
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13667–13678
December 6-10, 2023 ©2023 Association for Computational Linguistics

Multi-Task Learning of Query Generation and Classification for
Generative Conversational Question Rewriting

Sarawoot Kongyoung1, Craig Macdonald2, Iadh Ounis2

University of Glasgow, UK
1s.kongyoung.1@research.gla.ac.uk

2{craig.macdonald,iadh.ounis}@glasgow.ac.uk

Abstract

In conversational search settings, users ask
questions and receive answers as part of a con-
versation. The ambiguity in the questions is a
common challenge, which can be effectively
addressed by leveraging contextual information
from the conversation history. In this context,
determining topic continuity and reformulating
questions into well-defined queries are crucial
tasks. Previous approaches have typically ad-
dressed these tasks either as a classification task
in the case of topic continuity or as a text gener-
ation task for question reformulation. However,
no prior work has combined both tasks to effec-
tively identify ambiguous questions as part of a
conversation. In this paper, we propose a Multi-
Task Learning (MTL) approach that uses a text
generation model for both question rewriting
and classification. Our models, based on BART
and T5, are trained to rewrite conversational
questions and identify follow-up questions si-
multaneously. We evaluate our approach on
multiple test sets and demonstrate that it out-
performs single-task learning baselines on the
three LIF test sets, with statistically significant
improvements ranging from +3.5% to +10.5%
in terms of F1 and Micro-F1 scores. We also
show that our approach outperforms single-task
question rewriting models in passage retrieval
on a large OR-QuAC test set.

1 Introduction

Conversational Question Answering (QA), which
simulates human dialogues in information-seeking
tasks, necessitates resolving ambiguities in the user
queries based on the conversation history (Kundu
et al., 2020). Figure 1 exemplifies the possible
ambiguities that might arise from a typical dialogue
with a user, highlighting the importance of address-
ing these ambiguities based on the conversation
history. For example, in the question q3, “Was he
the owner of the paper?”, the “he” and “the paper”
referents are context-dependent, typically clarified
by prior questions (q1, q2) and answers (a1, a2).

Figure 1: An illustrative example of dialogue.

To address such ambiguities, a number of
approaches have been explored, such as follow-up
question identification (Bertomeu et al., 2006;
Kirschner and Bernardi, 2007, 2009; Kundu et al.,
2020) and conversational question rewriting (Lin
et al., 2020; Mele et al., 2021; Ren et al., 2018;
Vakulenko et al., 2021a,b; Voskarides et al., 2020;
Yu et al., 2020). Indeed, the follow-up question
identification approaches have been used in
Conversational QA to enhance the interpretation of
the user’s intent and context. The main objective
of these approaches is to determine whether
a follow-up question is linked to the previous
conversation history or not. If it is determined that
the follow-up question is related to the previous
conversation, the system can leverage the context
provided by the conversation to generate more
precise and relevant responses. In Figure 1, a
follow-up question (q3) is classified as valid if
it can be linked to the previous conversation
(q1, a1, q2, a2), else it is classified as invalid (e.g.,
q4). For example, the three-way attentive pooling
network approach (Kundu et al., 2020) predicts
this continuity by analysing the candidate question
and conversation history, outperforming other
models such as BiLSTM, CNN, and BERT (Devlin
et al., 2019). In this paper, we use the three-way
attentive pooling network as our strongest baseline.

On the other hand, conversational question
rewriting approaches have been employed in
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Conversational QA to enhance the accuracy of
the retrieved information by reformulating the
user’s original question. These approaches usually
involve modifying the original question or gener-
ating new queries that better represent the user’s
intent by transforming a concise conversational
question into a fully-grown, contextualised ad-hoc
query. For example, in Figure 1, the question q′3
“Was Sheldon the owner of the Israeli press?” is
a rewrite of q3 “Was he the owner of the paper?”,
based on the conversation history (q1, a1, q2, a2).
A T5 (Raffel et al., 2020) model can be fine-tuned
to automatically reformulate the question by
injecting information that exists in the context
into a fully defined query (Lin et al., 2020).
Previous work, such as (Lin et al., 2020; Mele
et al., 2021; Ren et al., 2018; Vakulenko et al.,
2021a,b; Voskarides et al., 2020; Yu et al., 2020),
focused on conversational question rewriting;
however, they did not address the task of follow-up
question identification. In this paper, to alleviate
ambiguities in conversational QA, we investigate
the combination of both the follow-up question
identification task and the conversational question
rewriting task into a single framework, thereby
also improving the effectiveness of both tasks.

Recently, Multi-Task Learning (MTL) has
emerged as an effective approach for simultane-
ously learning numerous related tasks (Ide and
Kawahara, 2021; Kongyoung et al., 2022). MTL
can be used to increase a system’s performance on
the text generation task by leveraging classification
tasks. For example, Ide and Kawahara (2021)
adopted an MTL approach using a text generation
BART (Lewis et al., 2019) model, which jointly
learns a classification task and a text generation
task by sharing the learner, and showed an im-
provement in an emotion-aware dialogue response
generation model. Text generation models like
T5 have also been effectively used for multi-task
learning involving both text generation and clas-
sification tasks, such as passage ranking/re-ranking
and answer generation/extraction (Kongyoung
et al., 2022; Lee et al., 2022; Jiang et al., 2022).
Given their effectiveness on various tasks, we argue
that text generation models – BART and T5 – can
be tailored for the follow-up question identification
and conversational question rewriting tasks.

Our intuition is that by combining follow-up
question identification and conversational question
rewriting, the system’s response accuracy and

Figure 2: Comparison of MTL models: (a) a discrim-
inative+generative model with separate heads for the
classification and question rewriting tasks, and (b) a
generative model with a combined token generation for
both tasks.

relevance can be enhanced. Indeed, by identifying
connections between the user’s questions, address-
ing ambiguities, and leveraging the conversation’s
context, the system can refine its understanding of
the user intent and can provide more precise and
relevant responses. Our text generation models
leverage the Multi-Task Learning of the conversa-
tional question rewriting and classification tasks
to identify whether a question is a follow-up to the
previous question and, accordingly, reformulate
a question using the dialogue context. To the best
of our knowledge, no prior work has inherently
combined both tasks to more effectively address
ambiguity in conversational questions.

Our contributions are as follows: (1) We lever-
age Multi-Task Learning with a text generation
model to effectively address the tasks of follow-up
question identification and conversational question
rewriting; (2) Using the recent LIF dataset (Kundu
et al., 2020), we compare our models to two recent
baselines from the literature, and show that our
Multi-Task Learning BART model yields the best
F1 and Macro-F1 performance improvements over
the strongest baseline, three-way attentive pooling,
with statistically significant improvements rang-
ing from 3.5% to 10.5% on all LIF test sets; (3)
Our proposed Multi-Task Learning T5 model sig-
nificantly outperforms the single-task learning of
question rewriting models for passage retrieval on
the OR-QuAC test set.

2 MTL: Classification & Generation

We define the follow-up question identification
and conversational question rewriting tasks in
Sections 2.1 & 2.2. An overview of the proposed
text generation model follows in Section 2.3.
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2.1 Follow-up Question Identification

Following Kundu et al. (2020), we consider
the following inputs: a list of previous ques-
tions, a list of their corresponding ground truth
answer (respectively denoted as [q1, q2, . . . qk]
and [a1, a2, . . . ak] where k is the number of the
previous question-answer pair in the conversation
history), and a candidate follow-up question qc.
Given these inputs, the first task we address is to
predict whether or not the candidate follow-up
question qc is a valid follow-up question. Figure 1
exemplifies the follow-up question identification
task, showing a history of length k = 2 with the
corresponding questions and answers. In particular,
as this task is a binary classification task, the aim
of a follow-up question identification approach
is to classify a question qc as a valid follow-up
question or as invalid.

2.2 Conversational Question Rewriting

Following Elgohary et al. (2019), given a conver-
sation history Hk consisting of a list of k ques-
tions and a list of ground truth answer pairs, i.e
Hk = [⟨q, a⟩], the task is to generate a rewrite
q′m for the next question qm based on Hk. Be-
cause qm is part of the conversation, its meaning
frequently includes references to parts of Hk. A
valid q′m should be self-contained: i.e. a correct
answer to q′m without the history Hk is a correct
answer to qm with the history Hk. Figure 1 exem-
plifies the conversational question rewriting task,
showing a history of length k = 2 with the corre-
sponding questions and answers. The question q3
omits the first question (replacing the pronoun “he”
with Sheldon and replacing “the page” with Israeli
press ). Hence, to address this task, the system
needs to resolve any omission by using history Hk.
Next, we describe the MTL approaches to com-
bine the follow-up question identification with the
conversational question rewriting.

2.3 Model Overview

To tackle the tasks described in Sections 2.1
and 2.2, we propose classification and question
rewriting models that leverage historical questions
to identify whether a candidate question qc is
a follow-up to the previous question and to
reformulate the current question qm. Our proposed
method uses models including BART (Lewis et al.,
2019) and T5 (Raffel et al., 2020), which are large
pre-trained language models designed for text

generation. Such text generation approaches can be
trained to generate a meaningful textual response
based on some input text. Moreover, like BERT, the
pre-trained BART and T5 models can be fine-tuned
to perform a variety of downstream tasks.

In addition, the manner in which a text genera-
tion model is used in classification tasks can dif-
fer, as they can be fine-tuned as discriminative or
generative models. In a discriminative setup, the
model is adapted for binary classification by adding
a fully-connected layer with two output neurons
(corresponding to each class) upon a special [CLS]
token in BERT, or the last token in BART. In con-
trast, a generative setup reframes NLP tasks as text
generation tasks - for instance, classification is per-
formed by examining what text is generated and
the corresponding likelihood.

An MTL Text Generation Approach: To adapt
an MTL approach to a text generation model for
jointly learning from both the classification and
question rewriting tasks, the model can be used
in either a discriminative+generative or in a gen-
erative setup as shown in Figure 2. A discrimi-
native+generative MTL model makes predictions
by applying a CLS head to create a score for a
classification task and an LM head to generate the
tokens for a question rewriting task (Ide and Kawa-
hara, 2021) as shown in Figure 2 (a). In contrast, a
generative MTL model makes predictions by gen-
erating the first token for a classification task and
the follow-up tokens for a query rewriting task as
shown in Figure 2 (b). Notably, while text gen-
eration models like BART can function in either
the discriminative+generative or generative MTL
setups, the T5 model is exclusively applicable as a
generative MTL model (Raffel et al., 2020).

In particular, when fine-tuning the T5 model
for a downstream task, a prefix text is required
– for example “translate English to German:”
might be used for a translation task. Indeed,
the text generation models have been shown to
achieve state-of-the-art performances in classifi-
cation (Lewis et al., 2019; Raffel et al., 2020),
as well as in document re-ranking – by ranking
based on the likelihood of generating a particular
token (Nogueira et al., 2020; dos Santos et al.,
2020) (outperforming BERT models) and even in
arithmetic tasks (Nogueira et al., 2021). Hence,
for the MTL of both the follow-up question
identification and question rewriting tasks we
choose the MTL generative version of the BART
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and T5 models. However, for comparison purposes,
we also deploy the discriminative+generative
versions of the BART models in our experiments.

More precisely, we deploy generative MTL mod-
els to capture the relation between the question
qc/qm and the contextual information in the con-
versation history, including the historical ques-
tion(s) {q1, q2, . . . qk}, and the historical answer(s)
{a1, a2, . . . ak}, as shown in Figure 2 (b). In par-
ticular, let Gen(·) denotes a generative transfor-
mation function by taking the input sequence as
follows:

Gen(“prompt : ” qc “[SEP ]” Hk

)
(1)

Gen(·) = w1, w2, ..., wn (2)

where “prompt:” is a prefix text, and “[SEP]” is
a special token. The model is then fine-tuned to
generate the target tokens length n as shown in
Equation (2), for the token w1 namely “follow”
or “shift”1 depending on whether the candidate
question is a valid follow-up to the previous
question or not, while the follow-up tokens
w2, ..., wn are the output sequence for the target
query. In particular, a prompt function, as shown in
Equation (1), is employed to format and combine
the question (qc) and the conversational history
(q1...qk, a1...ak), creating a well-structured input
sequence for Gen(·). Subsequently, Gen(·)
generates the contextual representation h. Once
the contextual representation h is obtained, it is
used by the Gen(·) decoder. This decoder takes
the previously generated tokens as input and
performs attention over h, enabling it to generate
the subsequent token. Specifically, when given the
tuple ⟨qc, q1...qk, a1...ak⟩, our training objective
aims to minimise the following loss function:

Lgen =
M∑

i=0

logP (wi|h,w:i) (3)

where M is the number of tokens in the target
sequence, which consists of the ground-truth
follow-up question identification token w1 fol-
lowed by the tokens in the manually rewritten
question q′m. In addition, q′mi

refers to the ith token
in q′m when i ≥ 2 and the token w0 is the beginning
of the sequence token (<s>). Our goal is to train
the model to generate subsequent tokens using
the ground-truth follow-up question identification

1We choose “follow” and “shift” as target tokens be-
cause T5 tokenises sequences using the SentencePiece ap-
proach (Kudo and Richardson, 2018), which splits the word
“invalid” into two subwords.

LIF + CANARD LIF OR-QuAC
Train Dev Test-I Test-II Test-III Test

#questions 62,839 4914 5,992 5,247 2,685 5571
#valid follow-up 22,056 1,559 1,940 1,940 1,940 -
#invalid follow-up 40,783 3,355 4,052 3,307 745 -

Table 1: Statistics of the used datasets

and the rewritten question. The loss function Lgen

measures the discrepancy between the generated
tokens and the ground-truth tokens. To summarise,
our MTL method involves fine-tuning the gener-
ative model to simultaneously generate sequence
tokens for the follow-up question identification
and conversational question rewriting.

In addition to the implementation of the gener-
ative MTL model, we also incorporate a discrim-
inative+generative MTL model as shown in Fig-
ure 2 (a), and described in Appendix A.1.

3 Experimental Setup

We list our research questions in Section 3.1,
introduce the used datasets in Section 3.2 and
present our baselines in Section 3.3

3.1 Research Questions

We address two main research questions:
RQ1: Does the MTL approach of question
rewriting and classification using text generation
models outperform the single-task learning (STL)
of text generation models and existing baselines
for the follow-up question identification task?
RQ2: Does the MTL approach of question
rewriting and classification using text generation
models outperform the single-task learning (STL)
of text generation models in the context of the
conversational question rewriting and passage
retrieval tasks?

3.2 Datasets

We experiment using the LIF dataset (Learning to
Identify Follow-Up) (Kundu et al., 2020) and the
CANARD dataset (Context Abstraction: Necessary
Additional Rewritten Discourse) (Elgohary et al.,
2019), which are a recent adaptation of the well-
known QuAC Conversational QA dataset (Choi
et al., 2018). For training the models to address
both tasks, in the training and development sets, we
integrate LIF and CANARD by picking only the
candidate questions from the LIF dataset that exist
in the CANARD dataset. To evaluate the models
in the follow-up question identification task, we
use the three test sets of the LIF dataset, namely
Test-I, Test-II, and Test-III. In all three test sets,

13670



the valid follow-up questions (label = 1) are con-
structed from the “should ask follow-up question”
instances in the QuAC dataset. For the invalid
follow-up questions (label = 0), Test-I combines
the invalid instances from Test-II & Test-III. For
Test-II, questions with a high similarity to the cur-
rent passage are sampled from other conversations.
On the other hand, for Test-III, the invalid follow-
up questions are sampled from the non-follow-up
questions of the same conversation in QuAC. For
the question rewriting task, we use the test sets of
the OR-QuAC dataset. We also aggregate a pas-
sage collection from the OR-QuAC dataset (Qu
et al., 2020), which is an aggregation of three exist-
ing datasets consisting of QuAC, CANARD, and
Wikipedia, to evaluate the passage retrieval perfor-
mance of the conversational question rewriting task.
This allows us to assess our model’s performance
across both the conversational question answering
and passage retrieval tasks. For further information
about the used datasets, we also provide a summary
of their statistics in Table 1.

3.3 Baselines and Implementation

Follow-up question identification task: We only
include neural models as our baselines since the
existing rule-based and statistical machine learning
models have been shown to be much less effective
in the follow-up question identification task in a
previous study (Kundu et al., 2020). Indeed, as
baselines, we choose the strongest baseline in the
previous study (Kundu et al., 2020), BERT, as well
as the state-of-the-art (SOTA) three-way attentive
pooling model from the same study. For the three-
way attentive pooling model, we reproduce the
model and its evaluation results provided by Kundu
et al. (2020). We additionally compare our MTL
of the generative BART and T5 models with the
Single-Task Learning (STL) of T5 and BART. The
STL models are only learned to predict whether a
given question is a follow-up question. We addi-
tionally compare our generative BART model with
the discriminative+generative version of BART, as
described in Section 2.3.
Conversational question rewriting task: We
compare our query rewriting methods with the
following models: Raw: The user’s original current
question; Manual: The questions are written by hu-
mans from the CANARD dataset. We also compare
our proposed methods with the Single-Task Learn-
ing (STL) of BART and T5, which are learned to

only generate the rewritten question q′m. We com-
pare them in terms of both conversational question
rewriting and passage retrieval effectiveness.
Hyperparameter settings and evaluation
metrics: We provide a description of the hyper-
parameter settings and the used evaluation metrics
in Appendix A.2 and A.3, respectively.

4 Experimental Results

We now address RQs 1 & 2, and conclude with a
qualitative analysis.

4.1 RQ1: Follow-up Identification

We investigate the performance of the baselines
described in Section 3.3 in comparison to our pro-
posed MTL text generation models for follow-up
question identification on all three test sets of the
LIF dataset. Table 2 compares our proposed MTL
text generation models to the baselines on all three
test sets of the LIF dataset.

Comparison of the MTL Models with the
Baselines for Follow-up Question Identification:
From the table, on three test sets of the LIF dataset,
we see that the generative MTL BART classifier
model achieves the highest recall, F1, and Macro-
F1, except MTL T5 in Test-III for Macro-F1.
While the best precision scores on all three test sets
are obtained by the three-way attentive pooling,
discriminative+generative MTL BART, and MTL
T5, respectively. Within the table, on all three
test sets, our proposed generative MTL BART,
significantly outperforms the baseline, BERT,
three-way attentive pooling, STL BART (both
discriminative and generative), and STL T5 in
terms of F1 and Macro F1, except MTL T5 in Test-
III for Macro-F1. These results suggest that the
generative MTL BART classifier model exhibits
strong overall performance and exceeds other
models in terms of recall, F1 score, and Macro-F1
score across most test sets. This highlights its
ability to accurately predict true positive instances
(valid follow-up question) while maintaining a
good balance between precision and recall.

Comparison of the MTL Models with STL:
We observe that the generative MTL BART
classifier model significantly outperforms the
STL BART (both discriminative and generative)
models in terms of F1 and Macro-F1 on all three
test sets. This indicates that the MTL approach,
which jointly trains the model on the follow-up
question identification and conversational question
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Models
Test-I Test-II Test-III

P R F1 Macro-F1 P R F1 Macro-F1 P R F1 Macro-F1
STL BERT 70.7 79.5 74.9†‡ 80.8†‡ 85.6 79.5 82.5† 86.4† 80.2 79.5 79.9† 64.2†‡

3-way AP 71.6 70.0 71.6†‡ 79.2†‡ 74.4 76.8 75.6†‡ 80.5†‡ 79.7 70.0 74.6†‡ 60.4†‡
BART(dis) 69.7 79.4 74.2†‡ 80.3†‡ 85.7 79.4 82.5†‡ 86.4† 78.9 79.4 79.1† 62.1†‡
BART(gen) 71.0 79.7 75.1†‡ 81.0† 87.4 79.7 83.4† 87.1† 79.1 79.7 79.4† 62.5†‡
T5 69.9 83.0 75.9† 81.4† 85.3 83.0 84.2† 87.5† 79.5 83.0 81.2† 64.0†

MTL BART (dis+gen) 71.5 84.6 77.5 82.6 86.3 84.6 85.4 88.5 80.6 84.6 82.5 66.4
BART (gen) 70.3 87.3 77.9 82.7 84.9 87.3 86.1 88.9 80.4 87.3 83.7 66.9
T5 71.3 83.5 76.9† 82.2 85.4 81.6 83.5† 87.1† 84.6 77.6 80.9† 68.9

Table 2: Results for follow-up question identification. † denotes a performance that is significantly worse than the
MTL BART model (McNemar’s test, p < 0.05); ‡ denotes a performance that is significantly worse than the MTL
T5 model (McNemar’s test, p < 0.05). 3-way AP denotes the Three-Way Attentive Pooling. The highest value for
each measure is highlighted.

rewriting tasks, provides a notable advantage over
the STL approach for the BART classifier model.
However, the MTL T5 model does not outperform
the STL T5 model in terms of F1 and Macro-F1,
but the two models are not significantly different.

Comparison Between Our Generative MTL
Models: We observe that the MTL BART classi-
fier model significantly outperforms the MTL T5
model in terms of F1 on all three test sets, and
also significantly outperforms MTL T5 on Macro-
F1 score on Test-II. Comparing the discrimina-
tive+generative and generative MTL BART mod-
els, we find that there is little difference between
the effectiveness of the two versions of the MLT
BART models on both F1 and Macro-F1 scores on
all three test sets.

Therefore, in response to RQ1, we find that our
MTL text generation model, BART, jointly learned
through both the follow-up question identification
and conversational question rewriting tasks has the
best overall effectiveness, yielding statistically sig-
nificant improvements in terms of F1 and Macro-F1
over the baselines, on each of the three test sets of
the LIF dataset.

4.2 RQ2: Question Rewriting

Next, we examine the effectiveness of the conver-
sational question rewriting models including our
proposed MTL text generation models, and those
listed in Section 3.3 (STL BART, STL T5, and
discriminative+generative MTL BART) on the test
set of the OR-QuAC dataset. Table 3 presents the
effectiveness of various question reformulation
models for conversational question rewriting,
evaluated based on the ROUGE-1 recall and BLEU
scores. Furthermore, the models’ effectiveness for
passage retrieval is evaluated when applied with the

BM25 2 retrieval model. The effectiveness of the
monoT5 re-ranker for the same 1000 retrieved pas-
sages is listed in the same row. The effectiveness
of the manually rewritten questions can be seen as
an upper bound for the question rewriting methods.

Comparison of the MTL Models with the
Baselines for Conversational Question Rewrit-
ing: In Table 3, we observe that the MTL T5
model achieves the highest ROUGE-1 score by sig-
nificantly outperforming all STL baselines, demon-
strating its superior performance in capturing the
recall of the rewritten questions at the unigram
level (individual words). On the other hand, the
generative MTL BART model achieves the highest
BLEU score by significantly outperforming all STL
baselines, indicating its effectiveness in measuring
the similarity between the generated texts and the
reference texts (the manually rewritten questions).
Moreover, we can observe that the generative MTL
BART model outperforms the STL BART model in
terms of both the ROUGE and BLEU scores. This
indicates that the generative MTL BART model
achieves a better performance in the conversational
question rewriting task compared to the STL BART
model. Comparing the MTL T5 model to the STL
T5 model, the MTL T5 model achieves a higher
ROUGE-1 score, indicating a better performance
in conversational question rewriting. However,
both models have the same BLEU score.

Comparison of the MTL Models with Base-
lines for Passage Retrieval: From Table 3, we ob-
serve that our MTL T5 generative model achieves
the highest MAP, MRR, and Recall@1000, and
does significantly improve over the MTL BART
model and all the STL models in both first stage
retrieval and re-ranking. Comparing the MTL and

2We also conducted experiments with the DPH retrieval
model, which yielded similar trends.
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Question Rewriting First Stage (BM25) Re-ranker (monoT5)
Models ROUGE-1 BLEU MAP MRR R@1000 NDCG MAP MRR NDCG

Raw 62.82†‡ 36.01†‡ 0.0410†‡ 0.0424†‡ 0.2335†‡ 0.0733†‡ 0.0786†‡ 0.0809†‡ 0.1059†‡
STL BART 72.91†‡ 48.15† 0.1517†‡ 0.1617†‡ 0.5576†‡ 0.2257†‡ 0.2438†‡ 0.2580†‡ 0.3046†‡

T5 73.22‡ 45.86† 0.1720‡ 0.1843‡ 0.6055‡ 0.2524‡ 0.2783‡ 0.2957‡ 0.3430‡
MTL BART(dis+gen) 73.12‡ 48.00† 0.1571‡ 0.1685‡ 0.5790‡ 0.2348‡ 0.2562‡ 0.2708‡ 0.3189‡

BART(gen) 73.56‡ 48.79 0.1646‡ 0.1760‡ 0.6006‡ 0.2440‡ 0.2661 ‡ 0.2823‡ 0.3309‡
T5 74.12 45.86† 0.2008 0.2150 0.6373 0.2829 0.3106 0.3302 0.3764

Manual 100.00 100.00 0.2486 0.2682 0.8012 0.3540 0.3811 0.4066 3295.0

Table 3: Comparison between the MTL models and the query rewriting baselines. † denotes a performance that is
significantly worse than the MTL BART model (paired t-test, p < 0.05); ‡ denotes a performance that is significantly
worse than the MTL T5 model (paired t-test, p < 0.05).

STL models, we observe that both the MTL T5
and BART models significantly outperform their
corresponding STL models. Contrasting the perfor-
mances of the discriminative+generative with those
of the generative MTL BART models, we find that
there is little difference between the effectiveness
of the two versions of the MLT BART model.

Comparison of our Proposed MTL Models
with the Baselines for both tasks: Our MTL T5
model demonstrates its effectiveness in both tasks.
It not only captures the recall of the rewritten
questions at the unigram level but also enhances
passage ranking, resulting in our MTL T5 model
outperforming both the MTL BART model and all
of the STL models, yielding statistically significant
improvements on both tasks. To illustrate these
findings, we provide a further qualitative analysis
in Section 4.3.

In answer to RQ2, we conclude that applying
the Multi-Task Learning of question rewriting and
classification to the T5 model improves the passage
retrieval performance, yielding statistically signif-
icant improvements over the MTL BART model
and all the STL models.

Figure 3: Comparison of question rewriting models.

4.3 Analysis

In this section, we conduct a qualitative analysis
to bolster support for our findings concerning the
performance of our MTL T5 model in comparison
to the STL T5 model, as discussed in Section 4.2.
The purpose of this qualitative analysis is to further
validate our results and to shed additional lights on
the advantages of the MTL approach in the follow-
up question identification and conversational ques-
tion rewriting tasks. First, we present an exam-
ple of dialogue that exemplifies the distinct advan-
tages derived from the use of the MTL approach in
our model, specifically in conversational question
rewriting. Next, we proceed to compare the differ-
ences in NDCG scores between our proposed MTL
model and the STL model for passage retrieval.

Conversational Question Rewriting: To il-
lustrate the advantages of the MTL approach in
the follow-up question identification and conver-
sational question rewriting tasks, we provide an
example dialogue carefully selected based on the
highest ROUGE-1 score achieved by our MTL T5
model. This example dialogue, shown in Figure 3,
clearly showcases the benefits of employing the
MTL strategy.

This example consists of a conversation history
with two turns (Q1, A1, Q2, A2), the current ques-
tion (Q3), the manually rewritten question (Q’3),
the rewritten question of our MTL T5 model, and
the rewritten question of the STL T5 model. The
MTL T5 model successfully predicted the word
“shift” indicating an invalid follow-up question, as
Q3 deviates from the previous conversation’s topic
of album performance and instead inquires about
subsequent events. The MTL T5 model exhibits a
superior performance in predicting invalid follow-
up questions, demonstrated by the model achieving
the best Macro-F1 score on the Test-III LIF dataset
(as described in Section 4.1). Notably, this test
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Figure 4: Examples of dialogue differences in terms
of NDCG for queries in the OR-QuAC query set. (a)
a higher NDCG for MTL T5 wrt STL T5 (b) a higher
NDCG for STL T5 wrt MTL T5.

set comprises sampled invalid follow-up questions
from the same conversation, making this achieve-
ment particularly noteworthy. This prediction helps
the model to differentiate and choose the accurate
entity “Disco Volante” instead of the misleading
prediction “Cheesy Synthsynergics” made by the
STL T5 model. This demonstrates the ability of
the MTL T5 model to better leverage and interpret
the context of the conversation, leading to more
accurate predictions and an improved performance.

Passage Retrieval: We also compare the dif-
ferences in terms of NDCG scores when using
a BM25 ranking model with our proposed MTL
model in comparison to using it with the STL
model in passage retrieval (MTL T5 vs. STL T5).
Figure 4 shows two examples of dialogues selected
using the difference in NDCG scores between MTL
T5 and STL T5 on the OR-QuAC query set. Over-
all, MTL T5 outperforms STL T5 for 781 questions,
while the opposite was true for 497 questions. Fol-
lowing Macdonald et al. (2021), we only consider
differences larger than 0.15 absolute NGCG when
inspecting the effect of the MTL approach. Hence,
this analysis demonstrates that our proposed MTL
T5 model exhibits a superior performance over the
STL T5 model in passage retrieval. To further illus-
trate this point, we closely examine the predictions
made by the MTL T5 model in Figure 4 (a). It is
clear that the MTL T5 model successfully identi-

fies a candidate question as a valid follow-up to the
previous question, thereby demonstrating its capa-
bility to potentially aid in the correct resolution of
the omitted entity (Odissi). On the other hand, in
Figure 4 (b), the candidate question “where did he
go to school” would not have logically followed
the previous question “did he have siblings”. How-
ever, the MTL T5 model predicted this candidate
question as a valid follow-up question; hence this
could lead the model to incorrectly resolve the en-
tity (Roy Acuff). As a result, we can observe that
the effectiveness of the follow-up question iden-
tification task does influence the conversational
question rewriting task performance.

5 Related Work

We discuss related work in Conversational QA.
Conversational QA: Conversational QA, which
involves the correct interpretation of questions
within an ongoing dialogue, has been addressed
by several datasets like QuAC (Choi et al.,
2018), CoQA (Reddy et al., 2019), and TREC
CAsT (Dalton et al., 2019, 2020, 2021; Owoicho
et al., 2022). A common strategy is concatenating
previous questions with the current one for passage
retrieval, yet this may be suboptimal for methods
like BM25, which favour concise queries. Several
studies (Aliannejadi et al., 2020; Mele et al., 2020;
Ríssola et al., 2019; Sekulić et al., 2020) have
offered alternatives to improve retrieval perfor-
mance. Mele et al. (2020) proposed detecting topic
shifts through heuristics and dependency parsing,
while Aliannejadi et al. (2020) and Ríssola et al.
(2019) utilised BERT models to predict historical
questions enhancing the current one’s retrieval.
Sekulić et al. (2020) furthered this by predicting
related past questions and reformulating the
current one using ALBERT. In contrast, our work
focuses on using follow-up question identification
to improve conversational question rewriting.
Follow-up Question Identification: This task has
seen diverse methods, ranging from rule-based
solutions (Bertomeu et al., 2006; Kirschner and
Bernardi, 2007) to statistical machine learning
models like Logistic Regression (Kirschner and
Bernardi, 2009). Kundu et al. (2020) proposed a
standout three-way attentive pooling network, iden-
tifying follow-up questions related to the conversa-
tion history and the associated answer passage, out-
performing rule-based methods, logistic regression
models, and neural network-based models such as
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BiLSTM, CNN, and BERT (Devlin et al., 2019).
In our study, we utilise both the three-way atten-
tive pooling network and BERT as baselines, given
their proven effectiveness.

Conversational Question Rewriting: This task
involves transforming conversational queries
into context-independent queries suitable for
information retrieval (IR) systems (Mele et al.,
2021). Approaches range from sequence-to-
sequence models like LSTM and GRU (Ren
et al., 2018), to rule and self-supervised learning
methods fine-tuning GPT-2 (Yu et al., 2020),
and Transformer++ trained on the CANARD
dataset (Vakulenko et al., 2021a). Vakulenko et al.
(2021b) compared various methods on the CAsT
2019 and 2020 datasets, emphasising the effective-
ness of Transformer++. Recently, Lin et al. (2020)
presented a T5 model for conversational question
rewriting. T5 outperformed neural network-based
models such as LSTM, GPT-2, BERT, and UniLM
on the CANARD and CAsT 2019 datasets. In this
paper, we propose a T5 model for conversational
question rewriting due to its overall effectiveness.

MTL in Conversational QA: MTL has been
applied in Conversational QA, primarily focussing
on answer span prediction and auxiliary tasks
(Kongyoung et al., 2020; Qu et al., 2019; Xu et al.,
2019). Some studies have combined classification
and text generation tasks to improve passage
ranking and answer generation (Ide and Kawahara,
2021; Kongyoung et al., 2022; Lee et al., 2022;
Jiang et al., 2022), often leveraging models such
as T5 (Raffel et al., 2020). Similarly, Jiang et al.
(2021) combined the classification of relation types
and the generation of sentences to express these
relation types. Moreover, Wang et al. (2020) aimed
to improve the response selection in multi-party
conversations using an auxiliary task, namely a
topic prediction task, which classifies whether
a follow-up question is relevant to the user. Our
work also embraces the MTL paradigm, but
unlike prior studies prioritising answer generation,
response selection, and passage ranking, we focus
on improving retrieval effectiveness by rewriting
the user’s question using a classification task.

Other Approaches Addressing Ambiguity in
Conversational Questions: Shao et al. (2022)
addressed the ambiguity of the conversational
question by asking clarifying questions to the user.
Similarly, Li et al. (2023) explored enhancing
dialogue generation with conversational concept

flows, using a conversation-aware knowledge
graph and a novel relation-aware graph encoder.
In contrast to these studies, our work focuses on
addressing the ambiguity of the conversational
question by reformulating the user’s original
question and classifying whether the conversation
is still focused on the same topic to enhance the
accuracy of the information retrieval system.

6 Conclusions

We proposed a method for Conversational QA,
which learns to predict the follow-up question and
rewrites the conversational question simultane-
ously. Our proposed MTL method makes use of
text generation models including BART and T5
by generating the first token for a classification
task and the follow-up tokens for a conversational
question rewriting task. For the follow-up question
identification task, our experiments on the LIF
dataset showed that our proposed MTL BART
model has the best effectiveness, yielding statis-
tically significant improvements over the baselines.
For the question rewriting task, our proposed MTL
T5 model performed best both in terms of first stage
retrieval and re-ranking. Furthermore, we showed
that the BART-based model can be employed
for the follow-up question identification and the
conversational question rewriting tasks in both dis-
criminative+generative and generative MTL setups.

Limitations and Future Work

While our work has demonstrated promising
results in leveraging multi-task learning for con-
versational question rewriting, several limitations
must be acknowledged. Firstly, our model does not
currently incorporate user interaction or feedback.
This means it may not always accurately capture
user intent or adjust to evolving conversational
dynamics. In addition, without user feedback, the
model lacks a mechanism for continuous learning
and improvement from real-world applications.
Finally, the model does not currently ask clarifying
questions (Owoicho et al., 2022; Aliannejadi et al.,
2021) when faced with ambiguous queries. This
could limit its effectiveness in certain complex or
unclear conversational scenarios. In future work,
we plan to address these limitations by integrating
user interaction and feedback, and by developing
a mechanism for the model to ask clarifying
questions when necessary.
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A Appendix

Our code and data are publicly available at
the following URL: https://github.com/
terrierteam/mtl_gen_class.

A.1 A Discriminative+Generative MTL
Model

In addition to the implementation of the genera-
tive MTL model, we also incorporate a discrimina-
tive+generative MTL model to capture the relation-
ship between the question qc/qm and the contextual
information in the conversation history, which in-
cludes the historical question(s) q1, q2, . . . qk and
the historical answer(s) a1, a2, . . . ak, as illustrated
in Figure 2(a). The input sequence of the discrim-
inative+generative MTL model is the same as the
one shown in Equation (1). During the fine-tuning
process, the LM head of the model is refined to
generate the target tokens, with a token sequence
length denoted as n in Equation (2). In contrast to
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the generative MTL model, this approach employs
the tokens w1, ..., wn to encompass the entire out-
put sequence for the target query. Simultaneously,
the CLS head (see details in Section 2.3) of the
model undergoes fine-tuning to predict either 1 or
0, signifying whether the candidate question is a
valid follow-up to the previous question or not.

We compare our generative BART model to the
discriminative+generative BART variant in Sec-
tion 4.1 and Section 4.2, to conclude on their perfor-
mance in both the follow-up question identification
and conversational question rewriting tasks.

Model Training Details
Mathematical setting Section 2.3, Appendix A.1
Source code https://github.com/

terrierteam/mtl_gen_class
Computing infrastructure NVIDIA RTX A6000 GPU
Training time 4h
Inference time 500ms
Batch size 24
Number of parameters in
each model

220M (MTL T5) 140M (MTL BART)

Evaluation metrics Appendix A.2
Hyper-parameter Experiments
The exact number of train-
ing and evaluation runs

Appendix A.2

Bounds for each hyper-
parameter

Number of epochs: 1–5

Hyperparameter con-
figurations for best-
performing models

Appendix A.2

Number of hyperparame-
ter search trials

1

The method of choosing
hyper-parameter values

Highest question rewriting effectiveness
(ROUGE-1) on validation set

Dataset
Dataset languages English
Number of examples in
datasets

Table 1

Explanation of any data
that were excluded, and
all pre-processing steps

Section 3.2

A zip file containing data
or link to a downloadable
version of the data

https://github.com/
terrierteam/mtl_gen_class

Table 4: Summary of Reproducibility Criteria.

A.2 Hyperparameter Settings
We implement the BERT, GPT-2, BART, and
T5 models using the following PyTorch models
from HuggingFace (Wolf et al., 2020), namely
bert-base, facebook/bart-base, and

ram srigouthamg/t5_paraphraser:3

These models are configured as follows:4 the
maximum sequence length is set to 512, the
number of training epochs is set to 5, the batch
size is set to 24, and we use Adam optimiser with
a learning rate of 0.00005.

3Initial experiments found this T5 model more effective
than the original t5-base across a number of tasks.

4Settings follow https://github.com/
gmihaila/ml_things/

A.3 Evaluation Metrics
Since the follow-up question identification is a bi-
nary classification task, we evaluate performances
using classical classification metrics, namely pre-
cision, recall, F1 and Macro-F1. Indeed, follow-
ing (Kundu et al., 2020), reporting Macro-F1 en-
ables accuracy on topic shift detection to be mea-
sured, while F1 focuses solely on follow-up identi-
fication as the positive class. We use McNemar’s
test to measure statistically significant differences
between the models’ classification performances.
For the evaluation of the conversational question
rewriting performance, we adopt the ROUGE re-
call calculated for unigrams (ROUGE-1 recall) and
BLEU metrics, following (Vakulenko et al., 2021a;
Lin et al., 2020; Elgohary et al., 2019). As for the
passage retrieval evaluation, we use Mean Average
Precision (MAP), Mean Reciprocal Rank (MRR),
Normalized Discounted Cumulative Gain (NDCG)
and Recall@1000 as metrics. For each query, the
top 1000 documents are considered. We use the
paired t-test for testing significant differences.
Passage Retrieval Pipeline: We use the PyTer-
rier (Macdonald and Tonellotto, 2020) platform
for indexing and retrieving passages. For pas-
sage ranking, we incorporate BM25 with the
monoT5 (Pradeep et al., 2021) re-ranker.

A.4 Reproducibility Criteria
Table 4 summarises the reproducibility criteria
questions for this paper.
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