Source program (Java) Ground Truth Reference Translation (Python)

Correct Candidate # 1 Correct Candidate # 2 

✅

Correct Candidate # 3 

Correct Candidate # 4 

Correct Candidate # 7 

Correct Candidate # 5 

✅

Correct Candidate # 8 

Correct Candidate # 6 

✅

Correct Candidate # 9 

✅

Figure 11: An example of the multiple references we generate. We show the top 9 correct translations generated by
our model with the highest probabilities. Candidates with a checkmark are those we select to add to the reference
set. We add these translations one by one based on their string edit distance with all the existing translations.
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