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Abstract

Pretrained language models are expected to ef-
fectively map input text to a set of vectors while
preserving the inherent relationships within
the text. Consequently, designing a white-
box model to compute metrics that reflect the
presence of specific internal relations in these
vectors has become a common approach for
post-hoc interpretability analysis of pretrained
language models. However, achieving inter-
pretability in white-box models and ensuring
the rigor of metric computation becomes chal-
lenging when the source model lacks inherent
interpretability. Therefore, in this paper, we
discuss striking a balance in this trade-off and
propose a novel line to constructing metrics for
understanding the mechanisms of pretrained
language models. We have specifically de-
signed a family of metrics along this line of
investigation, and the model used to compute
these metrics is referred to as the tree topolog-
ical probe. We conducted measurements on
BERT-large by using these metrics. Based on
the experimental results, we propose a spec-
ulation regarding the working mechanism of
BERT-like pretrained language models, as well
as a strategy for enhancing fine-tuning perfor-
mance by leveraging the topological probe to
improve specific submodules.!

1 Introduction

Pretrained language models consisting of stacked
transformer blocks (Vaswani et al., 2017) are com-
monly expected to map input text to a set of vec-
tors, such that any relationship in the text corre-
sponds to some algebraic operation on these vec-
tors. However, it is generally unknown whether
such operations exist. Therefore, designing a white-
box model that computes a metric for a given set
of vectors corresponding to a text, which reflects to
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some extent the existence of operations extracting
specific information from the vectors, is a common
approach for post-hoc interpretability analysis of
such models (Maudslay et al., 2020; Limisiewicz
and Marecek, 2021; Chen et al., 2021; White et al.,
2021; Immer et al., 2022). However, even though
we may desire strong interpretability from a white-
box model and metrics computed by it that rigor-
ously reflect the ability to extract specific informa-
tion from a given set of vectors, it can be challeng-
ing to achieve both of these aspects simultaneously
when the source model lacks inherent interpretabil-
ity. Therefore, making implicit assumptions during
metric computation is common (Kornblith et al.,
2019; Wang et al., 2022). A simple example is the
cosine similarity of contextual embeddings. This
metric is straightforward and has an intuitive ge-
ometric interpretation, making it easy to explain,
but it tends to underestimate the similarity of high-
frequency words (Zhou et al., 2022).

On the other hand, due to the intuition that ’if
a white-box model cannot distinguish embeddings
that exhibit practical differences (such as context
embeddings and static embeddings), it should be
considered ineffective,” experimental validation of
a white-box model’s ability to effectively distin-
guish between embeddings with evident practical
distinctions is a common practice in research. Fur-
thermore, if the magnitude of metrics computed by
a white-box model strongly correlates with the qual-
ity of different embeddings in practical settings, re-
searchers usually trust its effectiveness. Therefore,
in practice, traditional white-box models actually
classify sets of vectors from different sources.

Taking the structural probe proposed by Hewitt
and Manning as an example, they perform a linear
transformation on the embedding of each complete
word in the text and use the square of the L2 norm
of the transformed vector as a prediction for the
depth of the corresponding word in the dependency
tree (Hewitt and Manning, 2019). In this way, the
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linear transformation matrix serves as a learning
parameter, and the minimum risk loss between the
predicted and true depths is used as a metric. In-
tuitively, the smaller the metric is, the more likely
the embedding contains complete syntax relations.
The experimental results indeed align with this in-
tuition, showing that contextual embeddings (such
as those generated by BERT (Devlin et al., 2019))
outperform static embeddings. However, due to
the unknown nature of the true deep distribution, it
is challenging to deduce which geometric features
within the representations influence the magnitude
of structural probe measurements from the setup of
structural probe. Overall, while the results of the
structural probe provide an intuition that contex-
tual embeddings, such as those generated by BERT,
capture richer syntactic relations than those of the
traditional embeddings, it is currently impossible to
know what the geometric structure of a "good" em-
bedding is for the metric defined by the structural
probe.

In addition, to enhance the interpretability and
flexibility of white-box models, it is common to
include assumptions that are challenging to empiri-
cally validate. For example, Ethayarajh proposed to
use anisotropy-adjusted self-similarity to measure
the context-specificity of embeddings (Ethayarajh,
2019). Since the computation of this metric doesn’t
require the introduction of additional human la-
bels, it is theoretically possible to conduct further
analysis, such as examining how fundamental ge-
ometric features in the representation (e.g., rank)
affect anisotropy-adjusted self-similarity, or simply
consider this metric as defining a new geometric
feature. Overall, this is a metric that can be dis-
cussed purely at the mathematical level. However,
verifying whether the measured context-specificity
in this metric aligns well with context-specificity in
linguistics, without the use of, or with only limited
additional human labels, may be challenging. Ad-
ditionally, confirming whether the model leverages
the properties of anisotropy-adjusted self-similarity
during actual inference tasks might also be chal-
lenging.

There appears to be a trade-off here between two
types of metrics:

1. Metrics that are constrained by supervised
signals with ground truth labels, which provide
more practical intuition.

2. Metrics that reflect the geometric properties
of the vector set itself, which provide a more formal

representation.

Therefore, we propose a new line that takes tra-
ditional supervised probes as the structure of the
white-box model and then self-supervises it, trying
to preserve both of the abovementioned proper-
ties as much as possible. The motivation behind
this idea is that any feature that is beneficial for
interpretability has internal constraints. If a cer-
tain feature has no internal constraints, it must be
represented by a vector set without geometric con-
straints, which does not contain any interpretable
factors. Therefore, what is important for inter-
pretability is the correspondence between the inter-
nal constraints of the probed features and the vector
set, which can describe the geometric structure of
the vector set to some extent. In the case where the
internal constraints of the probed features are
well defined, a probe that detects these features
can naturally induce a probe that detects the
internal constraints, which is self-supervised.

In summary, the contributions of this work in-
clude:

1. We propose a novel self-supervised probe,
referred to as the tree topological probe,
to probe the hierarchical structure of sen-
tence representations learned by pretrained
language models like BERT.

2. We discuss the theoretical relationship be-
tween the tree topological probe and the struc-
tural probe, with the former bounding the lat-
ter.

3. We measure the metrics constructed based
on the tree topological probe on BERT-large.
According to the experimental results, we
propose a speculation regarding the working
mechanism of a BERT-like pretrained lan-
guage model.

4. We utilize metrics constructed by the tree topo-
logical probe to enhance BERT’s submodules
during fine-tuning and observe that enhancing
certain modules can improve the fine-tuning
performance. We also propose a strategy for
selecting submodules.

2 Related Work

The probe is the most common approach for as-
sociating neural network representations with lin-
guistic properties (Voita and Titov, 2020). This
approach is widely used to explore part of speech
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knowledge (Belinkov and Glass, 2019; Voita and
Titov, 2020; Pimentel et al., 2020; Hewitt et al.,
2021) and for sentence and dependency structures
(Hewitt and Manning, 2019; Maudslay et al., 2020;
White et al., 2021; Limisiewicz and Marecek, 2021;
Chen et al., 2021). These studies demonstrate many
important aspects of the linguistic information are
encoded in pretrained representations. However, in
some probe experiments, researchers have found
that the probe precision obtained by both random
representation and pretrained representation were
quite close (Zhang and Bowman, 2018; Hewitt and
Liang, 2019). This demonstrates that it is not suffi-
cient to use the probe precision to measure whether
the representations contain specific language infor-
mation. To improve the reliability of probes, some
researchers have proposed the use of control tasks
in probe experiments (Hewitt and Liang, 2019). In
recent research, Lovering et al. realized that in-
ductive bias can be used to describe the ease of
extracting relevant features from representations.
Immer et al. further proposed a Bayesian frame-
work for quantifying inductive bias with probes,
and they used the Model Evidence Maximum in-
stead of trivial precision.

3 Methodology

As the foundation of the white-box model proposed
in this paper is built upon the traditional probe, we
will begin by providing a general description of the
probe based on the definition presented in (Ivanova
et al., 2021). Additionally, we will introduce some
relevant notation for better understanding.

3.1 General Form of the Probe

Given a character set, in a formal language, the gen-
eration rules uniquely determine the properties of
the language. We assume that there also exists a set
of generation rules ‘R implicitly in natural language,
and the language objects derived from these rules
exhibit a series of features. Among these features, a
subset Y is selected as the probed feature for which
the properties represent the logical constraints of
the generation rule set. Assuming there is another
model M that can assign a suitable representation
vector to the generated language objects, the prop-
erties of Y are then represented by the intrinsic geo-
metric constraints of the vector set. By studying the
geometric constraints that are implicit in the vector
set and that correspond to Y, especially when Y
is expanded to all features of the language object,

we can determine the correspondence between M
and R. The probe is a model that investigates the
relationship between the geometric constraints of
the vector set and Y. It is composed of a function
set F' and a metric Ey defined on Y. The input
of a function in F' is the representation vector of a
language object, and the output is the predicted Y
feature of the input language object. The distance
between the predicted feature and the true feature is
calculated by using the metric F'y-, and a function
f in F' that minimizes the distance is determined.
Here, F' limits the range of geometric constraints,
and Fy limits the selection of a "good" geometry.
Notably, this definition seems very similar to that
of learning. Therefore, the larger the scope of F'is,
the harder it is to discern the form of the geometric
constraints, especially when F' is a neural network
(Pimentel et al., 2020; White et al., 2021). How-
ever, the purpose of the probe is different from that
of learning. The goal of learning is to construct a
model M (usually a black box), which may have
multiple construction methods, while the purpose
of the probe is to analyze the relationship between
M and R.

3.2 The Design Scheme for the Topological
Probe

One of the goals of topology is to find homeomor-
phic or homotopic invariants (including invariant
quantities, algebraic structures, functors, etc.) and
then to characterize the intrinsic structure of a topo-
logical space with these invariants. Analogously,
we can view R as a geometric object and Y as its
topology. Can we then define a concept similar to
topological invariants with respect to Y ?

We define a feature invariant for Y as a set of
conditions C'y such that any element in Y satis-
fies Cy. Cy reflects the internal constraints of the
probed feature, as well as a part of the logical con-
straints of R. Furthermore, if Cy is well defined, it
induces a set X, consisting of all objects satisfy-
ing C'y-, which naturally extends the metric defined
onY to Xc¢, .

Furthermore, just as the distance measure be-
tween two points can induce a distance measure
between a point and a plane, the distance measure
between the predicted feature pr and X, can also
be induced by Ey (denoted as E¢,, ):

Ecy(p:c,ch):xmin Ey(pzr,xz) (1)

Cy

It can be easily verified that if Ey is a
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well-defined distance metric on Y, then Eg,,
should also be a well-defined distance metric on
px. Once we have E¢,, the supervised probe
(F, Ey,Y) can naturally induce a self-supervised
probe (F, Ec,,Cy). We refer to (F, Ec,,Cy)
as the self-supervised version of (F, Ey,Y), also
known as the topological probe.

Notably, the prerequisite for obtaining
(F, Ec, ,Cy) is that Cy must be well-defined, so
CYy should not be a black box. Figure 1 shows an
intuitive illustration.
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Figure 1: The relationship between the distance from
the predicted feature A to X, and the distance from A
to Xy.

Next, we present a specific topological probe that
is based on the previously outlined design scheme
and serves as a self-supervised variant of the struc-
tural probe.

3.3 The Self-supervised Tree Topological
Probe

Given a sentence W, it is represented by a model
M as a set (or sequence) of vectors, denoted as
H = M(W). The number of vectors in H is de-
noted as Ly, and we assign an index (1,2,...Lg)
to each vector in H so that the order of the indices
matches the order of the corresponding tokens in
the sentence. Additionally, we denote the dimen-
sion of the vectors as n. For each W, there exists a
syntax tree Ty, where each complete word in W
corresponds to a node in Ty .

The probed feature Y that the structural probe
defines is the depth of the nodes corresponding to
complete words. Following the work in (Hewitt
and Manning, 2019), we set the parameter space of
F for the structural probe to be all real matrices of
size m * n, where m < n. The specific form for
predicting the depth is as follows: Given

pER, Vi<i<Lpg
pdep(h;) = || f * hg|? 2

where pdep(h;) is the prediction tree depth of w;
in Ty and f is a real matrix of size m *n. Because
Vp < 2, there is a tree that cannot be embedded
as above (Reif et al., 2019), so p is usually taken
as 2. pdep(hi), pdep(hs2) - - -, pdep(hr,,, ) form a
sequence denoted as pdepp.

Moreover, we denote the true depth of w; as
dep(w;). Hence, dep(wy), dep(ws) - - -, dep(wr,, )
also form a sequence denoted as depyy. The metric
FE in the structural probe is defined as follows:

E(pdepy, depw)

1
= 3= S (pdep(h;) — dep(w))?  (3)
=1

Therefore, the structural probe is defined as (| f * |2,
E , dep).

Now we provide the constraints Cl,, for dep.
An important limitation of depyy is that it is an
integer sequence. Based on the characteristics of
the tree structure, it is naturally determined that
depyy must satisfy the following two conditions:

(Boundary condition). If Ly > 1, there is
exactly one minimum element in depyy, and it is
equal to 1;if Ly > 2, at least one element in depyy
is equal to 2.

(Recursion condition). If we sort depyy in as-
cending order to obtain the sequence asdepyy, then

Vi<i<Lpg-—1

asdep(w;+1) = asdep(w;)

or
asdep(w;+1) = asdep(w;) + 1

We denote the set of all sequences that conform to
Ciep as X¢,,,- From equation 1, we can induce a
metric E¢ dep

L E(pdepp, )
4)

Assuming we can construct an explicit sequence
mansy such that:

ECdep (pd€pH7 Xcdep) =

Ly
minsy = arg min Z(pdep(hi) — z(w;))? (5)

xeXCdep =1
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We can obtain an analytical expression for E¢,
as follows:

ECdep (pdepm, XCdep) = E(pdepm, minsy)
(6)

Consider the following two examples:

1. When pdepyg = 0.8,1.5,1.8,2.4,4.5, then
minsy = 1,2,2,3,4.

2. When pdepy = 0.8,1.5,1.8,2.4,7.5, then
minsy = 1,2,3,4,5.

It can be observed that the predicted depths
for nodes further down the hierarchy can also in-
fluence the corresponding values of minsy, for
nodes higher up in the hierarchy. In the examples
provided, due to the change from 4.5 to 7.5, 1.8
changes from 2 to 3 at the corresponding minsyy .
Therefore, using a straightforward local greedy ap-
proach may not yield an accurate calculation of
minsy, and if a simple enumeration method is
employed, the computational complexity will be-
come exponential.

However, while a local greedy approach may not
always provide an exact computation of minsyy, it
can still maintain a certain degree of accuracy for
reasonable results of pdepg. This is because cases
like the jump from 2.4 to 7.5 should be infrequent
in a well-trained probe’s computed sequence of
predicted depths, unless the probed representation
does not encode the tree structure well and exhibits
a disruption in the middle.

Before delving into that, we first introduce some
notations:

* apdepy denote the sequence obtained by sort-
ing pdepys in ascending order.

* apdep; represents the i-th element of
apdepp.
* prew be asequence in X¢,, .
Here, we introduce a simple method for con-
structing minsy from a local greedy perspective.
(Initialization). If Ly > 1, let pre(w) = 1; if

Ly > 2, let pre(wq) = 2.
(Recurrence). If Ly > 3and 3 <4 < Ly, let

pre(w;) = pre(w;—1) + bias;—1 @)

where the values of bias;_1 and apdepy are re-
lated if

lpre(w;—1)+1—apdep;| < |pre(w;—1)—apdep;|

bias;_1 = 1; otherwise, bias;_1 = 0.
(Alignment). Let a;(1 < ¢ < L) denote the
index of apdep; in pdepy. Then, let

pesu(wa,) = pre(w;) (8)

It can be shown that pesuyy constructed in the
above manner satisfies the following theorem:

Theorem 1. I[fVi=1,2---, Ly —1, apdep; 1 —
apdep; <=1, then

E(pdepy, pesuw) = E(pdepy, minsyy)

Therefore, pesuyy can be considered an approxi-
mation to minsyy. Appendix A contains the proof
of this theorem. In the subsequent sections of
this paper, we replace Ec,,, (pdepn, Xc,,,) With
E(pdepn, pesuw).

Additionally, an important consideration is de-
termining the appropriate value of the minimum
element for depyy in the boundary condition. In the
preceding contents, we assumed a root depth of 1
for the syntactic tree. However, in traditional struc-
tural probe (Hewitt and Manning, 2019; Maudslay
et al., 2020; Limisiewicz and Marecek, 2021; Chen
et al., 2021; White et al., 2021), the root depth is
typically assigned as O due to the annotation con-
ventions of syntactic tree datasets. From a logical
perspective, these two choices may appear indistin-
guishable.

However, in Appendix B, we demonstrate that
the choice of whether the root depth is O has a
significant impact on the geometry defined by the
tree topological probe. Furthermore, we can prove
that as long as the assigned root depth is greater
than 0, the optimal geometry defined by the tree
topological probe remains the same to a certain
extent. Therefore, in the subsequent sections of
this paper, we adopt the setting where the value of
the minimum element of depyy is 1.

3.4 Enhancements to the Tree Topological
Probe

Let the set of all language objects generated by
rule R be denoted as X'r, and the cardinality of X
be denoted as |Xg|. The structural probe induces
a metric that describes the relationship between
model M and dep:

1

Xyp(M) = min ——

> E(pdeprw), depw)
WeXr
)
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The tree topological probe can also induce a similar
metric:

KXosp(M) =

1
min —— E(pdep iy, minsy ) (10)
feF | Xg| W;Qz W)

On the other hand, we let

Ly

maxrsy = argmax Z(pdep(hi) — z(w;))?
xeXcdep =1
(11D

similar to minsyy, and maxsyy, inducing the fol-
lowing metrics:
Xessp(M)

> E(pdepyiwy, mazsw)
WeXgr

. 1
= min ——
feF ‘XR‘

12)
Since depw € X¢,,,, when [ is given, we have:
E(pdeprwy, depw) < (Daax E(pdepyrwy, ©)
dep

Furthermore, as X'sp(M) and Xessp(M) share
the same set of probing functions F', we have:

Xsp(M) < Xessp(M)

Therefore, X,ss,(M) provides us with an upper
bound for the structural probe metric. Similarly,
for X'ssp(M ), we also have:

KXssp(M) < Xsp(M)

Therefore, X,(M) provides us with a lower
bound for the structural probe metric. In summary,
we have the following:

Kasp(M) < Xop(M) < Xegsp(M)

If Xssp(M) = Xessp(M), then there is no
difference between the tree topological probe
and the structural probe. On the other hand, if
it is believed that a smaller X'sp(M) is desir-
able, then estimating X'sp(M ) within the range
[Xssp(M), Xessp(M)] becomes an interesting
problem. We consider the following:
Ow =

E(pdepyiwy, depw) — E(pdepyrwy, minsw )

E(pdepyiwy, mazsw) — E(pdepywy, minsw)
(13)

This leads to an intriguing linguistic distribution,

the distribution of 6y, € [0,1] when uniformly

sampling W from Xr. We suppose the density
function of this distribution is denoted as Py, and
the expectation with respect to 6 is denoted as E'p,.
Then we can approximate X sp(M ) as follows:

Xsp(M) = Ep,Xessp(M)+(1—Ep,)Xssp(M)

(14)
While the analysis of P is not the primary focus of
this paper, in the absence of any other constraints
or biases on model M, we conjecture that the dis-
tribution curve of § may resemble a uniform bell
curve. Hence, we consider the following distribu-
tion approximation:

Py(z) = 6(z — 2?) z €[0,1]
At this point:

Xsp(M) = %(Xessp(]\/[) + Xssp(M)) (15)

Therefore, utilizing a self-supervised metric can
approximate the unbiased optimal geometry de-
fined by the structural probe:

1
Mg = arg min §(Xessp(M)+X88p(M)) (16)
M

Moreover, Mg is an analytically tractable ob-
ject, implying that the metrics induced by the tree
topological probe preserve to a certain extent the
two metric properties discussed in the introduction.
Howeyver, there is a crucial issue that remains unre-
solved. Can we explicitly construct maxsy? Cur-
rently, we have not found a straightforward method
similar to constructing pesuyy for approximating
maxsy. However, based on the sorting inequal-
ity, we can construct a sequence that approximates
maxsy based on prey. Let d;(1 < ¢ < Lg)
denote Ly — i + 1. Then, let

xpesu(wg,;) = pre(wq,) (17)

In our subsequent experiments, we approximate
E(pdepr, maxsy) with E(pdepp, xpesuyy ).

4 Experiments

In this section, delve into a range of experiments
conducted on the tree topological probe, along with
the underlying motivations behind them. To accom-
modate space limitations, we include many specific
details of the experimental settings in Appendices
C and D. Moreover, we focus our experiments on
BERT-large and its submodules. Moreover, con-
ducting similar experiments on other models is also
straightforward (refer to Appendix F for supple-
mentary results of experiments conducted using
RoBERTa-large).
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4.1 Measuring X'ssp and Xessp on BERT

We denote the model consisting of the input layer
and the first ¢ transformer blocks of BERT-large as
M;(0 < i < 24). Since the input of M; consists
of tokenized units, including special tokens [CLS],
[SEP], [PAD], and [MASK], we can conduct at
least four types of measurement experiments:

el. Measurement of the vector set formed by to-
ken embedding and special token embedding.

e2. Measurement of the vector set formed solely
by token embedding.

e3. Measurement of the vector set formed by es-
timated embedding of complete words using
token embedding and special token embed-
ding.

e4. Measurement of the vector set formed solely
by estimated embedding of complete words
using token embedding.

Similarly, due to space constraints, we focus
on discussing el in this paper. The measurement
results are shown in Tables 1 and 2. The precise
measurement values can be found in Appendix E.
Furthermore, as shown in Figure 2, we present the
negative logarithm curves of three measurement
values as a function of M; variation.

Xssp M
0.01~0.05  Mo~M;
0.05~0.1 Mio~Ms
0.1~0.15  Mos~Mos

Table 1: Grouping M; based on X'ssp. M;~M,. de-
notes My, M1, Mo, ..., M,. For example, the first
row of the table indicates that the exact values of X' ssp

for My, My, Mo, ..., M, fall within the range of 0.01
to 0.05.
Xessp M
03~04 Ms~My M;~Mo
0.4~0.5 Mi3~Miy
05~1.0 Mi~My Ms~Mg  Mig~Mig
1.0~2.0 Mog~Moy
> 4.0 My

Table 2: Grouping M; based on Xessp. Similar to the
explanation in the caption of Table 1.

By examining the experimental results presented
above, we can ascertain the following findings:

o9 — —log(Xessp)
I _IOg(Xssp)
— —log(Xsp)

—log(Metric)

0 Mo true

unbiased
1 %/

01234567 89101112131415161718192021222324

Mi;

Figure 2: Negative logarithm of X, X, unbiased
X,p and true X, across M;.

fl. Xssp and Xessp indeed bound the actual
X sp, and for M4 to Mg, their true X sp are
very close to their X'ssp.

f2. Mj serves as a good baseline model. Further-
more, using Xessp and unbiased X sp allows
for effective differentiation between embed-
dings generated by models consisting solely
of the regular input layer and those generated
by models incorporating transformer blocks.

f3. For M to Mg, their true X' sp are very close
to their unbiased X sp.

f4. Both the curve of —log(Xessp) and the curve
of the true —log(X'sp) follow an ascending-
then-descending pattern. However, the mod-
els corresponding to their highest points are
different, namely, Mg and Mg, respectively.

f5. For the curve of —log(X ssp), its overall trend
also shows an ascending-then-descending pat-
tern but with some fluctuations in the range
of M3 to Mg. However, the model corre-
sponding to its highest point is consistent with
—log(Xessp), which is Mg.

f6. The true X'sp does not effectively distinguish
between M and M;.

Based on the above findings, we can confidently
draw the following rigorous conclusions:

cl. Based on f1, we can almost infer that depy, €
arg min Zszl (pdep(h;) — x(w;))? for My,

zeXc dep

to Mis. This implies that they memorize
the preferences of the real data and mini-
mize as much as possible to approach the
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theoretical boundary. Building upon {5, we
can further conclude that the cost of memoriz-
ing depyy is an increase in X’ ssp, which leads
to a decrease in the accuracy of the embed-
ding’s linear encoding for tree structures.

c2. Based on f1, we can conclude that there exists
a model M where the true X'sp(M) aligns
with the X'ssp(M) determined by Cye,,. This
indicates that Cj,, serves as a sufficiently
tight condition.

c3. Based on f3, we can infer that M; to Mg may
not capture the distributional information of
the actual syntactic trees, resulting in their
generated embeddings considering only the
most general case for linear encoding of tree
structures. This implies that the distribution
curve of their yy parameters is uniformly bell-
shaped.

c4. Based on f2 and f6, we can conclude that the
tree topological probe provides a more fine-
grained evaluation of the ability to linearly
encode tree structures in embedding vectors
compared to the structural probe.

c5. Based on f3, f4 and f5, we can conclude
that in BERT-large, embedding generated by
Mgy and its neighboring models exhibit the
strongest ability to linearly encode tree struc-
tures. Moreover, they gradually start to con-
sider the distribution of real dependency trees,
resulting in the true X'sp(M) approaching
X ssp(M) until reaching M.

c6. Based on f4 and f5, we can conclude that start-
ing from Mg, the embeddings generated by
M; gradually lose their ability to linearly en-
code tree structures. The values of X' ssp and
Xessp for these models are generally larger
compared to models before M. However,
they still retain some distributional informa-
tion about the depth of dependency trees. This
means that despite having a higher unbiased
X sp, their true X' sp is still smaller than that
of M; before Msg.

From the above conclusions, we can further spec-
ulate about the workings of pretrained language
models such as BERT, and we identify some re-
lated open problems.

Based on ¢5 and c6, we can speculate that the
final layer of a pretrained language model needs

to consider language information at various levels,
but its memory capacity is limited. Therefore, it
relies on preceding submodules to filter the infor-
mation. The earlier submodules in the model en-
code the most generic (unbiased) structures present
in the language features. As the model advances,
the intermediate submodules start incorporating
preferences for general structures based on actual
data. Once a certain stage is reached, the later
submodules in the model start to loosen their en-
coding of generic structures. However, due to the
preference information passed from the interme-
diate submodules, the later submodules can still
outperform the earlier submodules in encoding real
structures, rather than generic ones.

Based on c3 and c6, it appears that true X'sp <
unbiased X'sp < Xessp. This suggests that for
BERT, unbiased Xsp serves as a tighter upper
bound for X’ sp, and there exists a submodule that
achieves this upper bound. Now, the question
arises: Is this also the case for general pretrained
models? If so, what are the underlying reasons?

4.2 Using X'ssp and Xessp as Regularization
Loss in Fine-tuning BERT

Let us denote the downstream task loss as 7'(May).
Taking X ssp as an example, using X ssp as a regu-
larizing loss during fine-tuning refers to replacing
the task loss with:

T(May) + X x Xssp(M;) (1 <i < 24)
where A is a regularization parameter. The pur-
pose of this approach is to explore the potential
for enhancing the fine-tuning performance by im-
proving the submodules of BERT in their ability
to linearly encode tree structures. If there exists a
submodule that achieves both enhancement in lin-
ear encoding capabilities and improved fine-tuning
performance, it implies that the parameter space
of this submodule, which has better linear encod-
ing abilities, overlaps with the optimization space
of fine-tuning. This intersection is smaller than
the optimization space of direct fine-tuning, reduc-
ing susceptibility to local optima and leading to
improved fine-tuning results.

Conversely, if enhancing certain submodules hin-
ders fine-tuning or even leads to its failure, it sug-
gests that the submodule’s parameter space, which
has better linear encoding abilities, does not over-
lap with the optimization space of fine-tuning. This
indicates that the submodule has already attained
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the smallest X'ssp value that greatly benefits the
BERT’s performance.

Based on f1, we can infer that M4 to Mg are
not suitable as enhanced submodules. According
to c5, the submodules most likely to improve fine-
tuning performance after enhancement should be
near Mg. We conducted experiments on a single-
sentence task called the Corpus of Linguistic Ac-
ceptability (CoLA) (Warstadt et al., 2019), which is
part of The General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2019).

The test results are shown in Table 3. As pre-
dicted earlier, enhancing the submodules around
M4 to Myg (now expanded to Mo to Mig) proves
to be detrimental to fine-tuning, resulting in failed
performance. However, we did observe an im-
provement in fine-tuning performance for the sub-
module My near Mg after enhancement. This
gives us an intuition that if we have additional topo-
logical probes and similar metrics to X'ssp and
X sp, we can explore enhancing submodules that
are in the rising phase of true X'sp, away from the
boundary of unbiased X sp and X’ ssp, in an attempt
to improve fine-tuning outcomes.

Method mean  std max
DF 63.34 171 6654

EH M3 63.90 266 68.73
EH M5 6390 136 66.04
EH M 64.87 207 68.47
EH Mio~Mi9 0.00 0.00 0.00
EH M> 548 1646 54.87
EH Moy 40.43 26.60 62.52

Table 3: Direct fine-tuning and sub-module enhance-
ment test scores. Here, "DF" denotes direct fine-tuning,
while "EH M;" represents the fine-tuning with the en-
hancement of M; based on X'ssp. The evaluation metric
used in CoLA is the Matthew coefficient, where a higher
value indicates better performance.

5 Conclusion

Consider a thought experiment where there is a
planet in a parallel universe called "Vzjgs" with a
language called "Vmtprhs". Like "English", "Vmt-
prhs" comprises 26 letters as basic units, and there
is a one-to-one correspondence between the letters
of "Vmtprhs" and "English". Moreover, these two
languages are isomorphic under letter permutation
operations. In other words, sentences in "English"
can be rearranged so that they are equivalent to
sentences in "Vmtprhs", while preserving the same

meaning. If there were models like BERT or GPT
in the "Vzjgs" planet, perhaps called "Y VJIG" and
"TLG," would the pretraining process of "YVJIG"
on "Vmtprhs" be the same as BERT’s pretraining
on "English"?

In theory, there should be no means to differen-
tiate between these two pretraining processes. For
a blank model (without any training), extracting
useful information from "Vmtprhs" and "English"
would pose the same level of difficulty. However,
it is true that "Vmtprhs" and "English" are distinct,
with the letters of "Vmtprhs" possibly having dif-
ferent shapes or being the reverse order of the "En-
glish" alphabet. Therefore, we can say that they
have different letter features, although this feature
seems to be a mere coincidence. In natural lan-
guage, there are many such features created by
historical contingencies, such as slang or gram-
matical exceptions. Hence, when we aim to inter-
pret the mechanisms of these black-box models by
studying how language models represent language-
specific features, we must consider which features
are advantageous for interpretation and what we
ultimately hope to gain from this research.

This paper presents a thorough exploration of
a key issue, specifically examining the articula-
tion of internal feature constraints. By enveloping
the original feature within a feature space that ad-
heres to such constraints, it is possible to effectively
eliminate any unintended or accidental components.
Within this explicitly defined feature space, met-
rics such as X'ssp and X'essp can be defined. We
can subsequently examine the evolution of these
metrics within the model to gain a deeper under-
standing of the encoding strategies employed by
the model for the original feature, as described in
the experimental section of this paper. Once we un-
derstand the encoding strategies employed by the
model, we can investigate the reasons behind their
formation and the benefits they bring to the model.
By conducting studies on multiple similar features,
we can gain a comprehensive understanding of the
inner workings of the black box.

Limitations

The main limitation of this research lies in
the approximate construction of minsy and
maxsy, which leads to true —log(X sp) surpass-
ing —log(Xssp) near Mg to some extent. How-
ever, this may also be due to their proximity, re-
sulting in fluctuations within the training error. On
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the other hand, the proposed construction scheme
for the topological probe discussed in this paper
lacks sufficient mathematical formalization. One
possible approach is to restate it using the language
of category theory.
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A Proof of Theorem 1

Proof. For any sequence x € X, thatis in the
same order as pdepp, according to the inequality
of rankings, for any permutation 7, of x, we have:

LH LH
> ma(wi) * pdep(hi) < w(w;) * pdep(hy)
i=1 i=1
Therefore,
Ly
> (me(w;) — pdep(h;))?
i=1

Ly
> > (x(w;) — pdep(hi))?
=1

Since pesuyy and pdepyr are in the same order, we
Just need to prove that any sequence z € X¢,,,
and in the same order as pdepy satisfies

Ly
> (@(w;) — pdep(hi))?
=1
Ly

> (pesu(w;) — pdep(h;))?
i=1

The theorem is automatically established. Because

Ly

> (pesu(w;) — pdep(hi))?

=1
Ly

= (pre(w;) — apdep;)® (18)
=1

, without loss of generality, we can assume pesuyy
and z to be ascending sequences and not equal and
exista k suchthat when1 <¢ <k —1

pesu(w;) = x(w;) (19)
and

pesu(wy) # x(wy) (20)
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Based on the recursive condition, we can infer that

[pesu(wy) — z(wy)| = 1 1)

Combined with the value condition of biasy_1, we
further find that

|pesu(wy) — apdepy| < |z(wy) — apdepg]
The inductive hypothesis when ¢ = m is
|pesu(wn,) — apdepn,| < |x(wy,) — apdepy,|

Due to the condition apdep,,+1 — apdep,, < 1
and the value condition of bias,,, it still holds when
1 =m + 1 that

lpesu(wm+1) — apdepm1|

< |z (wm+1) — apdepy, 1]

Thus, when i > k

(z(w;) — pdep(hi))? > (pesu(w;) — pdep(h;))?.
O

B Analysis of Tree Depth Minimum

The minimum of pesuyy is denoted as dep,,;,,. Fix-
ing pesuyy, we let all sets (or sequences) of vectors
satisfying the following conditions compose a set
denoted by Qpesuyy -

3P e R™™ Yi(i=1,2, - Ly)

pesu(w;) — /€ < hi PLPh; < pesu(w;) + \/&;

Here, ¢; < pesu(w;)?. Let pesu(wi) be depmin
and pesu(w;) < pesu(w;y1)(i = 1,2,-+- Ly —
1) without loss of generality, and the following
theorem can be obtained.

Theorem 2. For any two different sequences
pesuy and pesu%/v, if pesu(wy;) > 0 and
pesul(wl) > 0. there is a one-to-one mapping
@ between Qpegyy,, and €

pesu;/v'
Proof. We construct ¢ such that
VH € Qpesuyy

¢(H) - (h17 h27 T hLH) =H ¢ Qpesu;,v

Here, hll = hi,and when¢=2,3---, Ly

N \/pesu’ (w;) * pesu(wy)

)

' \/pesu(wi) x pesu’ (wy)

Since
P € R™" Vi(i = 1,2, L)
pesu(w;) — /& < bl PTPh; < pesu(w;) + /&
€ <K pesu(wi)2

Let P' = Y2U @) pang when i = 1,2, - Ly

pesu(wi)
. pesu’ (w;) ‘
‘= (pesu(wi) ) e
then
/ pesu’ (w; /
€ < (pesu((w;)))2pesu(wi)2 = pesu (w;)?
After calculation,
Vi(i =1,2,--- L)
pesu’ (w;) — €

< ()" (P)"'P'h;
< pesu (w;) + \/2

Therefore, ¢ is well defined, and VH;, H; €
Qpesuw when Hl 75 Hj

¢(H;) # o(H;)
Therefore, ¢ is also an injective function. It is
easy to prove that the inverse map ¢! of ¢ is
also an injective function and satisfies the above
conditions. 0

The proof of the theorem above does not apply to
the cases where pesu(w;) = 0 or pesu (wy) = 0.
If depy,in is greater than 0, then the results of the
tree topological probe do not necessarily depend
on the selection of dep,,;n, and we may set it as
1. However, we have not further explored whether
Theorem 2 is necessarily invalid. Nevertheless, we
can examine the drawbacks that arise from setting
depmin to 0 from another perspective.

When i > 2, h; is projected by P near the (m)-
dimensional sphere with a radius of /pesu(w;),

Vi=1,2---, Ly
\hf PT Ph; — pesu(w;)| < €
If depmin = 0, then the topology of the geo-
metric space composed of all vectors Ph; sat-
isfying |h1 PT Phy — depmin| < €1 is homeo-
morphic to an m-dimensional open ball. This
may result in probes exhibiting different prefer-
ences for the root and other nodes. However, if
depmin > 0, the topology of the geometric space
is an m-dimensional annulus, which is the same
for all nodes, thus avoiding the issue of preference.
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C Data for Training and Evaluating
Probes

To ensure the reliability and diversity of data (ap-
propriate sentences) sources, we separated the sen-
tences participating in the probe experiment from
the training, verification and test data sets of some
tasks of The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019).
We selected four small sample text classifica-
tion tasks in GLUE with reference to (Hua et al.,
2021), namely, the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2019), Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005), Recognizing Textual Entailment
(RTE) (Wang et al., 2019) and Semantic Textual
Similarity Benchmark (STS-B) (Cer et al., 2017),
which cover the three major task types of SINGLE-
SENTENCE, SIMILARITY AND PARAPHRASE
and INFERENCE in GLUE. MRPC, RTE and STS-
B are all double sentence tasks, and the experiment
needs only BERT to represent a single sentence;
thus, we consider two sentences that belong to the
same group of data independently, not spliced.
After the data sets of the four tasks are processed
as above, the remaining statements are merged into
a raw text data set rtd,,;,, which contains 47136
sentences. This is close to the size of the Pennsyl-
vania tree database (Marcus et al., 1993) used by
the structural probe (Hewitt and Manning, 2019);
short and long sentences are evenly distributed.

D Experimental Setup for Training
Probes and Fine-tuning

We use the BERT implementation of Wolf et al.
and set the rank of the probe matrix to be half the
embedding dimension. The probe matrix is ran-
domly initialized following a uniform distribution
U(-0.05,0.05).

We employ the AdamW optimizer with the
warmup technique, where the initial learning rate
is set to 2e-5 and the epsilon value is set to 1e-8.
The training stops after 10 epochs. The training
setup for fine-tuning experiments is similar to that
of training probes. One notable difference is the
regularization coefficient A, which is dynamically
determined after one epoch of training, ensuring
that %"S@ ~ 0.1, without any manual tuning.

We conduct experiments on each fine-tuning
method by using 10 different random seeds, and
we compute the mean, the standard deviation (std),
and the maximum values.

E Supplementary Chart Materials

Table 4 lists the exact measurements of X ssp,
Xessp, and true X, for BERT-Large.

M Xssp Xessp thp
My 0.039 5382 0.3084
M; 0.017 0536 0.2644
My 0.017 0526 0.244
Ms 0.018 0.348 0.2016
M, 0.033 0351 0.1701
Ms 0.025 052 0.1622
Mg 0.023 0.52  0.1559
My 0.013 0.345 0.14
Mg 0.01 0.347 0.1424
Mg 0.011 0352 0.1577
My 0.013 0359 0.1415
My 0.021 0375 0.1128
M2 0.054 0391 0.0975
Mz 0.076 042  0.0764
My 0.084 0.467 0.0651
Mis 0.088 0.525 0.0616
Mg 0.09 0.663 0.0656
M7 0.086 0.785 0.0808
Mg 0.09 0.883 0.1155
Mg 0.09 0999 0.1416
Myy 0.092 1.045 0.1615
My 0.094 1.447 0.2468
Moo 0.102 1715 0.28634
Mss 0.107 1.709 0.3171
Moy 0.113 1.837 0.328

Table 4: Exact values of Xsgp, Xessp, and true X, for
M;

F Experimental data for RoOBERTa-large

Figure 3 shows the negative logarithm curves of
three measurement values as a function of variation
in Mi for RoBERTa-Large. Table 5 lists the exact
measurements of X'ssp, Xessp, and true X, for
RoBERTa-Large.

From the experimental data, it is evident that
the overall pattern of evolution in the graphs for
RoBERTa-Large and BERT-Large is consistent.
There’s a slight initial increase followed by a de-
cline, but the boundaries for X'sp in the case of
RoBERTa-Large are much tighter, especially in the
earlier modules.
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Figure 3: Negative logarithm of X, Xcs,p, unbiased
X,p and true X, across M.

M Xssp Xessp thp
My 0.008 3.532 0.991
M; 0.145 0515 0.243
My 0.137 0469 0.446
Ms 0139 0470 0.331
My 0131 0493 0.257
Ms 0132 0.500 0.199
Mg 0.123 0.494 0.153
M, 0.117 0491 0.110
Mg 0.117 0.542 0.109
My 0.114 0491 0.087
Mo 0.113 0.555 0.091
Mip; 0.113  0.567 0.091
M 0.110 0.598 0.094
Mz 0.114 0.667 0.101
My 0113 0.675 0.102
Mis 0124 0.738 0.120
Mg 0.133 0.797 0.136
M7 0.136 0.789 0.131
Mg 0.137 0.807 0.136
Mg 0.136 0.831 0.135
Moo 0.136 0.880 0.145
M1 0.150 1.086 0.169
Moo 0153 1277 0.176
Moz 0.190 2.006 0.197
Moy 0.117 0.711 0.201

Table 5: Exact values of X4, Xessp, and true X, for

M;
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