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Abstract

Recent research has shown that static word em-
beddings can encode words’ frequencies. How-
ever, little has been studied about this behav-
ior. In the present work, we study how fre-
quency and semantic similarity relate to one an-
other in static word embeddings, and we assess
the impact of this relationship on embedding-
based bias metrics. We find that Skip-gram,
GloVe and FastText embeddings tend to pro-
duce higher similarity between high-frequency
words than between other frequency combina-
tions. We show that the association between fre-
quency and similarity also appears when words
are randomly shuffled, and holds for different
hyperparameter settings. This proves that the
patterns we find are neither due to real semantic
associations nor to specific parameters choices,
and are an artifact produced by the word embed-
dings. To illustrate how frequencies can affect
the measurement of biases related to gender,
ethnicity, and affluence, we carry out a con-
trolled experiment that shows that biases can
even change sign or reverse their order when
word frequencies change.1

1 Introduction

Static word embeddings have proven to encode
semantic information of words and are therefore
useful to solve tasks such as synonym selection and
analogical reasoning (Mikolov et al., 2013; Levy
et al., 2015). More recent contextualized repre-
sentations have achieved better results (Ethayarajh,
2019), specially in tasks where the local context
of words is important (Sezerer and Tekir, 2021).
However, static word embeddings are still widely
used in computational social science studies that
examine global aspects of corpora. For example,
embeddings are trained on specific corpora and are

1Code for the paper is available at https://github.com/
ftvalentini/EmbeddingsFrequency

used to compute metrics that quantify societal bi-
ases and stereotypes that might be present in the
text (Garg et al., 2018; Kozlowski et al., 2019; De-
Franza et al., 2020; Jones et al., 2020; Lewis and
Lupyan, 2020; Charlesworth et al., 2021). Static
embeddings are also used in a wide range of appli-
cations like topic coherence evaluation (Aletras and
Stevenson, 2013), dream theory analysis (Altszyler
et al., 2017), literature studies (Diuk et al., 2012),
and cognitive science studies (Mota et al., 2022).

Previous research has found static word em-
beddings appear to be associated with word fre-
quency in various ways: word frequency correlates
with embedding norm (Wilson and Schakel, 2015;
Arora et al., 2016), the nearest neighbors of the em-
beddings of medium-frequency English words are
more unstable (Hellrich and Hahn, 2016), there are
frequency-related differences in the distribution of
the inner products between target and context vec-
tors (Mimno and Thompson, 2017), embeddings
can accurately predict whether a word is frequent
or rare (Schnabel et al., 2015), and the visual in-
spection of their top principal components suggest
they encode frequency (Gong et al., 2018; Mu and
Viswanath, 2018). When it comes to using embed-
dings to measure bias in text, Valentini et al. (2022)
found that gender embedding-based bias metrics
can spuriously depend on word frequency.

Our work addresses several gaps in the exist-
ing literature regarding the frequency distortion of
static word embeddings and its impact on the quan-
tification of biases in corpora. Even if it has been
pointed out that embeddings can encode frequency,
this is the first study that:
1. Comprehensively investigates the association

between frequency and similarity in commonly
used embeddings.

2. Examines whether embeddings encode fre-
quency due to undesirable properties of embed-
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dings or actual properties of corpora.
3. Explores the persistence of the frequency distor-

tion under different hyperparameter settings.
4. Assesses the impact on a computational social

science application, namely bias measurement.

2 The dependence of word embeddings
on frequency

As a first step, we seek to describe the associa-
tion between word frequency and cosine similarity,
commonly used to measure semantic closeness.

We use the 2021 English Wikipedia as a corpus
to train embeddings with word2vec with skip-gram
with negative-sampling (SGNS, Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and Fast-
Text (Bojanowski et al., 2017) with default hyper-
parameters (see details in Appendix A). We group
all words by their log10 frequency, and use matri-
ces to represent the mean cosine similarity of 500
randomly sampled pairs of words for each combi-
nation of bins, excluding comparisons between the
same word.

In the three methods the mean cosine similar-
ity is higher between high frequency words than
between any other combination of frequencies (Fig-
ure 1). Unlike SGNS and FastText, the GloVe mean
similarity is moderate to high between words of the
same frequency range (the matrix diagonal) and
low between words of different frequencies (e.g.
words with 106 vs 102 frequencies).

These results seem to imply that word frequen-
cies influence how similar two words are, raising
the following questions: is this due to an artifact of
the embeddings? Or does it reveal actual proper-
ties of the corpus; for example, that high-frequency
words are actually semantically closer on average
to one another than the rest of the vocabulary? We
conduct the following study to answer this.

2.1 Experiments

Following Valentini et al. (2022)’s approach, we
produce a randomly shuffled Wikipedia corpus,
with tokens distributed at random across the text.
As co-occurrences are random, words retain their
frequency but any contextual information is lost.
We train embeddings on this corpus and repeat the
analysis from the previous section (as in Figure 1).

If any association is found between similarity
and frequency in this setting, it should be explained
only by word frequencies. If embeddings don’t
capture frequency, we would expect a uniform dis-

tribution of cosine similarity across all frequency
combinations: the similarity of any pair of words
should be on average the same.

We find that the mean cosine similarities of em-
beddings trained on the shuffled corpus depend on
the frequencies of the words, and this happens in
different ways depending on the method (Figure
2). When comparing frequent words (frequency
around 104 and above) to one another, all embed-
dings tend to yield high similarities; and similarity
tends to drop in different ways when doing other
comparisons.

We obtain the same qualitative result when using
an Euclidean distance-based similarity measure:
the similarity of any two words depends heavily on
their frequencies (Figures 8 and 9 in Appendix B).
Therefore the frequency-based effect is not caused
by the choice of cosine similarity.

The fact that shuffling words prior to training
does not yield a uniform distribution of similarity
across frequencies suggests that embeddings tend
to encode frequency. To further assess this we do
PCA on the vectors of a sample of words stratified
by frequency and inspect the centroids of the top
two components of each frequency bin (top panel
of Figure 3). PCA finds the dimensions with the
most variability, and we find that the top two are
highly associated with the frequency dimension.
Therefore the geometry of vectors trained on the
original corpus encodes training data frequencies,
which is consistent with the literature’s previous
findings.

We also run PCA on the vectors trained on the
shuffled corpus to confirm that this is not a result
of properties of the corpus but rather an artifact
of embeddings. The trend is more pronounced in
this setting: words with varying frequency tend
to live in distinct regions in the embedding space
(bottom panel of Figure 3). Thus embedding-based
similarity metrics can detect semantic closeness
even when there shouldn’t be any. Four additional
independent random shuffles of the corpus yielded
the same qualitative results.

PCA in the shuffled corpus also reveals that the
vectors of low frequency words are more spread out
and therefore have lower similarity between them-
selves (as seen in the SGNS heatmap of Figure 2).
This might occur because the distribution of co-
occurrences of low-frequency words is less varied,
and thus noisier, even when shuffling the corpus.
On the other hand, the co-occurrences of higher
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Figure 1: Mean cosine similarity between 500 random word pairs for each combination of frequencies, in embeddings
trained on Wikipedia. Cosine similarity tends to be higher between high frequency words.

Figure 2: Mean cosine similarity between 500 random word pairs for each combination of frequencies, in embeddings
trained on a shuffled version of Wikipedia. The similarity of embeddings trained on a corpus with random
co-occurrences depends on the words’ frequencies.

frequency words are more broadly distributed, and
as they are completely random because of the shuf-
fling, the vectors of these words are affected almost
exclusively by the frequency dimension, and thus
the high similarity between them.

We provide an intuition on how this phenomenon
arises during training by visualizing the similarity
heatmaps of SGNS embeddings of the shuffled cor-
pus in each epoch (Figure 4). By the end of the
first epoch, the vectors of low frequency words
have probably moved very little and remain close
to their initialization–thus the relatively high sim-
ilarity between them. In contrast, the vectors of
more frequent words are updated with higher vari-
ability as their random co-occurrences with other
words are more broadly distributed. As training pro-
gresses, the frequency dimension becomes more
salient and the importance of co-occurrences de-
creases, so much so that by the last epoch frequency
is the dimension that captures the most variance in
the vectors (PCA in Figure 3).

2.2 Sensitivity to hyperparameters
We evaluate the robustness of the findings from sec-
tion 2.1 to embeddings’ hyperparameters choices.
Following Levy et al. (2015), the hyperparameters
values we explore in all methods are:

• Window size (win): 2, 5, 10
• Adding context vectors (w+c): yes, no

For SGNS and FastText we also explore the follow-
ing hyperparameters:

• Context distribution smoothing (cds): 0.75, 1
• Number of negative samples (neg): 1, 5, 15

Trying all combinations of these hyperparame-
ters results in 6 GloVe, 36 SGNS and 36 FastText
settings. With each setting we train embeddings on
the shuffled corpus.

In order to measure the association between
word frequencies and similarity between embed-
dings, we compute the root mean squared error
(RMSE) between the values of each cell of the sim-
ilarity heatmap and the overall average. The overall
average represents the mean similarity we would
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Figure 3: PCA of a sample of SGNS embeddings strati-
fied by frequency, trained on Wikipedia (top) and shuf-
fled Wikipedia (bottom). Vectors are normalized to unit
length before PCA and there are 100 words by frequency
bin. Centroids are displayed with larger markers. Fig-
ure 11 in Appendix C displays the plots for GloVe and
FastText. The top two components are highly associ-
ated with the frequency dimension: the geometry of
vectors encodes the training corpus frequencies.

Figure 4: Mean cosine similarity by epoch between
500 random word pairs in SGNS embeddings trained
on shuffled Wikipedia. Frequency bins are the same as
in Figure 2. As training progresses, the frequency
dimension becomes more salient and the importance
of co-occurrences decreases.

Figure 5: Association between frequency and cosine
similarity as measured by the RMSE metric. Each point
is a hyperparameter setting of embeddings trained on
shuffled Wikipedia. Comparing the RMSE computed
with the actual heatmaps (red) with the RMSE com-
puted with heatmaps obtained by shuffling the similarity
values of the pairs of words (blue) shows that the metric
yields low values when there is no relationship between
similarity and frequency. Word similarity depends on
word frequency in all hyperparameter settings.

see in each cell of the heatmap if there were no as-
sociation between frequencies and similarity. The
larger the RMSE, the larger the deviation from the
uniform distribution of similarity across frequency
combinations, and thus the stronger the association
between frequencies and similarity.

As a control, we compare the actual distribution
of RMSE with the distribution of RMSE if there
was no frequency effect. We compute this by ran-
domly shuffling the similarity values of the pairs of
words used to build the heatmap in each hyperpa-
rameter setting. The RMSEs would be close to zero
in this case, as the random shuffling would result
in a uniform distribution of similarity values across
frequencies i.e. no association between frequencies
and similarity.

We compute the RMSE metric for cosine sim-
ilarity in each hyperparameter setting (Figure 5).
The RMSE metric is high in all the hyperparameter
settings, as compared to the distribution of RMSE
obtained by shuffling the similarity values of the
pairs of words. This proves that the finding that
word similarity depends on word frequencies is
robust to hyperparameter choices. In Appendix
B we show this is also the case for an Euclidean
distance-based similarity measure.

A linear regression analysis that includes the hy-
perparameter values as predictors and the RMSE
as the outcome variable shows that no specific hy-
perparameter tends to systematically yield higher
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or lower RMSE values when using cosine simi-
larity. Only adding context vectors (w+c = yes) is
significantly associated with a greater association
between frequency and Euclidean distance (p-value
< 0.0001) in all three methods. Refer to Appendix
D for more details.

3 Assessing the impact

In computational social science, static word em-
beddings are typically used to measure societal
biases and stereotypes potentially present in cor-
pora. Here we study the effect of the dependence
of embeddings on frequency on this type of studies.
We highlight that this is different from measuring
or mitigating biases in NLP models. Our goal is to
assess how much the individual frequency of words
might distort the estimates of biases in specific cor-
pora when using word embeddings.

To measure the bias of a target word x we use the
difference between the mean similarity of words of
context groups A and B with respect to x:

BiasWE = mean
a∈A

cos(wx, wa)−mean
b∈B

cos(wx, wb)

(1)
where wi is the embedding of word i and
cos(wi, wj) is the cosine similarity. A and B are
set based on the bias to be measured. For instance,
to quantify binary gender bias (female/male), gen-
dered nouns and pronouns are used.

Here we use the same bias metric as in Lewis
and Lupyan (2020) and Valentini et al. (2022) for
its simplicity. Other similar metrics have been
used (Bolukbasi et al., 2016; Garg et al., 2018;
Kozlowski et al., 2019; Jones et al., 2020) and have
shown to yield similar results (Garg et al., 2018).

3.1 Experimental setup

To measure the sensitivity of embedding-based bias
to changes in the context words frequencies, we
first use the female/male gender bias as a widely
studied test case (Garg et al., 2018; Kozlowski
et al., 2019; DeFranza et al., 2020; Jones et al.,
2020; Lewis and Lupyan, 2020; Charlesworth et al.,
2021).

We measure gender bias with equation 1 with
A = {she} and B = {he} (Bolukbasi et al., 2016).
We seek to train embeddings on corpora where one
of the words (A) has the original corpus’ frequency,
while the other word (B) has a target frequency
level. To achieve this, we randomly drop sentences
containing B until the target frequency is reached.

We set three target frequencies for B: 104, 105, and
106. This implies creating three resampled corpora
(see Table 1).

she (A) he (B)
Original Wiki. 106.55 107.07

Undersampled Wiki. 1 106.53 106

Undersampled Wiki. 2 106.52 105

Undersampled Wiki. 3 106.52 104

Table 1: Frequency of context words in the undersam-
pling experiment that drops sentences with word B (he).
The frequency of A (she) decreases but to a minor ex-
tent.

Using only one word in each context group to
measure bias (as in Bolukbasi et al., 2016) allows
us to ascribe any shifts in bias to the change in the
frequency of one of the words. This simplifies the
experiment and the conclusions we can draw from
it, as compared to the case where multiple words
are used in each context group.

With the embeddings trained on the resampled
corpora and on the original corpus, we compute
equation 1 on the words from the Glasgow Norms,
a set of around 5,500 words with a score of gender
association as perceived by human judgment (Scott
et al., 2019). See details in Appendix E.

Our hypothesis is that bias can be heavily af-
fected by the frequencies of the context words,
so much so that answers to questions of the type
"what are the most gender-biased words in this cor-
pus?" can be highly dependent on the frequencies
of words in the corpus being studied.

3.2 Results

The effect of frequencies on gender BiasWE is dif-
ferent in each method (leftmost panel in Figure 6).
SGNS has an issue when measuring bias in high
frequency words: in these words the association
between BiasWE and the frequency of B is nega-
tive, while it is approximately constant for the rest
of the frequency ranges.

In FastText embeddings this negative association
is observed across all frequency bins. Moreover,
when the frequency of he is low enough, all words
have a positive (female) bias. This means the bias
of specific words might appear to be high, when in
fact the average bias of all words is high.

Context words frequencies have the most influ-
ence on bias when using GloVe, as there are very
different effects in each frequency bin. Both the
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Figure 6: Mean biases of selected words grouped by frequency. Horizontal axes represent corpora where the
frequency of B varies and the frequency of A is almost constant (see Tables 1, 2 and 3). Averages are plotted with
bootstrap confidence intervals. Gender, ethnicity, and affluence biases are measured in 4,384, 4,641, and 4,617 target
words, respectively. Changes in word frequencies can generate substantial changes in estimates of gender,
ethnicity and affluence bias, even if the underlying distribution of co-occurrences remains constant.

level and ranking of bias are highly affected by fre-
quency. More frequent target words tend to stick to
the more frequent context word and less frequent
words are attracted to the less frequent context.

In summary, gender bias estimates can change
substantially with the three methods even if the
underlying distribution of co-occurrences remains
constant. These shifts are triggered by the change
in the context words’ frequencies, which is an un-
desirable property in similarity measurements. In
Figure 12 from Appendix E we show that the fre-
quency dependence persists when undersampling
word A instead of B.

3.2.1 Qualitative analysis of individual words

To illustrate how this property can lead to mislead-
ing conclusions, we perform a qualitative analysis
of the BiasWE of individual words with GloVe,
which seems to have the strongest frequency-based
distortion.

We classify words by their perceived gendered-
ness according to human judgment: "male" if their
Glasgow gender norm is equal to or less than 2,
"female" if it is 6 or higher, and "neutral" other-

wise. For each class of words we sample a word
for each one of five frequency bins and we study
the changes in bias according to the frequency of
he in the corpus (Figure 7).

As observed in Figure 6, the BiasWE of frequent
words (frequency 105 onwards) is inversely corre-
lated to the frequency of he, while the association
is positive for less frequent words (below 104 oc-
currences). This occurs regardless of whether the
words are perceived to be "male", "female" or "neu-
tral".

The bias is so dependent on the frequencies of
the context words that the ranking of words can
be reverted. For instance, if the frequency of he is
low enough, we might end up believing that "male-
associated" words like war and battle, or "neutral"
words as new or art, are female-biased words in
our corpus, with even larger values than hostess.
At the same time, lioness might tend to appear as
male-biased, even more than wrestler, battle or
war.

What is more, this behavior holds both for words
that are inherently gendered, e.g. daughter or
grandpa, and for words that are stereotypically
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Figure 7: GloVe gender bias. Selected words are classified by frequency bin and by their perceived genderedness
by human judgment ("female-associated", "male-associated", and "neutral"). Horizontal axes represent corpora
where the frequency of B (he) varies and the frequency of A (she) is almost constant (see Table 1). Biases can even
change sign or ranking when frequencies change.

associated with gender, e.g. beauty or battle (refer
to Figure 13 in Appendix E.1 for a more detailed
analysis). In Appendix E.1 we also replicate the
analysis of specific words for SGNS and FastText.

3.2.2 Other biases
To show that the findings do not apply to gen-
der bias alone, we assess the impact on the mea-
surement of bias along other cultural dimensions,
namely ethnicity (Caliskan et al., 2017; Kozlowski
et al., 2019) and affluence (Kozlowski et al., 2019).

We measure ethnicity bias with A = {african}
and B = {european}, and affluence bias with
A = {rich} and B = {poor}. The words were
chosen from Kozlowski et al. (2019) and aiming
at reducing the ambiguity of the association being
measured (e.g. african/european is less ambiguous
than black/white).

We follow the same approach from section 3.1.
In these cases achieving the desired frequency lev-
els implies also oversampling i.e. randomly repli-
cating sentences containing B (see Tables 2 and
3). As with gender bias, we use the words from the
Glasgow Norms as target words, applying the same
filtering described in Appendix E.

The findings are qualitatively the same as those
in section 3.2: the estimates of bias can be highly
dependent on the frequencies of the words involved,
and the effect is different in each set of embeddings
(middle and right panels of Figure 6). Moreover,
the affluence and ethnicity biases of each frequency
range vary in a very similar manner to gender bias.
This further supports the claim that the frequency of
the words being compared heavily affects similarity
scores and bias estimates, independently of the

specific context words we have chosen to use in
these experiments.

african (A) european (B)

Oversampled Wiki. 105.39 106

Original Wiki. 105.37 105.58

Undersampled Wiki. 1 105.36 105

Undersampled Wiki. 2 105.36 104

Table 2: Frequency of context words in the resampling
experiment that either drops or replicates sentences
with B (european). The frequency of word A (african)
changes but to a minor extent.

rich (A) poor (B)

Oversampled Wiki. 105.05 106

Original Wiki. 104.95 105.21

Undersampled Wiki. 1 104.94 105

Undersampled Wiki. 2 104.93 104

Table 3: Frequency of context words in the resampling
experiment that either drops or replicates sentences with
B (poor). The frequency of word A (rich) changes but
to a minor extent.

4 Discussion and conclusions

Static word embeddings are useful for computing
semantic similarity between words since they cap-
ture the semantics of words. To assess biases in
texts, computational social scientists frequently use
word embedding similarity as a metric.

Static word embeddings can encode information
on word frequency, according to earlier research.
We examine the relationship between frequency
and semantic similarity in SGNS, FastText, and
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GloVe embeddings in greater detail in this work.
We find that the frequency of the words being com-
pared affects their similarity score. This depen-
dence is also present when words in the training
corpus are randomly shuffled, demonstrating that
the behavior is an artifact of the embeddings and
not a result of actual associations found in the text.
Moreover, we find that this frequency distortion
persists under different hyperparameter settings.

In computational social science applications like
bias measurement, the propensity of embeddings to
encode frequency hampers their ability to measure
semantic closeness. We conduct a controlled ex-
periment that illustrates how measuring gender, af-
fluence or ethnicity biases using embedding-based
metrics might produce inaccurate results. The re-
sults indicate that the frequency of words can have
a significant impact on the answers to questions like
"what are the most gender biased terms?" as biases
can change sign or ranking when word frequencies
are changed.

A way to mitigate the frequency distortion in
embedding-based bias metrics could involve creat-
ing context groups A and B with words that have
similar average frequencies, if possible. When do-
ing this, frequency does not have a systematic effect
in the sign of the subtraction of cosine similarities.
Another approach is to randomly replicate docu-
ments prior to training embeddings so that the fre-
quencies of A and B are balanced. However, it is
worth noting that when measuring bias with con-
text groups A and B with multiple words each, it
can be challenging to achieve balanced frequencies
for all words simultaneously.

Limitations

Experiments were conducted solely on the English
language. This means that our findings may not
be directly applicable to languages that have more
complex morphological features or richer grammat-
ical genders.

Even if our analyses are focused exclusively on
the English Wikipedia corpus, we consider that the
random-shuffling experiment is sufficiently generic
to prove that the dependence on frequency would
continue to hold true in other domains.

The embedding-based metric we use to measure
biases imply a binary understanding of stereotypes,
which excludes other views. The context words
were chosen from past studies and aiming at reduc-
ing the ambiguity of the associations being mea-

sured.
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Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 298–307, Lisbon,
Portugal. Association for Computational Linguistics.

Graham G Scott, Anne Keitel, Marc Becirspahic,
Bo Yao, and Sara C Sereno. 2019. The Glasgow
Norms: Ratings of 5,500 words on nine scales. Be-
havior Research Methods, 51:1258–1270.

Erhan Sezerer and Selma Tekir. 2021. A sur-
vey on neural word embeddings. arXiv preprint,
arXiv:2110.01804.

Francisco Valentini, Germán Rosati, Diego Fernandez
Slezak, and Edgar Altszyler. 2022. The undesir-
able dependence on frequency of gender bias metrics
based on word embeddings. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022.
Association for Computational Linguistics.

Benjamin J Wilson and Adriaan MJ Schakel. 2015. Con-
trolled experiments for word embeddings. arXiv
preprint arXiv:1510.02675.

A Data and methods

We build the Wikipedia corpus from the April
2021 English Wikipedia dump (https://archive.
org/download/enwiki-20210401, license CC
BY-SA 3.0). Wikipedia is freely available, eas-
ily accessible and has been used in previous ex-
periments (Levy et al., 2015). We remove articles
with less than 50 words. Pre-processing includes
sentence splitting, lowercasing and removing non
alpha-numeric symbols, and produces a corpus of
78 million sentences and 1.2 billion tokens.

We train word embeddings with 300 dimensions.
All words with less than 100 occurrences are re-
moved before obtaining word-context pairs and we
use a sliding window size of 10 tokens by default.
SGNS and FastText are trained with Gensim’s im-
plementation (Řehůřek and Sojka, 2010, v4.2.0,
licensed under GNU LGPLv2.1), and GloVe is
trained with Pennington et al. (2014)’s implemen-
tation (v1.2, Apache License Version 2.0).
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We used a desktop computer with 16 cores Intel
Core i7-11700 CPU and 32GB RAM. Depending
on the corpus being used, training took between 0.5
and 1.2 hours per epoch with SGNS and FastText,
and 5 and 15 minutes per iteration with GloVe.

B Euclidean distance-based similarity
metric

Figures 8 and 9 show the association between simi-
larity and word frequency when using a similarity
measure based on Euclidean distance.

Figure 10 shows the distribution of the RMSE
metric across different hyperparameter settings
when using the Euclidean-based measure instead
of cosine similarity. The relatively high values of
RMSE in red as compared to the baseline values in
blue shows that the frequency-based distortion is
present in all hyperparameter settings even when
using Euclidean distance.

C Principal Components Analysis

Figure 11 shows the top two principal components
of each frequency bin in unshuffled Wikipedia and
shuffled Wikipedia for embeddings trained with
FastText and GloVe.

D Sensitivity to hyperparameters

SGNS+FT+GloVe SGNS+FT
Cos. Eucl. Cos. Eucl.

win=5 0.01 0.03 0.01 0.04
win=10 0.02 0.10 0.02 0.13
w+c=yes 0.01 0.26∗∗∗ 0.01 0.24∗∗∗

neg=5 −0.01 0.03
neg=15 −0.03 0.04
cds=1 −0.00 −0.04

N 156 156 144 144
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4: Coefficients of the linear regressions between
the RMSE metric and hyperparameter choices, mea-
suring embedding similarity with both cosine ("Cos.")
and negative euclidean distance ("Eucl."). No hyperpa-
rameter choice significantly affects the association
between frequency and cosine similarity.

Table 4 displays the coefficients of a linear model
with the hyperparameter values as predictors and
the RMSE as the outcome variable, considering
the cosine and the Euclidean-based similarity met-
rics. The only hyperparameter choice that tends to
systematically yield higher RMSE values (stronger

association between frequency and similarity) is
adding context vectors (w+c = yes), but only when
using negative Euclidean distance as similarity met-
ric.

E Impact on bias measurement

The Glasgow Norms (Scott et al., 2019) comprise
a set of 5,553 English words rated by subjects who
were asked to measure the degree to which each
word is associated with male or female behavior on
a scale from 1 (feminine) to 7 (masculine). We flip
the scale so that the norm represents femaleness
according to human judgment.

We discard the norms of homonyms and of
words with uppercase characters. Moreover, we
only consider words that are in the vocabularies of
all embeddings trained on the original corpus and
the resampled corpora. Finally, we drop any words
that change their frequency bin between corpora.
This results in a set of 4,384, 4,641, and 4,617
words to measure gender, ethnicity and affluence
bias in Figure 6.

Figure 12 shows the effect of undersampling
word A (she) instead of B (he). The frequencies
employed in this experiment are in Table 5. In
the same manner as in section 3.2, GloVe exhibits
the highest frequency-based distortion, as more
frequent target words stick to the more frequent
context word (here, he) and less frequent words are
attracted to the less frequent context (she). SGNS
also presents the same effect in high frequency
words as the one observed in Figure 6. The main
difference with respect to the experiment in section
3.2 occurs with FastText. We have no hypothesis
about the reason for this discrepancy.

she (A) he (B)
Original Wiki. 106.55 107.07

Undersampled Wiki. 1 106 107.07

Undersampled Wiki. 2 105 107.07

Undersampled Wiki. 3 104 107.07

Table 5: Frequency of context words in the undersam-
pling experiment that drops sentences with word A (she).
The frequency of B (he) decreases but to a minor extent.

E.1 Qualitative analysis of individual words
(SGNS and FastText)

We chose male and female-associated words that
are either inherently gendered or stereotypically
associated with gender and studied the behavior of
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bias in the experiment that undersamples he (Figure
13). Results reveal that the frequency distortion
affects the bias of both types of words in the same
way.

In Figures 14 and 15 we replicate the analysis of
specific words for SGNS and FastText, respectively.
These words are a subset of the words used to make
the leftmost panel of Figure 6.
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Figure 8: Mean negative Euclidean distance between 500 random word pairs for each combination of frequencies in
embeddings trained on Wikipedia.

Figure 9: Mean negative Euclidean distance between 500 random word pairs for each combination of frequencies in
embeddings trained on a shuffled version of Wikipedia.

Figure 10: Association between frequency and negative Euclidean distance as measured by the RMSE metric. Each
point is a hyperparameter setting of embeddings trained on shuffled Wikipedia. The RMSE computed with the
actual heatmaps (red) is compared to the RMSE computed with the heatmaps obtained by shuffling the similarity
values of the pairs of words (blue).
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Figure 11: Top principal components of a sample of embeddings stratified by frequency trained on the original
Wikipedia (top) and the shuffled Wikipedia (bottom), for FastText (left) and GloVe (right). Vectors are normalized
to unit length before PCA and there are 100 words by frequency bin. Centroids are displayed with larger markers.

Figure 12: Female/male gender bias of 4,384 target words grouped by frequency. Horizontal axes represent corpora
where the frequency of A (she) varies and the frequency of B (he) is almost constant (see Table 5). Mean bias is
plotted with bootstrap confidence intervals.
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Figure 13: GloVe female/male gender bias of inherently and stereotypically gendered words in the experiment that
undersamples B (he).

Figure 14: SGNS female/male gender bias of words in the experiment that undersamples B (he).

Figure 15: FastText female/male gender bias of words in the experiment that undersamples B (he).
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