
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13504–13519
December 6-10, 2023 ©2023 Association for Computational Linguistics

Beyond Testers’ Biases:
Guiding Model Testing with Knowledge Bases using LLMs

Chenyang Yang1 Rishabh Rustogi1 Rachel Brower-Sinning2 Grace A. Lewis2
Christian Kästner1 Tongshuang Wu1

1Carnegie Mellon University 2Carnegie Mellon Software Engineering Institute

Abstract

Current model testing work has mostly focused
on creating test cases. Identifying what to test
is a step that is largely ignored and poorly sup-
ported. We propose WEAVER, an interactive
tool that supports requirements elicitation for
guiding model testing.1 WEAVER uses large
language models to generate knowledge bases
and recommends concepts from them interac-
tively, allowing testers to elicit requirements
for further testing. WEAVER provides rich ex-
ternal knowledge to testers, and encourages
testers to systematically explore diverse con-
cepts beyond their own biases. In a user study,
we show that both NLP experts and non-experts
identified more, as well as more diverse con-
cepts worth testing when using WEAVER. Col-
lectively, they found more than 200 failing
test cases for stance detection with zero-shot
ChatGPT. Our case studies further show that
WEAVER can help practitioners test models in
real-world settings, where developers define
more nuanced application scenarios (e.g., code
understanding and transcript summarization)
using LLMs.

1 Introduction

Despite being increasingly deployed in real-world
products, ML models still suffer from false-
hoods (Maynez et al., 2020), biases (Shah et al.,
2020), and shortcuts (Geirhos et al., 2020), lead-
ing to usability, fairness, and safety issues in those
products (Liang et al., 2023; Nahar et al., 2023).
For example, toxicity detection models are used
by social media platforms to flag or remove harm-
ful content, but their biases amplify harm against
minority groups (Sap et al., 2019). As standard
benchmarks are often too coarse to expose these
issues, recent work has proposed to test nuanced
behaviors of ML models (Ribeiro et al., 2020; Goel
et al., 2021; Ribeiro and Lundberg, 2022).

1WEAVER is available open-source at https://github.
com/malusamayo/Weaver.

Requirements
analysis

System
decomposition

Model
requirements

Implementation

Unit testing

Integration
testing

Acceptance
testing

Unit test plan

Acceptance test plan

Integration test plan

Figure 1: The V-model (Sommerville, 2015), a widely
used development process in many fields of engineering,
adapted for testing models within a system. This lay-
ering and planning is also compatible with more agile
development approaches, where the different activities
may be iterated in different ways but are still linked.

Such model testing of nuanced behaviors usually
requires translating behavior expectations into test
cases (input-output pairs). To enable such test case
creation, prior work has taken inspiration from the
long-established software testing approaches: For
example, in their CheckList framework, Ribeiro
et al. (2020) used templates to form minimal func-
tionality test cases, which was inspired by unit tests.
Morris et al. (2020)’s work on editing inputs (e.g.,
synonym swap) for testing model invariances is
akin to metamorphic testing. To enable testing gen-
erative models, Ribeiro (2023) have also explored
specifying properties that any correct output should
follow, similar to property-based testing.

However, prior work has focused on how to
write test cases, not what tests to write. In software
engineering, tests are fundamentally grounded in
requirements and design work, as commonly ex-
pressed in the V-model (Sommerville, 2015, Fig-
ure 1). Ideally, each test can be traced back to a
requirement and all requirements are tested. Soft-
ware engineering research has long established the
importance of requirements for development and
testing, and studied many approaches for require-
ments elicitation (Van Lamsweerde, 2009).

In comparison, little work has explicitly sup-
ported identifying what to test in model testing.
Researchers and practitioners seem to rely mostly

13504

https://github.com/malusamayo/Weaver
https://github.com/malusamayo/Weaver

on intuition and generic domain knowledge (Mc-
Coy et al., 2019; Dhole et al., 2021), or debug a
small set of issues initially identified through er-
ror analysis (Naik et al., 2018; Wu et al., 2019b).
Such approaches are often shaped heavily by indi-
vidual knowledge and biases (Rastogi et al., 2023;
Lam et al., 2023), driving practitioners to focus
on local areas of a few related concepts where
they find problems, while neglecting the larger
space (Ribeiro and Lundberg, 2022), as exempli-
fied in Figure 2. For example, to test toxicity de-
tection models, practitioners may identify and test
(1) racism with handcrafted test cases and (2) ro-
bustness to paraphrasing with CheckList. How-
ever, they are likely to miss many concepts in the
space (e.g., spreading misinformation as a way to
spread toxicity) if they have never seen or worked
on similar aspects, as often observed in the fairness
literature (Holstein et al., 2019).

In this work, we contribute the concept and
method of requirements engineering (“what to
test”) for improving model testing. We connect
testing to requirements with WEAVER, an inter-
active tool that supports requirements elicitation
for guiding model testing. Our goal is to provide
comprehensive external knowledge, encouraging
testers to systematically explore diverse concepts
beyond their biases (Figure 2), while balancing
the completeness of requirements collection and
the effort of practitioners exploring these require-
ments. WEAVER systematically generates knowl-
edge bases (KB) by querying large language mod-
els (LLMs) with well-defined relations from Con-
ceptNet, allowing testers to elicit requirements for
any use cases (as opposed to being limited by pre-
built KBs). For example, in Figure 3, from a seed
concept “online toxicity”, the LLM generates a KB
showing “spreading misinformation” with relation
“done via.” To not overwhelm users and encourage
iterative exploration, WEAVER shows only a subset
of the concepts from the KBs, balancing relevance
and diversity, while allowing users to still explore
more concepts on demand.

We demonstrate the usefulness and generality of
WEAVER through a user study and case studies. In
the user study (§4), users identified more, as well
as more diverse concepts worth testing when using
WEAVER. Collectively, they found more than 200
failing test cases for stance detection with zero-shot
ChatGPT (gpt-turbo-3.5). Our case studies (§5)
further show that WEAVER can help practitioners

Figure 2: Local exploitation (left) vs. global exploration
(right). Most model testing is opportunistic in terms of
what to test, often “hill-climbing” by searching near
existing problems, with the risk of getting stuck in local
areas. In contrast, WEAVER supports exploring concepts
globally across the entire space.

test models in real-world settings, from transcript
summarization to code understanding.

2 WEAVER

Our key idea is to provide a knowledge base
to support systematic exploration of domain con-
cepts to guide model testing. This allows testers
to consider requirements broadly, mitigating their
biases as testers otherwise tend to opportunisti-
cally explore concepts in local areas (Figure 2).
Our tool, WEAVER, has three primary building
blocks: (1) An LLM-generated knowledge base
for a given testing task, for encouraging more sys-
tematic and diverse requirement elicitation beyond
individual biases; (2) a graph-inspired recommen-
dation paradigm that prioritizes diverse yet relevant
concepts for user inspection; and (3) an intuitive
interface that can be easily paired with any test
case creation methods, for supporting users to in-
teractively navigate the knowledge base(s) for their
own purposes. Below, we walk through the design
choices and corresponding rationales.

2.1 LLM-generated Knowledge Base

To support testers to explore different concepts
relevant to the problem, WEAVER needs to pro-
vide comprehensive knowledge beyond individ-
ual testers’ biases. As such, we choose to power
WEAVER using knowledge bases (KBs) generated
by LLMs. As LLMs store diverse world knowledge
that can be easily extracted through prompting (Co-
hen et al., 2023), they empower WEAVER to sup-
port a wide range of domains, tasks, and topics.

We start knowledge base construction with a
seed concept, i.e., a user-provided high-level term
that can represent their tasks well. These seeds can
be as simple as the task name and description, or
can be more customized depending on user needs.
Using the seed, we will then automatically query an

13505

LLM2 to build a partial knowledge base of related
concepts (Wang et al., 2020; Cohen et al., 2023).
Specifically, we iteratively prompt LLMs for en-
tities or concepts that have different relations to
the queried concept, using fluent zero-shot prompts
paraphrased from well-established relations used in
knowledge bases. For example, prompting LLMs
with “List some types of online toxicity.” can help us
extract specific TypeOf online toxicity. By default,
we use 25 relations from ConceptNet3 (Speer et al.,
2017), e.g., MotivatedBy and LocatedAt, and man-
ually curated corresponding zero-shot templates.
These relations prove to be reusable across many
different domains in our studies, but users can also
specify custom relations they want to explore (a
complete list of prompts in Appendix A).

As the KB is used to support exploration (ex-
plained more below), we initially pre-generate two
layers of the KB, and iteratively expand the knowl-
edge base based on user interactions.

2.2 Recommend Diverse & Relevant Concepts

A comprehensive KB comes at a higher cost of
exploration—a single tester can easily get over-
whelmed if presented with the entire KB. To assist
users to navigate through the KB more efficiently,
we employ the “overview first, details-on-demand”
taxonomy (Shneiderman, 1996): We provide initial
recommendations as starting points to user explo-
rations. In particular, we strive to make recommen-
dations that are diverse (so as to bring diverse
perspectives to users) but still relevant (so users
do not feel disconnected from their goals).

The trade-off between relevant and diverse res-
onates with the common exploration-exploitation
trade-off in information retrieval (Athukorala et al.,
2016), and can be naturally translated to a graph
problem: If we have all candidate concepts to
form a fully-connected graph, where edge weights
are distances between different concepts and node
weights are the concepts’ relevance to the queried
concept, then our goal becomes to recommend a
diverse subset where concepts have large distances

2We used OpenAI’s text-davinci-003 (Ouyang et al.,
2022), but LLMs with similar instruction following capa-
bilities should all be useful (see additional experiments on
llama-2-13b-chat in Appendix F).

3 We used ConceptNet relations because they represent
generic semantic relations, which we expect to be more or
less generalizable—an assumption that is validated by our
user study and case studies. In contrast, alternative KBs (e.g.,
WikiData, DBpedia) tend to focus on more specific types of
semantic relations that are biased towards certain domains.

➀

➁➂

➃

➄➅

Figure 3: WEAVER interface, where users can interac-
tively explore concepts in the LLM-generated KB to
elicit requirements for model testing. ➀: seed concept,
➁: recommended children concepts with relations (trans-
lated to a user-friendly form), ➂: options for users to
expand a concept or ➃: get more recommendations on
any concepts, ➄: editing, creating, or removing concepts
manually, ➅: selecting important concepts for testing.

between each other, while they are still relevant in
the sense that they occur frequently in the context
of the queried concept. Essentially, we aim to find
a subgraph G′ of size k that maximizes a weighted
(α > 0) sum of edge weights wE (diversity) and
node weights wV (relevance):

arg max
G′⊂G,|G′|=k

wE(G
′) + α · wV (G

′)

To build the graph, we measure concept dif-
ferences with cosine distance between concept
embeddings using SentenceBERT (Reimers and
Gurevych, 2019), and measure relevance with the
perplexity of sentence “{concept} often occurs
in the context of {queried_concept}”, using GPT-
2 (Radford et al., 2019). Since finding the opti-
mal subgraph is computationally expensive, we ap-
ply the classic greedy peeling algorithm (Wormald,
1995) to approximate it in linear time. That is, we
greedily remove nodes with the smallest weights
(sum of node and all edge weights) one at a time
until the graph size reaches k (= 10 for initial rec-
ommendation, but grows with user expansion). We
empirically show that the recommended concepts
are of high quality and diverse in our evaluation.

2.3 Interactive Interface for Exploration

Besides the recommended starting points, we al-
low users to iteratively and interactively locate
their concepts of interest. WEAVER visualizes the
knowledge base in a tree structure (Figure 3), a rep-
resentation that is familiar to most ML practitioners.

13506

The knowledge base starts with ➀ the seed concept
users specify, with each recommended concept rep-
resented as ➁ a node in the tree, accompanied by its
relation to the parent concept. The interface allows
users to identify concepts by ➂ diving deeper and
➃ exploring broadly before ➅ selecting a concept
to test. Alternatively, users can also distill personal
knowledge by ➄ creating concepts manually.

To assist users in creating concrete test cases,
WEAVER incorporates AdaTest (Ribeiro and Lund-
berg, 2022) as the default test case creation method,
which uses LLMs to suggest test cases. However,
the design of WEAVER is compatible with any other
techniques to test models once requirements are
identified (e.g., Zeno, Cabrera et al., 2023). The
full interface including the AdaTest integration can
be seen in Appendix B.

3 Intrinsic Evaluation

As the primary goal of WEAVER is to provide ex-
ternal knowledge to guide testing, it is important
that the knowledge provided is comprehensive in
the first place. Here, we quantitatively evaluate:
Q.1 How comprehensive are the knowledge bases

generated by WEAVER?

Tasks, data, and metrics. We select four tasks
for the evaluation: Hateful meme detection, Pedes-
trian detection, Stance detection for feminism, and
Stance detection for climate change (task descrip-
tions in Appendix C). These tasks cover diverse
domains and modalities, and importantly, provide
us with gold concepts that can be used to evaluate
our LLM-generated KB. The first two tasks have
been studied in prior work, and we directly use
their ground-truth concepts collected from existing
documents (Barzamini et al., 2022b) and user stud-
ies (Lam et al., 2023). For the last two tasks, we
aggregate all concepts identified by 20 participants
without using WEAVER as part of our user study
(discussed later in §4), which we consider as our
ground truth. Intuitively, such aggregation should
help represent what concepts are generally deemed
important. As shown in Table 1, the tasks have on
average 144 ground-truth concepts.4

Independently, we generated a knowledge base
for each task using WEAVER with default relations.
We derived the seed concepts directly from the task
names: (1) “hateful meme”, (2) “pedestrian”, (3)

“feminism”, and (4) “climate change.”
4All ground-truth concepts are shared at https://

figshare.com/s/481a69fa1b36dbd76088.

We evaluate the comprehensiveness of the gen-
erated knowledge using recall, i.e., the fraction of
existing concepts that also appear in the KB. Since
there are many phrasing variations of the same con-
cept, we decide that a concept is in the KB if it
appears exactly the same in the KB, or our manual
check decides that it matches one of the 10 most
similar concepts from the KB, as measured by the
cosine distance (cf. §2.1). We established that the
manual process is reliable by evaluating inter-rater
reliability where two authors independently labeled
a random sample of 50 concepts, finding substan-
tial agreement (κ = 69.4%).

We also evaluate the validity of the generated
knowledge using precision, i.e., the fraction of KB
edges that are valid. Note that because our ground
truths are incomplete by nature (collected from
dataset analysis and user study), KB edges that are
not in the ground truths can still be valid. Following
prior work (Cohen et al., 2023), we performed man-
ual validation on sampled KB edges. We sampled
50 edges from each of the four generated KBs.

Results Overall, our KBs cover 91% of ground-
truth concepts on average (Table 1), with 81% of
sampled generated edges being valid. Qualitatively,
we found that there are two distinct types of con-
cepts the KB failed to cover: First, there are some
very specific concepts (e.g., old photo in hateful
meme detection). Although the 2-layer KB does
not cover them, it does often cover their hyper-
nyms (e.g., photo). Therefore, these concepts can
be discovered if users choose to explore deeper.
Second, some concepts are interactions of two con-
cepts (e.g., fossil fuel uses in developing countries
in climate change stance detection). These can be
identified by users manually, as both of their com-
ponents (fossil fuel uses and developing countries)
usually already exist in the KB.

4 User Study

Does WEAVER support effective requirements elic-
itation? We conduct a user study to evaluate:
Q.2 To what degree does WEAVER help users ex-

plore concepts faster?
Q.3 To what degree does WEAVER help users ex-

plore concepts broadly?
Q.4 How much does WEAVER mitigate user biases

when exploring concepts?
We expect that our interaction design (§2.3) sup-

ports faster exploration (Q.2) and that the recom-
mendations (§2.2) support broader and less biased

13507

https://figshare.com/s/481a69fa1b36dbd76088
https://figshare.com/s/481a69fa1b36dbd76088

Task Recall Precision # Concept

Hateful meme detection 93.1% 88.0% 101
Pedestrian detection 91.8% 74.0% 146
Stance detection for feminism 86.9% 84.0% 145
Stance det. for climate change 91.4% 76.0% 185

Average 90.6% 80.5% 144

Table 1: Knowledge bases generated by WEAVER cover 90.6% of existing concepts on average.

exploration (Q.3 and Q.4).

4.1 Study Design

Conditions. We design an IRB-approved user
study as a within-subject controlled experiment,
where participants test models in two conditions: A
treatment condition, where users use WEAVER to
find concepts for testing, and a control condition,
where users add the concepts manually while they
explore test cases. In both conditions, users have
access to AdaTest’s LLM-based test case sugges-
tions (cf. §2.3). In essence, the control interface is
a re-implementation of AdaTest with WEAVER’s
interface and interaction experience.

Tasks and models. We select two tasks of sim-
ilar difficulty for our user study: Stance detec-
tion for feminism, and stance detection for climate
change. They are accessible to participants from
different backgrounds. We had participants test
the performance of zero-shot ChatGPT (OpenAI,
2022) for both tasks, as we observed that it easily
outperformed any available fine-tuned models on
Huggingface—the latter failed at simple test cases
(full prompts in Appendix A).

Procedure. We recruited 20 participants (gradu-
ate students with varying ML/NLP experience, de-
tails in Appendix D.1) for a 90-minute experiment
session. We started by walking through the study
instructions and asked them to try WEAVER in an
interactive tutorial session. Then participants tested
the two aforementioned stance detection models
for 30 minutes each, one in the treatment condition
and one in control condition. To mitigate learning
effects, we use a Latin square design (Box, 2009)
with four groups, counterbalancing (1) which con-
dition a participant encounters first, and (2) which
model is tested first. Within each session, they were
first asked to perform model testing for 25 min-
utes, and then identify (select or create) concepts
worth future testing for 5 minutes. The first phase

of model testing is designed to ground participants
in what concepts are worth testing. The second
phase of concept exploration is designed to approx-
imate a longer time of model testing. This final de-
sign was derived from an earlier pilot study, where
we observed that writing test cases for each con-
cept took more time than identifying interesting
concepts (WEAVER’s objective). In the end, par-
ticipants filled out a post-study survey (details in
Appendix D.2). Participants were compensated for
their time.

Metrics and analysis. We use two measurements
to approximate participants’ exploration procedure:
(1) the number of concepts they explore (represent-
ing exploration speed, Q.2), and (2) the number of
distinct concepts they explore (Q.3).

Specifically, for distinctiveness, we want to
distinguish the local vs. global exploration patterns
(cf. Figure 2), which requires us to locate clusters
of similar concepts, or concepts that only differ in
granularity. Quantitative, this is reflected through
inter-relevance between concepts, e.g., rising sea
level should be considered close to sea surface
temperature increase but distinct from waste
management. To find a set of distinct concept
clusters, we again measure the concept distance
using SentenceBERT, and run Hierarchical Clus-
tering (Ward Jr, 1963) on all available concepts
collectively selected or created by our 20 user
study participants, which, as argued in §3, forms
a representative set of what end users may care
about for a given task. Note that we do not use all
concepts from our KB for clustering as it would
influence the ground truth. Hierarchical clustering
allows us to choose concept clusters that have sim-
ilar granularities using a single distance threshold.
Empirically, we use the threshold of 0.7, which pro-
duces reasonably distinct clusters for both tasks (41
and 46 clusters for feminism and climate change
respectively with an average size of 6.1 concepts).

13508

climate change

feminism

0 10 20 30

identified concepts
0 5 10 15

hit clusters

control treatment

Figure 4: Participants with WEAVER identified more
concepts and hit more clusters.

climate
change

feminism

0 5 10 15 20 25 30 35
Number of found concepts

climate
change

feminism

0 2 4 6 8 10 12 14 16 18
Number of hit clusters

control
treatment

climate change

feminism

0 10 20 30
identified concepts

0 5 10 15
hit clusters

control treatment

cl
im

at
e

ch
an

ge

fe
m

in
is

m

0
10

20
30

#
 id

en
ti
fie

d
 c

on
ce

p
ts

0
5

10
15

#
 h

it
 c

lu
st

er
s

co
nt

ro
l

tr
ea

tm
en

t

climate change

feminism

0 10 20 30
identified concepts

0 5 10 15
hit clusters

control treatment

Figure 5: Participants without WEAVER converged to
hitting previously identified concept clusters as they
identified more concepts. The gap between the two
groups widened over the process.

As such, distinctiveness is represented by the
number of hit cluster in each user’s exploration.

We analyze both measurements with a repeated
measures ANOVA analysis, which highlights the
significance of our test condition (whether partici-
pants use WEAVER) while considering the poten-
tial impact from other independent variables. In our
analysis, we test to what degree our tool, the task,
and the order (tool first or tool last) explain vari-
ance in the outcome variables. Detailed analysis
results can be found in Appendix D.3.

4.2 Results

WEAVER helps users identify more concepts
(Q.2). We first observe that with WEAVER, partic-
ipants identified 57.6% (p < 0.01) more concepts
(Figure 4). This is likely because users can more
easily explore a wider range of concepts with the
external knowledge base, as confirmed by partici-
pant P6: “... (KB) gives ideas beyond what I had in
mind so I explored a wider base of concepts.”

We also observe that bug-finding is relatively
independent of concept exploration. On average,
participants found around 11 failing test cases
(0.44 per minute), regardless of whether they used
WEAVER or not. Since testing is orthogonal, partic-
ipants who explore more concepts will find more
failing test cases. We expect that if participants test
longer, those with WEAVER will find more bugs
while others will run out of concepts to test.

climate change effects on animals
effects on humans

air pollutionozone layer
carbon monoxide

effects on sea animals

loss of arctic sea ice
education

loss of polar bear habitat

mining

fossil fuel

industrialization

forest

treatment
control

suspended particulate matter

Figure 6: We project the SentenceBERT embeddings
of concepts explored by two participants (P15 and P16)
into a 2D space, using t-SNE (van der Maaten and Hin-
ton, 2008). Without WEAVER, participants explore less
space, as they performed more local exploitation than
global exploration.

WEAVER helps users cover more concept clus-
ters (Q.3). More interestingly, we observe that
with WEAVER, participants not only found more
concepts but also covered 47.7% (p < 0.01) more
clusters in the space, i.e., they also explored more
diverse concepts (Figure 4). This aligns with the
survey responses, where 80% of participants agree
that WEAVER helps them test the model more holis-
tically and 76% of participants agree that WEAVER

helps them find more diverse model bugs. We con-
jecture that this is because users with WEAVER

explore more concepts not only in quantity (Q.2)
but also in diversity, which is confirmed by many
participants, e.g., “... (KB) encouraged me to ex-
plore more areas of the domain than I would have
otherwise considered” (P10).

Looking at their exploration trajectory (Figure 5),
we see evidence indicating that WEAVER enables
users to continuously discover distinct concepts.
In contrast, participants in the control condition
converged to hitting previously identified concept
clusters as they identified more concepts. We ob-
served that without WEAVER, participants tended
to refine existing concepts later in the exploration,
as exploring new distinct areas becomes increas-
ingly difficult.

These contrasting trajectories eventually lead to
different exploration results. As reflected in Fig-
ure 6, the participant without WEAVER performed
noticeably more local exploitation, finding highly
related concepts in local areas, whereas WEAVER

helped the other participant explore more diverse

13509

cluster
−10

−5

0

5

10

#
 u

se
rs

 h
it

 t
h

e
cl

u
st

er

control
treatment

mode

STEM, admission, workplace…

violence, harassment, racism…

 [Violence]: Verbal abuse of women is not as bad as physical violence.
 none against

 [Sexual Harassment]: Sexual harassment in the workplace against
women should not be tolerated. Sexual harassment against men is not a
big deal. #MeToo favor against

 [STEM]: Women are underrepresented in STEM due to a lack of
access to education and resources. none favor

 [Admission]: It's not important to ensure that admissions processes
are free of gender bias and discrimination. favor against

Figure 7: Visualizing the identified concepts for femi-
nism by their corresponding clusters, we see participants
in different conditions had different focuses in model
testing. This shows that WEAVER suggests concepts
complementary to human intuitions. In each test, the red
strike-through labels are the wrong model predictions
and the green ones are user-specified ground-truths.

concepts globally, without losing the ability to dive
deeper into a few local areas.

WEAVER shifts users towards a different con-
cept distribution (Q.4). We also observe that
participants collectively explored different con-
cepts with WEAVER, as shown in Figure 7. Some
concepts (e.g., violence) are much more explored
by participants with WEAVER. This suggests that
WEAVER helps mitigate participants’ own biases
and explore new concepts, as supported by par-
ticipant P13: “... (KB) gives some inspiration in
concepts I would not have otherwise thought of...”

That said, WEAVER also brings in its own biases,
e.g. participants with WEAVER rarely explored con-
cepts like STEM compared to those without, pos-
sibly because they were too heavily anchored by
the suggested concepts. This indicates that humans
and knowledge bases are complementary – future
work can support humans to better exploit their
prior knowledge while exploring diverse concepts.

5 Case Studies

Using two case studies, we demonstrate that
WEAVER can help practitioners test their own mod-
els and find various bugs in real-world settings,
and has the potential to provide support beyond
post-hoc model testing. In the studies, we provided
sufficient supports to the practitioners, including

integrating WEAVER into their natural evaluation
environment (Jupyter Notebook), joining each user
to explore their models for approximately three
hours, and offering feedback and discussions when-
ever necessary (e.g., as practitioners brainstormed
their seed concepts).

Case selection. We approached researchers in
our contact network to identify projects that were
actively developing and improving models to be in-
tegrated into software products, such that (1) model
testing has real stakes for them, and (2) the model
needs to meet real-world requirements of a product,
not just succeed on a standard benchmark.

We ended up recruiting practitioners working
on two projects that matched our scope to try
WEAVER. The first practitioner (C1) is building a
pipeline for knowledge transfer, where they prompt
an LLM to summarize content from transcripts into
instructions. The second practitioner (C2) is build-
ing an IDE plugin to help developers understand
unfamiliar code, developing LLM prompts to gen-
erate text summary for code segments. While these
are two distinct scenarios, their shared challenge
is that for practitioners working on novel tasks, it
is often non-trivial to perform prompt engineering,
especially because they do not have appropriate
datasets for evaluating their prompts.

The case studies were IRB-approved and partici-
pants were compensated for their time.

WEAVER supports quick and effective iterations.
Both C1 and C2 started with a seed concept and
then refined the seed concept at least once based
on their observations. For example, C2 first tried
seed concepts “challenges for summarizing a code
script” and “reasons why people look for code sum-
mary”, finding the recommended concepts generic
and not their major concerns. They self-reflected
through the process and identified the key scenario
their plugin wants to support: (1) it targets novice
programmers and (2) the most important applica-
tion domain is data visualization. After this, they
tried the seed concept “specific challenges that
novice programmers might have in comprehending
data visualization code” and found recommended
concepts much more helpful.

WEAVER helps practitioners find new model
bugs by augmenting their existing analyses.
While we did not have participants rate each con-
cept they explored, based on their think-aloud
reflection, we note that they were able to find

13510

many helpful concepts in a short amount of time.
Even though practitioners have been working on
their (LLM-backed) models for a while, they both
obtained new insights into their models. First,
WEAVER helped them observe issues they did not
consider before. For example, in the seven concepts
C1 tested, they found that the resulting instructions
are always chronological even when there are de-
tours in the input and steps reordering is desired.
Second, WEAVER also helped them turn their prior,
often fuzzy knowledge of problems or requirements
into concrete testable concepts. For example, C1
turned their vague notion “useful summaries should
not take transcripts literal” into concrete theories,
including “behind the transcript, there is a hidden
thought process important for identifying key ac-
tion steps.” Third, they were able to confirm model
deficiencies they already suspected through sys-
tematic tests (e.g., “transcript summaries are often
too verbose”). Similarly, C2 tested seven concepts
and found “different parameters for customization”
and “when to use different data visualization APIs”
particularly novel and insightful.

Notably, while C1 used AdaTest for testing mod-
els on different concepts, C2 reused test cases from
their existing datasets, showing WEAVER’s flexibil-
ity with different test case creation techniques. That
C2 still discovered new insights within their own
dataset demonstrates WEAVER’s capability for en-
couraging nuanced testing following requirements.

WEAVER is useful beyond testing models after-
the-fact. While we mostly position WEAVER as
a model testing tool, we find that its support for
requirements elicitation supports the entire model
development cycle (cf. the V-model, Fig. 1).

Although practitioners sometimes found it ini-
tially challenging to define seed concepts, they
found the process itself valuable. For example,
C2 eventually settled on “specific challenges that
novice programmers might have in comprehending
[domain] code”; they self-reflected how finding a
good seed nudged them to state their goal explic-
itly for the first time. For them, this reflection hap-
pened too late to radically redesign their product,
but it shows that WEAVER has the potential to sup-
port early-stage requirements engineering both for
products and models. Meanwhile, C1 was inspired
by concepts identified with WEAVER on model
improvement. They experimented with different
changes to prompts, encoding context for concepts
they found challenging (e.g., step ordering).

6 Related Work

Requirements elicitation. Requirements engi-
neering has been extensively studied (Van Lam-
sweerde, 2009). Despite many calls for the impor-
tance of requirements in ML (e.g., Rahimi et al.,
2019; Vogelsang and Borg, 2019), requirements
in ML projects are often poorly understood and
documented (Nahar et al., 2022), which means that
testers can rarely rely on existing requirements to
guide their testing. Requirements elicitation is usu-
ally a manual and laborious process (e.g., inter-
views, focus groups, document analysis, prototyp-
ing), but the community has long been interested in
automating parts of the process (Meth et al., 2013),
e.g., by automatically extracting domain concepts
from unstructured text (Shen and Breaux, 2022;
Barzamini et al., 2022a). We rely on the insight
that LLMs contain knowledge for many domains
that can be extracted as KBs (Wang et al., 2020;
Cohen et al., 2023), and apply this idea to require-
ments elicitation.

Model evaluation, testing, and auditing. Re-
cent work on ML model evaluation (e.g., Ribeiro
et al., 2020; Goel et al., 2021; Röttger et al., 2021;
Yang et al., 2022) has pivoted from i.i.d. tradi-
tional accuracy evaluation to nuanced evaluation
of model behaviors. As surveyed in our prior work
(Yang et al., 2023), this line of research uses vari-
ous test creation techniques, including slicing, per-
turbations, and template-based generation. While
providing many useful tools, these approaches of-
ten assume an existing list of requirements and
rarely engage with the question of what to test. Ex-
iting research relied mostly on the knowledge of
particular researchers, resulting in incomplete and
biased requirements. For example, Ribeiro et al.
(2020) explicitly state that their list of requirements
in CheckList is not exhaustive and should be aug-
mented by users with additional ones that are task-
specific. Through LLM-assisted requirements elic-
itation, WEAVER helps users identify what to test
systematically.

Various alternative methods have been proposed
for identifying what to test. For example, error
analysis (e.g., Naik et al., 2018; Wu et al., 2019a)
and slice discovery (Eyuboglu et al., 2022) can
help identify issues in existing datasets, but
datasets are often incomplete and biased (Rogers,
2021), and can even be missing for emerging
LLM applications where no dataset has been

13511

pre-collected. Dataset-agnostic approaches like
adaptive testing (Ribeiro and Lundberg, 2022;
Gao et al., 2022) help users iteratively ideate
concepts abstracted from generated test cases,
but, as we confirmed, users tend to explore only
local areas. These approaches engage in bottom-up
style elicitation, which is reactive and may fare
poorly with distribution shift. In contrast, WEAVER

engages in top-down style elicitation, a more
proactive process grounded in an understanding
of the problem and domain.

Furthermore, algorithmic auditing (Metaxa
et al., 2021) elicits concerns from people with
different backgrounds, usually on fairness issues,
to avoid being limited by the ideas of a single
tester. However, it can be challenging to recruit,
incentivize, and scaffold the auditors (Deng et al.,
2023). In a way, WEAVER might complement
such work by providing diverse requirements for
individual testers or crowd auditors.

7 Discussion and Conclusion

In this work, we propose WEAVER, a tool that
uses knowledge bases to guide model testing, help-
ing testers consider requirements broadly. Thor-
ough user studies and case studies, we show that
WEAVER supports users to identify more, as well
as more diverse concepts worth testing, can suc-
cessfully mitigating users’ biases, and can support
real-world applications. Beyond being a useful test-
ing tool, the underlying concept of WEAVER have
interesting implications on ML model testing and
development, which we detail below.

Model testing in the era of LLMs. Through-
out our user studies and case studies, we focused
on testing “models” achieved by prompting LLMs.
Here, we would like to highlight the importance
of requirements in such cases. LLMs are increas-
ingly deployed in different applications, and tradi-
tional model evaluations are becoming less indica-
tive. With these models trained on massive web
text, it is unclear what should be considered as
“in-distribution evaluation data.” Instead, the eval-
uation objectives heavily depend on what practi-
tioners need, which should be reflected through
well-documented requirements.

Meanwhile, as most practitioners are not NLP
experts, they face challenges articulating how and
what they should test about their prompted mod-
els (Zamfirescu-Pereira et al., 2023). As their use
cases become more nuanced, it is also less likely for

them to find pre-existing collections on important
concepts. As such, enabling each individual to iden-
tify what-to-test is essential. We hope WEAVER can
be used for democratizing rigorous testing, just as
LLMs democratized access to powerful models.
Still, currently WEAVER relies purely on practition-
ers to identify requirements worth testing, which
may result in mis-matched requirement granularity
(cf. §3). Future work can explore more complex
structures that can represent knowledge (e.g., from
KBs to knowledge graphs), and advanced recom-
mendation mechanisms for practitioners to find the
best requirements to explore first.

Rethinking requirements for ML development.
Though we position WEAVER to ground model
testing in requirements, we expect it to be use-
ful also in other development stages (cf. §5). For
example, we expect that it can help developers
think about high-level goals and success mea-
sures for their products (Rahimi et al., 2019; Passi
and Barocas, 2019), to guide development early
on. For example, building on the observation that
requirement-based testing may help practitioners
perform prompt engineering, we envision that
future practitioners can use WEAVER for rapid
prototyping, where they identify unique require-
ments, pair them with corresponding test cases, and
achieve better overall performance either through
ensembled prompts (Pitis et al., 2023) or prompt
pipelines (Wu et al., 2022). Moreover, elicited
model requirements themselves can serve as de-
scriptions and documentation, which can foster
collaboration and coordination in interdisciplinary
teamwork (Nahar et al., 2022; Subramonyam et al.,
2022). Notably, we believe WEAVER can support
such iterations because it is built to be lightweight.
In prior research, requirements engineering has
sometimes been criticized to be too slow and bu-
reaucratic, making developers less willing to ded-
icate time to this step. In contrast, WEAVER al-
lows developers to easily adjust their exploration
directions (through seeds and interactions), which
makes it feasible to be integrated into more agile
and iterative development of ML products where
requirements are evolving quickly.

Limitations

Availability of domain knowledge in LLMs.
LLMs encode a vast amount of knowledge, but
may not include very domain-specific knowledge
for specialized tasks, very new tasks, or tasks where

13512

relevant information is confidential. Our technical
implementation fundamentally relies on extracting
knowledge from LLMs and will provide subpar
guidance if the model has not captured relevant
domain knowledge. Conceptually our approach to
guide testing with domain knowledge would also
work with other sources of the knowledge base,
whether manually created, extracted from a text
corpus (Shen and Breaux, 2022; Barzamini et al.,
2022a), or crowdsourced (Metaxa et al., 2021).

Impacts from biases in LLMs. WEAVER uses
LLMs to build knowledge bases such that users
can elicit diverse requirements. However, LLMs
themselves are found to be biased, sometimes un-
truthful, and can cause harm (Nadeem et al., 2021;
Kumar et al., 2023). Therefore, users should care-
fully interpret results from WEAVER in high-stake
applications.

Threats to validity in human-subject evalua-
tions. Every study design has tradeoffs and lim-
itations. In our evaluation, we intentionally com-
bined multiple different kinds of user studies to
triangulate results.

First, we conducted a user study as a controlled
experiment. While the results are very specific and
created in somewhat artificial settings and must be
generalized with care (limited external validity),
the study design can enact a high level of control to
ensure high confidence in the reliability of the find-
ings in the given context with statistical techniques
(high internal validity). For example, regarding
external validity, results may not generalize easily
to other tasks that require different amounts of
domain understanding or are differently supported
by the chosen test case creation technique, and
our participant population drawn from graduate
students with a technical background may not
equally generalize to all ML practitioners. There
are also some threats to internal validity that
remain, for example, despite careful control for
ordering and learning effects with a Latin square
design and assuring that the four groups were
balanced in experience (‘years of ML experience’
and ‘NLP expertise’ asked in the recruitment sur-
vey before assignment), we cannot control for all
possible confounding factors such as prior domain
knowledge, gender, and motivation. In addition, we
rely on clustering and similarity measures among
concepts for our dependent variables, which build
on well-established concepts but may not always

align with individual subjective judgment.
Second, we conducted case studies in real-world

settings with practitioners (high external validity)
but can naturally not control the setting or conduct
repeated independent observations (limited internal
validity). With only two case studies, generaliza-
tions must be made with care.

This tradeoff of external and internal validity
is well understood (Siegmund et al., 2015). Con-
ducting both forms of studies allows us to perform
some limited form of triangulation, increasing con-
fidence as we see similar positive results regarding
WEAVER’s usefulness for discovering diverse con-
cepts.

Subjectivity in human judgments. All model
testing requires judgment whether a model’s pre-
diction for a test example is correct. We noticed
that user study participants and sometimes also
case study practitioners struggled with determining
whether model output for a specific test example
was a problem, and multiple raters may sometimes
disagree. For our purposes, we assume it is the
tester’s responsibility of identifying which model
outputs they consider problematic, and we do not
question any provided labels. This, however, re-
minds us that like data annotation (Santy et al.,
2023), any model testing process will likely bring
in testers’ biases, as they get to decide what is right
and what is wrong. In practice, a broader discussion
among multiple stakeholders may be required to
identify what model behavior is actually expected
and a decomposition of model testing using require-
ments might be helpful to foster such engagement.

Ethics Statement

Research Reproducibility. While our experi-
ments are mostly conducted on the closed API
(text-davinci-003) provided by OpenAI, none
of the conceptual contributions of our paper relate
to specific models or APIs. The concrete evalua-
tion results depend on how humans interact with
specific models, but the approach can be used with
other models. Indeed, our extra experiments with
llama-2-13b-chat on the climate change task
show that the generated concepts from open-source
models achieve substantial levels of recall (83%
vs. 91% originally). This supports that the idea be-
hind WEAVER is reproducible. While users may see
somewhat different KBs through different runs of
the same/different LLMs, they get similar chances
of seeing useful concepts, receive a similar level of

13513

support on requirement elicitation (our core con-
tribution), and will be able to yield similar model
testing effectiveness.

Human-subject Experiments. Our studies had
been approved by our IRB before it was conducted,
as is standard practice for human-subject experi-
ments. We recruited all participants through emails,
and all of them are graduate students with varying
ML/NLP experience (see details in Appendix D.1).
The participants were compensated for their time
($20 per hour). As part of testing, they may write
or review text that is abusive, dangerous, hateful,
or offensive—they were made aware of this fact
and could end participation at any time.

Acknowledgements

This work was supported in part by the National
Science Foundation (#2131477) and gift funds
from Adobe, Oracle, and Google. Work by Brower-
Sinning and Lewis was funded and supported by
the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering
Institute, a federally funded research and develop-
ment center (DM23-2019).

References
Kumaripaba Athukorala, Alan Medlar, Antti Oulasvirta,

Giulio Jacucci, and Dorota Glowacka. 2016. Be-
yond relevance: Adapting exploration/exploitation
in information retrieval. In Proceedings of the 21st
International Conference on Intelligent User Inter-
faces, IUI ’16, page 359–369, New York, NY, USA.
Association for Computing Machinery.

Hamed Barzamini, Mona Rahimi, Murteza Shahzad,
and Hamed Alhoori. 2022a. Improving generaliz-
ability of ml-enabled software through domain spec-
ification. In Proceedings of the 1st International
Conference on AI Engineering: Software Engineer-
ing for AI, CAIN ’22, page 181–192, New York, NY,
USA. Association for Computing Machinery.

Hamed Barzamini, Murtuza Shahzad, Hamed Alhoori,
and Mona Rahimi. 2022b. A multi-level semantic
web for hard-to-specify domain concept, pedestrian,
in ml-based software. Requir. Eng., 27(2):161–182.

George E. P. Box. 2009. Statistics for experimenters:
design, innovation, and discovery. Wiley-Blackwell.

Ángel Alexander Cabrera, Erica Fu, Donald Bertucci,
Kenneth Holstein, Ameet Talwalkar, Jason I. Hong,
and Adam Perer. 2023. Zeno: An interactive frame-
work for behavioral evaluation of machine learning.

In Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’23, New
York, NY, USA. Association for Computing Machin-
ery.

Roi Cohen, Mor Geva, Jonathan Berant, and Amir
Globerson. 2023. Crawling the internal knowledge-
base of language models.

Wesley Hanwen Deng, Boyuan Guo, Alicia Devrio,
Hong Shen, Motahhare Eslami, and Kenneth Hol-
stein. 2023. Understanding practices, challenges,
and opportunities for user-engaged algorithm audit-
ing in industry practice. In Proceedings of the 2023
CHI Conference on Human Factors in Computing
Systems, CHI ’23, New York, NY, USA. Association
for Computing Machinery.

Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann,
Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abi-
naya Mahendiran, Simon Mille, Ashish Shrivastava,
Samson Tan, et al. 2021. Nl-augmenter: A frame-
work for task-sensitive natural language augmenta-
tion. arXiv preprint arXiv:2112.02721.

Sabri Eyuboglu, Maya Varma, Khaled Kamal Saab,
Jean-Benoit Delbrouck, Christopher Lee-Messer,
Jared Dunnmon, James Zou, and Christopher Re.
2022. Domino: Discovering systematic errors with
cross-modal embeddings. In International Confer-
ence on Learning Representations.

Irena Gao, Gabriel Ilharco, Scott Lundberg, and
Marco Tulio Ribeiro. 2022. Adaptive testing of com-
puter vision models.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary
Taschdjian, Mohit Bansal, and Christopher Ré. 2021.
Robustness gym: Unifying the NLP evaluation land-
scape. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Demonstrations, pages 42–55, Online. As-
sociation for Computational Linguistics.

Irtiza Hasan, Shengcai Liao, Jinpeng Li, Saad Ullah
Akram, and Ling Shao. 2021. Generalizable pedes-
trian detection: The elephant in the room. In 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11323–11332.

Kenneth Holstein, Jennifer Wortman Vaughan, Hal
Daumé, Miro Dudik, and Hanna Wallach. 2019. Im-
proving fairness in machine learning systems: What
do industry practitioners need? In Proceedings of
the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI ’19, page 1–16, New York, NY,
USA. Association for Computing Machinery.

13514

https://doi.org/10.1145/2856767.2856786
https://doi.org/10.1145/2856767.2856786
https://doi.org/10.1145/2856767.2856786
https://doi.org/10.1145/3522664.3528589
https://doi.org/10.1145/3522664.3528589
https://doi.org/10.1145/3522664.3528589
https://doi.org/10.1007/s00766-021-00366-0
https://doi.org/10.1007/s00766-021-00366-0
https://doi.org/10.1007/s00766-021-00366-0
https://doi.org/10.1145/3544548.3581268
https://doi.org/10.1145/3544548.3581268
http://arxiv.org/abs/2301.12810
http://arxiv.org/abs/2301.12810
https://doi.org/10.1145/3544548.3581026
https://doi.org/10.1145/3544548.3581026
https://doi.org/10.1145/3544548.3581026
https://openreview.net/forum?id=FPCMqjI0jXN
https://openreview.net/forum?id=FPCMqjI0jXN
http://arxiv.org/abs/2212.02774
http://arxiv.org/abs/2212.02774
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.1109/CVPR46437.2021.01117
https://doi.org/10.1109/CVPR46437.2021.01117
https://doi.org/10.1145/3290605.3300830
https://doi.org/10.1145/3290605.3300830
https://doi.org/10.1145/3290605.3300830

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj
Goswami, Amanpreet Singh, Pratik Ringshia, and
Davide Testuggine. 2020. The hateful memes chal-
lenge: Detecting hate speech in multimodal memes.
In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS’20,
Red Hook, NY, USA. Curran Associates Inc.

Sachin Kumar, Vidhisha Balachandran, Lucille Njoo,
Antonios Anastasopoulos, and Yulia Tsvetkov. 2023.
Language generation models can cause harm: So
what can we do about it? an actionable survey. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3299–3321, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Michelle S Lam, Zixian Ma, Anne Li, Izequiel Freitas,
Dakuo Wang, James A Landay, and Michael S Bern-
stein. 2023. Model sketching: Centering concepts in
early-stage machine learning model design. arXiv
preprint arXiv:2303.02884.

Jenny T Liang, Chenyang Yang, and Brad A Myers.
2023. Understanding the usability of ai programming
assistants. arXiv preprint arXiv:2303.17125.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

Danaë Metaxa, Joon Sung Park, Ronald E. Robert-
son, Karrie Karahalios, Christo Wilson, Jeff Han-
cock, and Christian Sandvig. 2021. Auditing algo-
rithms: Understanding algorithmic systems from the
outside in. Found. Trends Hum.-Comput. Interact.,
14(4):272–344.

Hendrik Meth, Manuel Brhel, and Alexander Maedche.
2013. The state of the art in automated requirements
elicitation. Information and Software Technology,
55(10):1695–1709.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31–
41, San Diego, California. Association for Computa-
tional Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages

119–126, Online. Association for Computational Lin-
guistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nadia Nahar, Haoran Zhang, Grace Lewis, Shurui Zhou,
and Christian Kästner. 2023. A meta-summary of
challenges in building products with ml components
– collecting experiences from 4758+ practitioners. In
Proceedings of the International Conference on AI
Engineering - Software Engineering for AI (CAIN).

Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian
Kästner. 2022. Collaboration challenges in build-
ing ml-enabled systems: Communication, documen-
tation, engineering, and process. In Proceedings of
the 44th International Conference on Software En-
gineering (ICSE), pages 413–425, New York, NY.
ACM Press. **Distinguished Paper Award**.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

OpenAI. 2022. Introducing chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Samir Passi and Solon Barocas. 2019. Problem formu-
lation and fairness. In Proceedings of the Conference
on Fairness, Accountability, and Transparency, FAT*
’19, page 39–48, New York, NY, USA. Association
for Computing Machinery.

Silviu Pitis, Michael R Zhang, Andrew Wang, and
Jimmy Ba. 2023. Boosted prompt ensembles
for large language models. arXiv preprint
arXiv:2304.05970.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Mona Rahimi, Jin LC Guo, Sahar Kokaly, and Marsha
Chechik. 2019. Toward requirements specification
for machine-learned components. In IEEE 27th In-
ternational Requirements Engineering Conference
Workshops, pages 241–244. IEEE.

13515

https://aclanthology.org/2023.eacl-main.241
https://aclanthology.org/2023.eacl-main.241
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.1561/1100000083
https://doi.org/10.1561/1100000083
https://doi.org/10.1561/1100000083
https://doi.org/10.18653/v1/S16-1003
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://arxiv.org/abs/2304.00078
https://arxiv.org/abs/2304.00078
https://arxiv.org/abs/2304.00078
https://doi.org/http://dx.doi.org/10.1145/3510003.3510209
https://doi.org/http://dx.doi.org/10.1145/3510003.3510209
https://doi.org/http://dx.doi.org/10.1145/3510003.3510209
https://aclanthology.org/C18-1198
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.1145/3287560.3287567
https://doi.org/10.1145/3287560.3287567

Charvi Rastogi, Marco Tulio Ribeiro, Nicholas King,
and Saleema Amershi. 2023. Supporting human-
ai collaboration in auditing llms with llms. arXiv
preprint arXiv:2304.09991.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Marco Tulio Ribeiro. 2023. Testing language models
(and prompts) like we test software. Medium.

Marco Tulio Ribeiro and Scott Lundberg. 2022. Adap-
tive testing and debugging of NLP models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3253–3267, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of NLP models with CheckList. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 4902–4912,
Online. Association for Computational Linguistics.

Anna Rogers. 2021. Changing the world by changing
the data. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2182–2194, Online. Association for Computa-
tional Linguistics.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 41–58, Online. Association for
Computational Linguistics.

Sebastin Santy, Jenny T. Liang, Ronan Le Bras, Katha-
rina Reinecke, and Maarten Sap. 2023. Nlposition-
ality: Characterizing design biases of datasets and
models. In ACL.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias
in hate speech detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1668–1678, Florence, Italy. Asso-
ciation for Computational Linguistics.

Deven Santosh Shah, H. Andrew Schwartz, and Dirk
Hovy. 2020. Predictive biases in natural language
processing models: A conceptual framework and
overview. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 5248–5264, Online. Association for Computa-
tional Linguistics.

Yuchen Shen and Travis Breaux. 2022. Domain model
extraction from user-authored scenarios and word em-
beddings. In 2022 IEEE 30th International Require-
ments Engineering Conference Workshops (REW),
pages 143–151.

Ben Shneiderman. 1996. The eyes have it: A task by
data type taxonomy for information visualizations.
In Proceedings 1996 IEEE symposium on visual lan-
guages, pages 336–343. IEEE.

Janet Siegmund, Norbert Siegmund, and Sven Apel.
2015. Views on internal and external validity in em-
pirical software engineering. In Proc. IEEE/ACM
37th International Conference on Software Engineer-
ing, volume 1, pages 9–19. IEEE.

Ian Sommerville. 2015. Software Engineering, 10th
edition. Pearson.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17,
page 4444–4451. AAAI Press.

Hariharan Subramonyam, Jane Im, Colleen Seifert, and
Eytan Adar. 2022. Solving separation-of-concerns
problems in collaborative design of human-ai sys-
tems through leaky abstractions. In Proceedings of
the 2022 CHI Conference on Human Factors in Com-
puting Systems.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Axel Van Lamsweerde. 2009. Requirements engineer-
ing: From system goals to UML models to software,
volume 10. Chichester, UK: John Wiley & Sons.

Andreas Vogelsang and Markus Borg. 2019. Require-
ments engineering for machine learning: Perspec-
tives from data scientists. In IEEE 27th International
Requirements Engineering Conference Workshops,
pages 245–251. IEEE.

Chenguang Wang, Xiao Liu, and Dawn Song. 2020.
Language models are open knowledge graphs. arXiv
preprint arXiv:2010.11967.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association, 58(301):236–244.

Nicholas C. Wormald. 1995. Differential Equations for
Random Processes and Random Graphs. The Annals
of Applied Probability, 5(4):1217 – 1235.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019a. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 747–763, Florence,
Italy. Association for Computational Linguistics.

13516

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://towardsdatascience.com/testing-large-language-models-like-we-test-software-92745d28a359
https://towardsdatascience.com/testing-large-language-models-like-we-test-software-92745d28a359
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2021.acl-long.170
https://doi.org/10.18653/v1/2021.acl-long.170
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://arxiv.org/abs/2306.01943
https://arxiv.org/abs/2306.01943
https://arxiv.org/abs/2306.01943
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.1109/REW56159.2022.00036
https://doi.org/10.1109/REW56159.2022.00036
https://doi.org/10.1109/REW56159.2022.00036
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1214/aoap/1177004612
https://doi.org/10.1214/aoap/1177004612
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2019b. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 747–763.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai.
2022. Ai chains: Transparent and controllable
human-ai interaction by chaining large language
model prompts. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Sys-
tems, pages 1–22.

Chenyang Yang, Rachel A Brower-Sinning, Grace
Lewis, Christian Kästner, and Tongshuang Wu. 2023.
Capabilities for better ml engineering. In Proceed-
ings of the AAAI-23 Workshop on Artificial Intelli-
gence Safety (SafeAI).

Guanqun Yang, Mirazul Haque, Qiaochu Song, Wei
Yang, and Xueqing Liu. 2022. TestAug: A frame-
work for augmenting capability-based NLP tests. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 3480–3495,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why johnny can’t
prompt: How non-ai experts try (and fail) to design
llm prompts. In Proceedings of the 2023 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’23, New York, NY, USA. Association for Computing
Machinery.

Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele.
2017. Citypersons: A diverse dataset for pedestrian
detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4457–
4465.

A Complete List of Used Prompts

Prompts for expanding knowledge bases

{context}
{list_prompt} Pay attention to the context above.

Summarize in a JSON list.

'''json

Example list prompts
TYPEOF: List {N} types of {concept}.
PARTOF: List {N} parts or aspects of {concept}.
HASPROPERTY: List {N} descriptions of {concept}.
USEDFOR: List {N} things {concept} could be used

for.
ATLOCATION: List {N} locations {concept} could

appear in.
CAUSES: List {N} consequences of {concept}.
MOTIVATEDBY: List {N} motivations behind {

concept}.
OBSTRUCTEDBY: List {N} things, entities, or

people against {concept}.
MANNEROF: List {N} ways to do {concept}.

LOCATEDNEAR: List {N} things that often locates
near {concept}.

CAPABLEOF: List {N} things that {concept} is
capable of.

HASSUBEVENT: List {N} subevents of {concept}.
HASPREREQUISITE: List {N} things that happen

before {concept}.
DESIRES: List {N} things that {concept} desires.
CREATEDBY: List {N} creators of {concept}.
SYMBOLOF: List {N} symbols of {concept}.
CAUSESDESIRE: List {N} desires caused by {

concept}.
MADEOF: List {N} materials of {concept}.
RECEIVESACTION: List {N} actions that can be

done to {concept}.
DESIREDBY: List {N} entities or people that

desire {concept}.
CREATES: List {N} things that {concept} creates.
CAUSEDBY: List {N} things that cause {concept}.
DONEBY: List {N} entities or people that can do

{concept}.
DESIRECAUSEDBY: List {N} things that cause

desire of {concept}.
DONETO: List {N} entities or people that {

concept} can be done to.
RELATEDTO: List {N} concepts related to {concept

}.

Example contexts prompts
TYPEOF: {concept} is a type of {parent_concept}.
PARTOF: {concept} is a part of {parent_concept}.
HASPROPERTY: {parent_concept} is described as {

concept}.
USEDFOR: {parent_concept} is used for {concept}.
ATLOCATION: {parent_concept} locates at {concept

}.
CAUSES: {parent_concept} causes {concept}.
MOTIVATEDBY: {parent_concept} is motivated by {

concept}.
OBSTRUCTEDBY: {parent_concept} is obstructed by

{concept}.
MANNEROF: {concept} is a way to do {

parent_concept}.
LOCATEDNEAR: {concept} locates near {

parent_concept}.
CAPABLEOF: {parent_concept} is capable of {

concept}.
HASSUBEVENT: {concept} happens during {

parent_concept}.
HASPREREQUISITE: {concept} happens before {

parent_concept}.
DESIRES: {parent_concept} desires {concept}.
CREATEDBY: {concept} creates {parent_concept}.
SYMBOLOF: {concept} is a symbol of {

parent_concept}.
CAUSESDESIRE: {parent_concept} causes desire of

{concept}.
MADEOF: {parent_concept} is made of {concept}.
RECEIVESACTION: {parent_concept} receives action

of {concept}.
DESIREDBY: {concept} desires {parent_concept}.
CREATES: {parent_concept} creates {concept}.
CAUSEDBY: {concept} causes {parent_concept}.
DONEBY: {concept} does {parent_concept}.
DESIRECAUSEDBY: {concept} causes desire of {

parent_concept}.
DONETO: {parent_concept} is done to {concept}.
RELATEDTO: {concept} is related to {

parent_concept}.

13517

https://aclanthology.org/2022.coling-1.307
https://aclanthology.org/2022.coling-1.307
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1109/CVPR.2017.474
https://doi.org/10.1109/CVPR.2017.474

Prompts for the tested models in the user
study

Stance detection on feminism
Carefully classify a sentence's stance on

feminism. The labels are \"favor\", \"
against\" or \"none\". Only reply with the
label.

Sentence: {example}

Stance detection on climate change
Carefully classify a sentence's stance on

combating climate change. The labels are \"
favor\", \"against\" or \"none\". Only reply
with the label.

Sentence: {example}

The path contexts in our full prompt are used to
mitigate the issue of polysemy and deviation when
users explore deeper in the graph.

SURVEY QUESTIONS
• Rate whether you agree with the statement: Concept

knowledge graph helps me find more diverse model
bugs. Write a justification for your rating.

• Rate whether you agree with the statement: Concept
knowledge graph helps me find more important model
bugs. Write a justification for your rating.

• Rate whether you agree with the statement: Concept
knowledge graph helps me test the model more holisti-
cally. Write a justification for your rating.

• Rate whether you agree with the statement: I want to
use the tool with knowledge graph to test the model I
build/use in the future.. Write a justification for your
rating.

• If you want to use the tool in the future, what is the
model and task you want to use it for?

• Feedback on how to improve the tool in the future.

Figure 8: Post-study survey questions.

B User Interface

In Figure 9, we show the complete user interface.

C Task Descriptions

Hateful meme detection. Hateful meme detec-
tion (Kiela et al., 2020) requires classifying an
image (meme with text) as hateful or non-hateful.
This task is challenging in that it requires multi-
modal reasoning in order to classify the original
meme and its confounders correctly

Pedestrian detection. Pedestrian detec-
tion (Zhang et al., 2017) requires detecting and
localizing pedestrians in images. Though it is one
of the longest-standing problems in computer
vision, people still observe generalizability issues
in existing detectors (Hasan et al., 2021).

Stance detection. Stance detection requires clas-
sifying texts as either being in favor of, against, or
neutral toward the given target (Mohammad et al.,
2016). The task is crucial for understanding the
public’s perception of given targets We selected
two targets for our evaluation: feminism and cli-
mate change, which are previously explored for
Tweets (Mohammad et al., 2016).

D User Study

D.1 Study Design Details
Participants. We recruited 20 participants (grad-
uate students with varying ML/NLP experience).
Among them, 70% have worked on ML for more
than three years; 80% rate themselves as at least
somewhat familiar with NLP; 60% are working on
a project using NLP at the time of the study. We
randomly assigned participants to the four experi-
mental groups. The four groups are comparable in
terms of ML/NLP experience and familiarity. The
participants were compensated $20 per hour.

D.2 Post-study Survey
We share our survey questions (Figure 8) and users’
responses (Table 2).

D.3 Quantitative Analysis
We show the ANOVA analysis results in Table 3.

E Additional Data on Running WEAVER

It takes 30 seconds on average to generate a default
KB from scratch (with around 500 concepts) on
our machine (Precision 3650 workstation, with In-
tel(R) Xeon(R) W-1350 CPU and 32GB memory).
When users explore the KB interactively and ex-
pand a node, the query takes 8 seconds on average.
The wait can be greatly reduced via pre-fetching
(i.e., expanding the node on display in the back-
ground before the actual query), which has been
implemented in WEAVER.

F WEAVER with Open-source LLMs

We conducted an extra experiment to evaluate
whether open-source LLMs can also generate com-
prehensive KBs. We generated another KB on
the climate change task, using llama-2-13b-chat
with 4-bit quantization. We found that the gener-
ated KB achieved comparable levels of recall (83%
vs. 91% with text-davinci-003).

13518

➀

➁➂

➃

➄➅

➀

➁➂

➃

➄➅

Figure 9: Complete user interface for WEAVER. On the right is our re-implemented version of AdaTest to assist
users to create test cases.

Statement Distribution

Q1 Knowledge base helps me find more diverse model
bugs.

75% 10%

Q2 Knowledge base helps me find more important
model bugs.

45% 15%

Q3 Knowledge base helps me test the model more holis-
tically.

80% 0%

Q4 I want to use WEAVER to test the model I build/use
in the future.

95% 5%

Strongly agree Agree Neutral Disagree Strongly disagree

Table 2: Participants’ responses in the post-study survey.

Number of found concepts ges

Interv.: Used WEAVER? 0.307∗∗

Order: Tool in first task? 0.008
Task number 0.000

Number of hit clusters ges

Interv.: Used WEAVER? 0.408∗∗

Order: Tool in first task? 0.039
Task number 0.006

∗∗p < 0.01 N = 40

Table 3: User study ANOVA analysis results. We mea-
sure effect size with ges (generalized Eta-Squared mea-
sure of effect size).

13519

