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Abstract

Deep generative modeling of natural languages
has achieved many successes, such as produc-
ing fluent sentences and translating from one
language into another. However, the develop-
ment of generative modeling techniques for
paraphrase generation still lags behind largely
due to the challenges in addressing the com-
plex conflicts between expression diversity
and semantic preservation. This paper pro-
poses to generate diverse and high-quality para-
phrases by exploiting the pre-trained models
with instance-dependent prompts. To learn gen-
eralizable prompts, we assume that the num-
ber of abstract transforming patterns of para-
phrase generation (governed by prompts) is
finite and usually not large. Therefore, we
present vector-quantized prompts as the cues
to control the generation of pre-trained mod-
els. Extensive experiments demonstrate that
the proposed method achieves new state-of-art
results on three benchmark datasets, including
Quora, Wikianswers, and MSCOCO. We will
release all the code upon acceptance.

1 Introduction

Paraphrase generation aims to produce sentences
that have different expressions but convey the same
semantic meaning given a particular sentence. Para-
phrasing is a common phenomenon that reflects
the diversity of human languages, serving as an
important research topic in natural language pro-
cessing. It has broad applications such as in ques-
tion answering (Mckeown, 1983) and information
retrieval (Knight and Marcu, 2000). However,
automatically generating accurate and different-
appearing paraphrases is still very challenging,
since it requires the abilities of both understanding
and generation.

Conventional methods draw on rule-based sys-
tems (Mckeown, 1983; Barzilay and Lee, 2003;
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Zhao et al., 2009; Lin and Pantel, 2001) and statis-
tical machine translation (Quirk et al., 2004; Zhao
et al., 2008) to generate paraphrases. These meth-
ods are easy to interpret and analyze, but struggle
to yield fluent and diverse sentences. Recently
the accumulation of the paraphrase data provides
an unprecedented opportunity to directly learn the
paraphrasing transformations in an end-to-end man-
ner (Vaswani et al., 2017). For instance, Wang
et al. (2019) formulate paraphrasing as a super-
vised encoding-decoding problem and use stacked
residual LSTM networks to generate paraphrases.

A good paraphrase is a sentence that shares sim-
ilar semantics but has noticeable syntactical or lexi-
cal differences from the original one (Lin and Wan,
2021). To improve the diversity of generated sen-
tences, (Gupta et al., 2018) introduce the varia-
tional auto-encoder (VAE) to perform paraphrase
generation. (Li et al., 2018) propose multiple gen-
erators with different granularity levels to learn the
mapping relationship between input and output re-
spectively, and then combine them to complete the
paraphrase generation task. But those generated
paraphrases tend to only make trivial changes to
original sentences, such as modifications of syn-
onyms.

Further, Hosking and Lapata (2021) leverage au-
toencoder to encode the structure and semantics of
the sentence separately, and generate paraphrases
by perturbing the structure encoding. Liu et al.
integrate the word editing and rule-based transfor-
mation operations into deep learning and achieve
the previous SOTA performance in paraphrase gen-
eration (Liu et al., 2022, 2020). However, due to
the limitation of scales of the paraphrasing datasets,
neural networks tend to generate the paraphrases
with local changes to the inputs rather than global
modifications on sentence structures.

In this work, we aim to exploit the knowledge of
the pre-trained language model to balance expres-
sion diversity and semantic preservation. There-
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Prompt A

What is the main reason
of global warming?

Why does the Earth’s
temperature rise?

Pretrained
Language Model

Prompt B
What is the reason of
global warming?

Why does the global
warming happen?

Figure 1: An example of the ideal prompt that induces the pre-trained language model to generate particular
paraphrases. The proposed VQPrompt model aims to learn such prompts for each given sentence.

fore, inspired by (Bhardwaj et al., 2022) we pro-
pose a vector-quantized prompt learning frame-
work, called VQPrompt, to generate diverse and
high-quality paraphrases. In particular, VQPrompt
comprises a prompt encoder and a pre-trained gen-
erative language model. The prompt encoder pro-
duces discrete prompts and the generative language
model accepts both the prompts and the input sen-
tence to generate the corresponding paraphrases.
To make the vector-quantization work, we also in-
troduce a K-means training strategy to dynamically
update the codebook in the prompt encoder.

We evaluate the effectiveness of our model on
four paraphrasing datasets, namely, Quora, Wikian-
swers, and MSCOCO. Experimental results show
that VQPrompt achieves a new state-of-the-art para-
phrasing performance in terms of both automatic
metrics and human evaluation. In summary, our
contributions are as follows:

* We propose vector-quantized prompt learning
to adapt large pre-trained language models for
paraphrase generation.

* We introduce a K-means training strategy to
dynamically update the codebook in vector
quantization (VQ), addressing the index col-
lapse of VQ.

* The proposed method achieves new state-
of-the-art performances in three benchmark
datasets and presents modest interpretability.

2 Related Work

One of the characteristics of the paraphrase gener-
ation task is that there exist several general trans-
formation rules. Therefore, rule-based methods
have been used for paraphrase generation tasks

as early as the last century. Representative meth-
ods include dictionary-based and template-based
methods. Dictionary-based methods look up syn-
onyms in the dictionaries such as HowNet (Dong
and Dong, 2003) or WordNet (Miller, 1995) to
replace words in the original sentence, thereby gen-
erating corresponding paraphrases (Kauchak and
Barzilay, 2006). The advantage of such a rule-
based approach is that it is interpretable and con-
trollable. Its shortcomings lie in the heavy work-
load of manually writing rules, and the generated
sentences are not smooth enough.

With the accumulation of paraphrase corpus, re-
searchers then start to model the paraphrase gen-
eration task as a single-language statistical transla-
tion process, thereby improving the fluency of gen-
erating paraphrase sentences (Quirk et al., 2004;
Zhao et al., 2009). The statistical translation model
learns the transition probability from the original
sentence to the paraphrases from a large amount of
training data. For example, Dolan et al. collected a
large number of news texts from the Internet and
built a paraphrase generation corpus, and then used
statistical machine translation methods to generate
paraphrase sentences (Dolan et al., 2004). How-
ever, statistical paraphrasing methods still require
heavy feature engineering.

In recent years, deep neural network has become
the mainstream paraphrase generation method due
to its powerful fitting ability (Chowdhury et al.,
2022; Hosking and Lapata, 2021). Similar to
the statistical paraphrasing methods, the neural-
based paraphrase generation method formulates the
paraphrase generation as a single-language transla-
tion process, but adopts an encoding-decoding net-
work structure and an end-to-end training method.
The first deep paraphrasing method takes the long
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short-term memory network LSTM (Hochreiter
and Schmidhuber, 1997) as the encoder and de-
coder. In order to solve the long-distance depen-
dency problem in the encoding process, Wang et
al. used the multi-head attention network Trans-
former (Vaswani et al., 2017) as the encoder and de-
coder, and achieved further performance improve-
ment (Wang et al., 2019).

An ideal paraphrase not only needs to have the
same semantics but also should have a significant
change in expression from the input sentence (i.e.,
expression difference) (Bhagat and Hovy, 2013).
Aiming at the problem of expression differences
in generated sentences, researchers have made a
lot of attempts in different dimensions (Lin and
Wan, 2021; Li et al., 2019; Hosking and Lapata,
2021; Meng et al., 2021). For example, Li et al. pro-
posed multiple generators with different granularity
levels to learn the mapping relationship between
input and output respectively, and then combine
them to complete the paraphrase generation task (Li
et al., 2019). Lin and Wan utilized back-translation
and multiple rounds of iterative generation meth-
ods to produce paraphrased sentences with signifi-
cant variance (Lin and Wan, 2021). Hosking and
Lapata (Hosking and Lapata, 2021) continued to
use the idea of variational autoencoder to encode
the structure and semantics of the sentence sepa-
rately, and generate paraphrases by perturbing the
structure encoding. Different from these methods,
this work learns to generate syntax-based prompts,
which could induce the pre-trained model to gener-
ate diverse paraphrases.

Apart from the traditional methods working with
language models (LMs) that have parameters less
than 1B, modern LLMs like ChatGPT can also
generate paraphrases with high quality. However,
it costs much more than traditional methods since
they require a huge training corpus and learnable
parameters.

3 Method

3.1 Model Architecture

In this work, we propose VQPrompt, a novel model
that generates paraphrases via prompt learning. It
is composed of a prompt encoder and a pre-trained
generative language model, which will be elabo-
rated as follows.

3.1.1 Prompt Encoder

The prompt encoder aims to generate prompts for
the pre-trained language model to produce rea-
sonable paraphrases. The proposal of the prompt
encoder stems from the assumption that the pre-
trained language model (PLM) is powerful to gen-
erate sentences with arbitrary contents if given suit-
able inputs. Therefore, for a particular input sen-
tence, the corresponding prompt is all we need for
paraphrase generation in this work.

Since the prompts are dependent on the in-
put sentence, this work introduces sample-aware
prompt encoder. For a given sequence of tokens
x = {x1, 9, ...,x, }, we first get the embeddings
e = {e1, ez, ...,e, }. Then we employ a sentence
encoder to take the sentence embeddings as inputs
and output the M continuous prompts, given by

S, €en), (1)
where 7 stands for the continuous prompt (with
length of M) for the sentence . We adopt the
encoder of the T5 model (Raffel et al., 2020) as the
sentence encoder.

In general, the prompt in our work for paraphrase
generation illustrates the abstract rule of paraphrase
transformation. Indeed, humans have summarized
several abstract rules of the transformation between
paraphrases. For instance, the abstract rule “what
is the reason of $x? — why does $x happen?”
could characterize a number of transformations of
paraphrases. Therefore, we expect that the prompt
could indicate the abstract transforming rules for
paraphrase generation.

Therefore, we make the second assumption that
the transforming rules of paraphrase generation
are finite. Based on the assumption, we propose
a prompt encoder that produces discrete rule rep-
resentations by vector quantization (VQ) (Zhang
et al., 2022; Bhardwaj et al., 2022).

Formally, the prompt encoder maintains a code-
book that comprises K discrete prompt encodings.
The above continuous prompt 7, are then quan-
tized into discrete ones, selected from the codebook
C € REXD where K, is the number of the dis-
crete code, and D is the dimensionality of each dis-
crete code Ci.. We measure the L2 distance between
the continuous representation r and code vectors
in the codebook. For each vector set r € RM*D
where M is the number of the continuous vectors
and D is the dimensionality of each continuous
vector 7,,, the code vector that yields the mini-
mum distance is taken to obtain the discrete rule

r = SentenceEncoder(eq, . .
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Figure 2: Model Architecture.

representation g,,. The detailed computations are

where k= argmin |7, — Cjll2,
je{1,....K.}

where g, is the closest quantized vector for the

continuous vector r,,. Finally, M prompt vectors

constitute a paraphrase prompt, given by

() = PromptEncoder(e) = {g,/m =1,..., M},
3)

where () is the final prompt generated by the

prompt encoder for a particular sentence x.

To make the above vector quantization work, we
need to train both the neural networks and the code-
book in the prompt encoder toward the minimum
of the distance between the continuous and discrete
representations. The objective function of vector
quantization for a particular data point is

T'Y@) = |[sg(rm) = @mll3 + Irm — selam)| 13,

“)
where sg(+) is stop-gradient operation during com-
putation. In this way, we can derive the discrete
rule representations, which are expected to be in-
terpretable and instance-invariant.

Overall, the prompt encoder is a deep network at-
tached with a discrete codebook C, which is trained
following the basic idea of VQ-VAE. The prompt
encoder takes an embedded sequence e as input
and generates several prompts g, as output, which
contains syntactic structure information that guides
the generative LM to produce paraphrases.

Note that the parameters of the generative lan-
guage model in our work are fixed when we train
the prompt encoder and the codebook. Therefore,
the generative language model (LM) is neither

Algorithm 1 K-means Update Algorithm
D pr—

Require: Paraphrase  dataset
{(@n yn)ln=1,--- N}
1: Computing word embeddings e, =
EmbeddingLayer(x,,)
2: Collecting embeddings E =
1,---,N}
Initializing code list C'
for ein E do
@ = Prompt Encoder(e)
for m in size(Q) do
C.append(g;,)
end for
end for
10: Obtaining codebook by computing the
K-means centers of the code list C =
K-means(C')
Ensure: Codebook C

{enln =

L X DA

learned to generate paraphrases nor able to capture
the syntactic structure information of the target sen-
tence. All of this information should be encoded by
the prompt codes. That is to say, our work builds
an information bottleneck where vector-quantized
prompts are the only pathway to convey the syntac-
tic structure information to the generative LM. In
this specific and effective design, the acquisition of
the syntactic information in the codebook can be
well guaranteed.

3.1.2 Generative LM

A generative language model (LM) prescribes the
generation of a sentence as a sequence of word
predictions based on the context. The generative
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LMs have made waves in the NLP community by
demonstrating astounding few-shot capabilities on
myriad language understanding tasks (Brown et al.,
2020). Also, the generative language models pos-
sess with powerful decoding capacity; they could
produce arbitrary contents if given suitable prompts.
Therefore, the paraphrase generated by our model
is given by
P(|z) = GLM({Q © e}) (5)
g~ P(|z) (6)
where GLM stands for the generative language
model and the variable () means the sequence of
prompts g, i.e., @ = {gnm =1,--- ,M}. ©
is the vector concatenation operation and g is the
generated sentence of VQPrompt.

This work aims to adapt the generative LM
to produce paraphrases given the input sentence,
which belongs to the task of conditional sentence
generation. Therefore, we adopt an instruction-
based language model named Flan-T5 (Chung
et al., 2022) to serve as our base model. The fine-
tuned language model (i.e., Flan-T5) takes a se-
quence of words as inputs and outputs several sen-
tences (i.e., ) as needed.

3.2 Training Strategy

Similar to most paraphrase generators, VQPrompt
is trained to fit the mapping from the input sen-
tences to their paraphrases. Also, the paraphrase
datasets are constructed as paraphrase pairs. For-
mally, let the dataset be D with size N. VQPrompt
aims to maximize the log-likelihood (denoted by
J L) of the target paraphrases over all the training
samples of D, that is,

N
jML = Zlog Pa(ynlmn)
n

N T,

= Z Z log Py (yn,t|yn,<t7 mn)v W
n t

where y,, ; stands for the ¢-th word of the target
paraphrase in the n-th sample. 7}, denotes the word
length of the target paraphrase y,,. 0 is the model’s
parameters.

Together with the objective of VQ, the final ob-
jective function J of VQPrompt is

N
J =T 4> 7Y ) ®)

However, the parameters of the prompt encoder
are difficult to optimize since the vector quantiza-

Dataset #Train set #Val set #Test set
Quora 55,611 5,255 5,255
Paralex 222,223 27,778 27,778
MSCOCO 113,287 5,000 5,000
Table 1: Statistics of the benchmark datasets used in

this work.

tion intercepts the gradients of backpropagation.
Our preliminary experiments reveal that most of
the codes in the codebook are rarely selected by
the prompt encoder after the optimization based
on the objective function 7, which is called index
collapse (Wu and Flierl, 2020). The index collapse
usually happens on text generation since its gradi-
ents are not smooth enough.

Therefore, we propose a new training strategy
(called K-means training) to eliminate the index
collapse in the prompt encoder. K-means training
contains the following two stages:

Codebook warm-up. We first ignore the code-
book of the prompt encoder and directly use the
continuous prompt to perform the paraphrase gen-
eration. Thus, the training objective is only to min-
imize the maximum likelihood objective 7 ML

K-means Update. Before the training in this
stage, We sample some sentences from the dataset
and collect the corresponding prompt codes gener-
ated by the randomly initialized VQPrompt model.
Then we perform the K-Means algorithm on those
codes and collect a set of codes as the primitive
version of the codebook. Next, during the training,
we prevent index collapse by updating the dead
codes in the codebook with the clustered center.
When the amount of active codes is lower than a
threshold 7, we will perform the replacement. If
the codes are not used for a relatively long time
when training, we say that the code is dead.

Discussion of K-means Training. In essence,
the K-means strategy is an update trick in the op-
timization of the prompt encoder. However, the
index collapse in VQ has been a long-standing
problem in deep generative modeling (Laficucki
et al., 2020; Wu and Flierl, 2020). The proposed
K-means strategy works well empirically and has
the potential to benefit other vector quantization
models. But figuring out the underlying theory is
nontrivial, which we leave as future work.

4 Experiments

In this section, we first test the proposed model
on the benchmarking datasets on both automatic
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Quora Paralex MSCOCO
Model BLEU self-BLEU iBLEU BLEU self-BLEU iBLEU BLEU self-BLEU iBLEU
Copy 34.52 100.00 7.61 37.10 100.00 9.68 19.85 100.00 -4.12
tf-idf 24.05 62.49 6.75 25.08 25.25 15.01 18.26 38.37 6.93
AE 28.99 60.11 11.17  40.10 75.71 16.94  27.90 38.71 14.58
VAE 27.23 51.09 11.57  38.91 53.28 2047  27.44 24.40 16.99
VQ-VAE 16.31 21.13 8.83 40.26 65.71 19.07 25.62 22.41 16.01
SOW/REAP 21.27 38.1 9.41 33.09 37.07 19.06  12.51 6.47 8.71
BTmPG 19.83 35.11 8.84 28.40 35.99 15.52 19.76 13.04 13.20
LBoW 23.51 42.08 10.39  34.96 35.86 20.80  21.65 16.46 14.02
Separator 23.68 24.20 14.10  36.36 35.37 22.01  20.59 12.76 13.92
HRQ-VAE 33.11 40.35 18.42  39.49 33.30 2493  27.90 16.58 19.04
VQPrompt-PG  35.01 39.98 20.01 42.58 41.96 25.67 29.92 23.59 19.21

Table 2: Performance of individual paraphrase generation methods on the Quora and Paralex, and MSCOCO

datasets.

evaluation and human evaluation. Then we provide
several detailed analyses to elucidate its effective-
ness in generating paraphrases.

4.1 Datasets

In this work, we use three widely used benchmark-
ing datasets, namely, Quora (Chen et al., 2017),
MSCOCO (Lin et al., 2014), and Paralex (also
named Wiki Answers) (Fader et al., 2013) in our
experiments.

Quora.The Quora dataset is collected from
the question-answering forum Quora (Chen et al.,
2017). It contains over 400k pairs of ques-
tions, some are paraphrases and others are non-
paraphrases. There are about 150k paraphrase pairs
in total.

Paralex. Paralex is a dataset of question para-
phrases datasets scraped from WikiAnswers (Fader
etal., 2013). It has a large number of question pairs
but presents lower quality in syntactic structures
and semantic similarity compared to Quora.

MSCOCO. MSCOCO is a benchmark dataset
for image captioning (Lin et al., 2014). It contains
over 100k clusters of five captions sentences. Con-
sidering captions for images can involve different
details or objects, the quality of these paraphrases
is lower than those in Quora.

For the fairness of comparison, We use the clus-
ter version of these three datasets released by the
previous best method (i.e., HRQ-VAE (Hosking
et al., 2022)). The statistics of the training, valida-
tion and test splits are shown in Table 1.

4.2 Competing Methods

We will compare VQ-prompt with multiple ad-
vanced paraphrase generation models. We describe
several most competing models as follows.

SOW/REAP. It uses a two-stage model to derive
a set of syntactic rearrangements, which are then
used to guide an encoder-decoder model (Goyal
and Durrett, 2020).

BTmPG. It leverages a multi-round paraphrase
generator to improve diversity and back-translation
to preserve semantic information (Lin and Wan,
2021).

LBoW. It grounds the semantics of a discrete
latent variable by the latent bag-of-words technique
(LBoW) (Fu et al., 2019).

Separator. (Hosking and Lapata, 2021) take
both the semantic sentence and syntax-informed
sentence as inputs in the training process. It com-
bines training objective with a principled informa-
tion bottleneck, to induce a latent space that disen-
tangles meaning and form.

HRQ-VAE. Hierarchical refinement quantized
variational autoencoders (HRQ-VAE) is a method
for learning the decomposition of dense encod-
ings as a sequence of discrete latent variables that
make iterative refinements of increasing granular-
ity (Hosking et al., 2022). HRQ-VAE serves as the
previous state-of-the-art paraphrasing method. We
take it as our arch-rival.

4.3 Evaluation Metrics

Many previous works adopt BLEU as a measure
for evaluating several text generation tasks. But
for paraphrase evaluation, the dissimilarity from
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Figure 3: Visualization of the learned prompts and their components.

the input is also of vital importance. So, in order
to take both paraphrase quality and similarity to
the input into consideration, we also use iBLEU
for our automatic evaluation. The calculation of
iBLEU is given by

iBLEU = o-BLEU(y,Y)—

(1 -—a)-BLEU(z,Y) (9)
where Y stands for the set of reference paraphrases.
Thus, the expression BLEU(z,Y) indicates the
BLEU score between the input sentence and the
reference paraphrases, which is also called the Self-
BELU score. The coefficient « balances the impor-
tance between expression diversity and semantic
similarity. Following the setting of (Hosking et al.,
2022), we set o« = 0.8.

Overall, the BLEU, Self-BLEU, and iBELU
scores constitute a relatively comprehensive evalu-
ation of the generated paraphrases. In addition to
the automatic evaluation metric, we also conducted
the human evaluation.

4.4 Implementation Details

The hidden layer sizes of the equation encoder and
the expression generator are 768. The size of the
codebook is set to 512. The length of the prompt
(i.e., M) is 4. The threshold 7 in the K-means train-
ing strategy is 256. The maximum input length of
the feature vector is 256 and the maximum out-
put length is 60. We evaluate the model for each
half epoch and select the model that reaches the
best performance on the validation set. Finally, we
report the generation performance on the test set.

Semantic relevance Fluency
Model M . .

ean Score  Variance Mean Score Variance
Separator 1.94 0.30 0.60 0.35
HRQ-VAE 2.22 0.67 2.84 0.17
VQ-Prompt 2.32 0.61 2.90 0.10

Table 3: Human evaluation.

4.5 Results

Table 2 presents the performance of all compet-
ing methods on the Quora, Paralex, and MSCOCO
datasets. Copy and tf-idf are typically repeating the
input sentences and thus obtain the lowest iBLEU
scores. The neural networks, including LBoW,
VAE, and SEPARATOR, achieve higher iBLEU
scores. But these improvements are obtained with
the loss of the semantic meaning because the simi-
larity with the references is decreased along with
the improvements of iBLEU. HRQ-VAE is the pre-
viously state-of-the-art paraphrase generator, which
obtains better performances than SEPARATOR and
LBoW. However, HRQ-VAE prescribes that the
dataset contains high-quality sentence pairs with
similar syntax structures, which is not feasible in
sentences with complex grammar dependence.

As for VQPrompt, we observe that it consis-
tently outperforms HRQ-VAE and the other base-
lines on the three benchmark datasets. Consider-
ing that HRQ-VAE utilizes additional syntax su-
pervision, the improvements on both BLEU and
iBLEU demonstrate the effectiveness of the pro-
posed method.

Human Evaluation. We also conducted a human
evaluation of the results. Due to the limit of bud-
get and resources, we sampled 300 sentences from
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Cluster Input/Output Sentence

Input

How can I learn to speak Spanish fluently?

Generation What is the best way to learn Spanish?
A Input How can I lose 25 pounds in one month in a safe way?
Generation ~ What are some ways to lose 25 pounds in 1 month?
Input How can you substitute tarragon in recipes?
Generation What are some ways to substitute tarragon in recipes?
Input What should you do to prepare for the RCMP?
Generation How can I prepare for the RCMP?
B Input What should I follow to keep myself fit without going to gym?
Generation How can I stay fit without going to a gym?
Input What should I do to make life worth living?
Generation ~ How can I make my life worth living?
Input What makes a dog’s vomit foamy? Is it dangerous?
Generation Why is my puppy throwing up yellow liquid?
C Input What causes tides to rise and fall?
Generation Why do the tides in the sea rise?
Input What is the story behind Obama abstaining from the vote on Israeli?
Generation Why did President Obama abstain in the UN vote against Israeli?

Table 4: Paraphrases generated from the prompt clusters shown in Fig 3(b).

Model BLEU Self-BLEU iBLEU
Generative LM 34.27 42.75 18.87
Generative LM (VQ) 32.51 46.04 16.80
VQPrompt 35.01 39.98 20.01

Table 5: The generation performances of individual
VQPrompt variants.

the Quora test set and compared VQPrompt with
Separator and HRQ-VAE. We asked three human
annotators to evaluate the generated paraphrases in
terms of semantic relevance and sentence fluency
in a blind fashion; each aspect was scored from 1 to
5. We report in Table 3 the average human scores
and their variances. Table 4 shows that VQPrompt
achieves the highest human satisfaction scores. The
results are also consistent with the automatic met-
rics in Table 2.

Ablation Study. In order to investigate the
reasons for the performance gain obtained by
VQPrompt, we further build two variants of
VQPrompt and evaluate their generation results.
The two variants are the generative language model
(denoted by generative LM) and the generative
language model with traditional vector-quantized
prompt (generative LM (VQ)). The difference
between generative LM (VQ) and the proposed
VQPrompt model lies in the optimization of the
prompt encoder (i.e., the K-means training strat-

egy). These two variants together with VQPrompt
share the same hyperparameters and data.

As the Quora dataset is the most widely-used
high-quality dataset, the ablation study is only con-
ducted on Quora. As shown in Table 5, the gen-
erative LM model reaches a modest performance,
owing to the decent initialization of the pre-trained
language model. Next, simply adding a discrete
prompt to the model would lead to a side effect of
the paraphrase generation, which is caused by the
index collapse of the VQ technique. With our train-
ing scheme, the discrete presentation of prompts
could further boost the performance of the gener-
ative LM. We also observe that more than half of
the codes in the codebook are active after incorpo-
rating the training scheme, which reflects the VQ
computations works well and can finally benefit
the paraphrase generation.

Prompt Visualization. For an intuitive visual-
ization of generated prompts, we perform t-SNE
on prompt component codes g, and the prompts
Q. In this paper, M component codes constitute
a paraphrasing prompt (in experiments, M = 4).
Although we use the same number of vectors to
conduct t-SNE, the dimension reduction results
are varied. Generally, the points of the paraphrase
prompt tend to clump together in larger clusters,
indicating that VQPrompt has learned several ab-
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stract paraphrasing rules, which could induce the
pre-trained model to produce paraphrases.

To demonstrate this point, we select three clus-
ters and use them to perform paraphrasing. As
shown in Table 5, we observe that these clusters
contain a bunch of sentences that share similar syn-
tactic structures, which validates that the learned
prompts characterize the abstract transforming rule
of paraphrase generation.

5 Conclusion

Paraphrasing aims to restate one sentence as an-
other with the same meaning, but different word-
ings. In this paper, we establish a prompt learning
framework, coined VQPrompt, for paraphrase gen-
eration. VQPrompt leverages vector quantization
to learn finite prompt components and thus possess
modest interpretability. We introduce a K-means
training strategy to avoid index collapse in VQ.
Experiments show VQPrompt achieves impressive
generation performance on multiple datasets.

6 Limitations

For ethnic concerns, the three datasets we use are
publicly available and do not contain biased or
discriminatory information. For resource concerns,
our model is dependent on a pre-trained model,
which means a higher computation budget.
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