
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13300–13310
December 6-10, 2023 ©2023 Association for Computational Linguistics

Tokenization Consistency Matters for Generative Models
on Extractive NLP Tasks

Kaiser Sun♣∗ Peng Qi♠† Yuhao Zhang♠†

Lan Liu♠ William Yang Wang♠ Zhiheng Huang♠
♣Paul G. Allen School of Computer Science & Engineering, University of Washington

♠AWS AI Labs
huikas@cs.washington.edu {pengqi,yhzhang}@amazon.com

{liuall,wyw,zhiheng}@amazon.com

Abstract

Generative models have been widely applied
to solve extractive tasks, where parts of the in-
put is extracted to form the desired output, and
achieved significant success. For example, in
extractive question answering (QA), generative
models have constantly yielded state-of-the-art
results. In this work, we study the issue of
tokenization inconsistency that is commonly
neglected in training these models. This issue
damages the extractive nature of these tasks
after the input and output are tokenized incon-
sistently by the tokenizer, and thus leads to
performance drop as well as hallucination. We
propose a simple yet effective fix to this is-
sue and conduct a case study on extractive QA.
We show that, with consistent tokenization, the
model performs better in both in-domain and
out-of-domain datasets, with a notable average
of +1.7 F1 gain when a BART model is trained
on SQuAD and evaluated on 8 QA datasets.
Further, the model converges faster, and be-
comes less likely to generate out-of-context
answers. Our results demonstrate the need for
increased scrutiny regarding how tokenization
is done in extractive tasks and the benefits of
consistent tokenization during training.1

1 Introduction

Pretrained sequence-to-sequence (seq2seq) models
have achieved remarkable success in a wide range
of tasks (Lewis et al., 2020, Raffel et al., 2020).
As an important component of the models, tok-
enizer is frequently discussed, including different
tokenization methods and the model’s robustness
to different tokenization (Provilkov et al., 2020).

In our work, we identify an issue of tokeniza-
tion consistency that affects the performance of
seq2seq models. Specifically, when a seq2seq task
has extractive nature, i.e., parts of the output text

*Work done during an internship at AWS AI Labs.
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1Code is available at https://github.com/

KaiserWhoLearns/ConsistentTokenization.

Figure 1: An example of tokenization inconsistency in
training a BART model (which uses the BPE tokenizer)
for extractive QA. The number “1912” is tokenized
differently alone (blue) and in context (green), because
unlike in context, the answer is often provided without
preceding spaces, which triggers different BPE merging
rules during tokenization. We propose to extract the
tokenized answer from context (green) for training.

are extracted from the input text, the desired out-
put could be tokenized differently from how it is
tokenized in the input, leading to tokenization in-
consistency during model training. For example, in
extractive question answering (QA), which takes a
context-question pair as input and outputs a span of
context as answer, the answer might be tokenized
differently from the span in the context (Figure 1).

Different variants of inconsistent tokenization
have been found in several previous works in other
tasks such as semantic parsing, open-domain ques-
tion answering (Petrak et al., 2022; Rosenbaum
et al., 2022; Yu et al., 2023), but important issues
like this are often deemed not analysis-worthy, and
no universal solution nor in-depth analysis have
been presented. This seemingly minor difference in
tokenization alters referential integrity and can re-
sult in a notable impact on model performance dur-
ing inference. We use extractive QA as a case study
and propose a simple and effective approach to mit-
igate this issue – extracting the tokenized answer
from the context for training. We discover that,
when fine-tuning with consistently tokenized in-
stances, the model 1) achieves better in-domain and
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Dataset BART T5 Dataset BART T5

SQuAD 96.1 5.0 BioASQ 83.6 25.3
TriviaQA 95.1 72.8 TextbookQA 96.9 21.8
NewsQA 85.0 0.0 DuoRC 85.3 27.5

NQ 99.6 0.4 SearchQA 68.2 14.7

Table 1: Percentage of training instances whose tok-
enized gold answers do not exist verbatim in the tok-
enized context using BART and T5 tokenizer.

out-of-domain performance (+0.9% F1 in-domain
and +2.0 % zero-shot out-of-domain), 2) converges
faster during training, and 3) is less likely to gen-
erate out-of-context output (i.e. less likely to hal-
lucinate textually). With our findings, we would
like to note that inconsistent tokenization can af-
fect any tasks that can be cast as seq2seq tasks
with an extractive nature beyond QA and call on re-
searchers and practitioners to consider applying the
consistent tokenization technique during training.

2 Related Work

Byte-Pair-Encoding (BPE) (Sennrich et al., 2016),
language-model-based segmentation (Kudo, 2018),
and their variants (Kudo and Richardson, 2018) are
commonly used as the tokenizers for NLP models
due to their simplicity and universality.

Recent research has identified these tokenization
approaches as sources of poor model generaliza-
tion. For example, BPE has been shown to produce
less ideal morphological segmentation (Bostrom
and Durrett, 2020; Provilkov et al., 2020), and the
same text can be tokenized differently when differ-
ent BPE rules are applied (Kudo, 2018). Existing
approaches either modify model training by using
stochastic inputs or by modifying how BPE seg-
mentation is done to improve model robustness and
generalization (Provilkov et al., 2020; He et al.,
2020; Vilar and Federico, 2021, inter alia). In
contrast, we propose a simple and deterministic
approach that does not rely on altering the segmen-
tation approach in any way, so that the original
training strategy can be preserved.

Besides generic approaches, researchers have
also investigated domain-specific approaches to im-
prove segmentation on specific texts (Geva et al.,
2020; Petrak et al., 2022; Rosenbaum et al., 2022).
Geva et al. (2020) and Petrak et al. (2022) propose
approaches that aim at overcoming the inconsis-
tency of tokenizing numbers and enhancing the
model’s numerical reasoning ability. Rosenbaum
et al. (2022) use “space-joined tokens” to resolve

many string-matching anomalies after tokenization
that lead to unfair evaluation in semantic parsing.
We instead look at inconsistency from a more gen-
eral perspective by making our method applicable
to any tasks with an extractive nature.

In addition to subword segmentation methods,
another line of research focuses on character- and
byte-level modeling as procedures that are free of
tokens (Graves, 2013; Al-Rfou et al., 2019; Xue
et al., 2022; Tay et al., 2022). While tokenization-
free methods show potential to surpass subword
segmentation approaches, we remain focused on
the consistency issue of subword tokenizations, as
most prevalent state-of-the-art models rely on sub-
word tokenizations (Chung et al., 2022; Touvron
et al., 2023).

3 Consistent Tokenization: What It Is
and How To Achieve It

Consistent Tokenization Consider a seq2seq task,
which takes text x = (x1, ..., xn) as input, and
outputs y = (y1, ..., ym). When the task is ex-
tractive, there exists two sets of indices, I and J ,
such that xI = yJ . In the example of Figure
1, x is the context-question pair, y = 1912, and
xI = yJ = 1912.

Let tokenization be a function T that maps text
into a sequences of token ids. Suppose xI 7→
T (x)I′ and yJ 7→ T (y)J ′ . Here, I ′ denotes the
set of indices that maps to the xI in the tokenized
input, while J ′ denotes the position of yJ in the
tokenized output. Note that T (x)I′ = T (y)J ′ is
not always true: in Figure 1, xI is mapped to the
ids of “Ġ1912”, while yJ is mapped to the ids of
“19” and “12”, because there is no preceding space
in yJ . We call it inconsistent tokenization when
T (x)I′ ̸= T (y)J ′ . Analogously, tokenization is
consistent when T (x)I′ = T (y)J ′ . Inconsistent
tokenization could emerge due to the existence of
preceding space, numbers, or punctuation when
using the vanilla BPE tokenizer. SentencePiece
tokenizers are less subject to inconsistency because
one of the underlying reasons, preceding space,
is mitigated by the combined implementation of
vanilla BPE and unigram.

Consistent Tokenization Training When the
input and output are tokenized inconsistently, the
task can no longer be solved by simply extracting
the output from the input token ids, but requires an
additional step from the model to “paraphrase" the
input ids into the output token ids that do not exist
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in the input ids. Therefore, learning with incon-
sistently tokenized instances becomes an inherent
predicament for model compared to learning with
their consistently tokenized counterparts.

Instead of tokenizing output in situ, we propose
to retrieve T (y)J ′ from T (x)I′ such that the tok-
enization is always consistent among all x, y pairs.
Compared to proposing a new tokenization method
that is immunized to inconsistency, this is a simple
yet effective fix that every researcher can imple-
ment without any non-trivial effort and without the
need to pretrain the model again.

4 Case Study: Extractive QA with
Generative Models

In this work, we use extractive QA as a representa-
tive for extractive tasks. Extractive QA is an ideal
candidate for studying the effect of consistent to-
kenization, since its output is always a substring
of the input. Recent work has demonstrated that
applying generative models to this task leads to
great performance gains (Lewis et al., 2020; Raffel
et al., 2020; Brown et al., 2020; Izacard and Grave,
2021) and greater potential to unify different input
formats (Khashabi et al., 2020).

4.1 Task Description

In extractive QA, the model is given a question with
a context, and expected to output a span (substring)
of the context as an answer. Extractive models are
typically configured with the question and context
as the input, and trained to return start and end
indices to indicate the location of the predicted
answer in the context. For generative models, index
prediction task is replaced with a task of directly
predicting the answer string from the decoder of
a seq2seq model, thus the need to tokenize the
answer string separately from the context.

4.2 Experimental Setup

Data MRQA (Fisch et al., 2019) is used as bench-
mark for the experiments. We first fine-tune the
model on one of the datasets among SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017),
and NewsQA (Trischler et al., 2017). Then, we
evaluate the model on its in-domain test set and
seven out-of-domain test sets (SQuAD, TriviaQA,
NewsQA, NaturalQuestions (NQ; Kwiatkowski
et al., 2019), BioASQ (Tsatsaronis et al., 2015),
TextbookQA (Kembhavi et al., 2017), DuoRC
(Saha et al., 2018), SearchQA (Dunn et al., 2017)).

All the datasets are in MRQA format. We show the
percentage of inconsistently tokenized instances in
each dataset in Table 1. We also find that the issue
is still prevalent even when the most common and
easily resolvable source of inconsistency, prefix
space, is addressed, suggesting the remaining to be
a non-trivial issue (Appendix A).

Model Choice As one of the widely used gen-
erative models, BART-base (Lewis et al., 2020)
is used for experiments. Compare to T5, which
uses SentencePiece (Kudo and Richardson, 2018)
as tokenizer, BART tokenizer is more likely to pro-
duce inconsistent tokenization (Table 1), and can
therefore provide us with more exemplary results.
For each dataset, we fine-tune two variants of the
model: the first variant (denoted as original) tok-
enizes gold answers separately with the contexts,
and the second variant (denoted as consistent)
applies our method to guarantee consistent tok-
enization. Appendix C includes details of hyperpa-
rameters tuning and computing resources.

5 Findings

We run model training over each of the SQuAD,
TriviaQA and NewsQA training sets, and report
evaluation results on their corresponding dev sets
in Table 2 (F1 scores) and Appendix D (EM scores).

Consistent tokenization training improves in-
domain QA performance. Overall, we observe
statistically significant improvement in F1 with the
consistent variants on all of SQuAD, TriviaQA
and NewsQA, with in-domain performance gains
of 1.0, 1.1 and 0.6 for the three datasets, respec-
tively (marked by shaded cells). A similar obser-
vation is made with the EM results. One potential
explanation for the improvement is that, the task be-
comes inherently simpler with consistent tokeniza-
tion. We hypothesize that consistent tokenization
allows the model to extract answers from the con-
text instead of also needing to learn to paraphrase
the answer into something that does not exist in
the context, as we mentioned in Section 3. We
will validate this hypothesis when we examine the
convergence speed of the models with or without
consistent tokenization during training.

Consistent tokenization also improves zero-shot
QA performance on out-of-domain datasets.
We also examine zero-shot model performance
on unseen domains in Table 2. We find that on
all the OOD datasets, the corresponding F1 of the
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Training Set Tokenization SQuAD NewsQA NQ SearchQA TriviaQA BioASQ DuoRC TextbookQA Average

SQuAD original 87.5 53.5 48.7 23.4 60.1 54.4 53.2∗ 41.0 47.8
consistent 88.5∗ 55.0∗ 50.2∗ 25.7∗ 61.2∗ 58.5* 52.8 43.1∗ 49.5∗

TriviaQA original 54.6 35.5 44.6 62.8 75.5 35.7 41.0 37.2 44.5
consistent 58.7∗ 39.9∗ 47.3∗ 63.6∗ 76.6∗ 40.4∗ 45.6∗ 39.3∗ 47.8∗

NewsQA original 75.8 65.0 55.5 38.4∗ 63.8∗ 50.7 56.5 43.4 56.2
consistent 77.7∗ 65.6∗ 56.5∗ 37.3 63.5 52.3∗ 57.1∗ 45.4∗ 56.9∗

Table 2: F1 of BART QA models fine-tuned on different datasets (first column) and evaluated on in-domain
and out-of-domain datasets. Original represents models fine-tuned with original tokenization and consistent
represents models fine-tuned with consistent tokenization (our method). Shaded cells indicate in-domain evaluation
results. All results are averaged over three random seeds. ∗ marks results with statistically significant improvement
(p < 0.05) over the other model variant on the same dataset.
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Figure 2: (a) Learning curve of BART with original tok-
enization and consistent tokenization. (b) Percentage of
instances that model generates out-of-context answers
during inference. The models are trained on SQuAD
and numbers are averaged over three random seeds. Ap-
pendix G reports percentage of out-of-context answers
when the models are trained on TriviaQA and NewsQA.

consistent model is either comparable or higher
than the original model, with the highest gain
more than 4%. This implies that training with con-
sistent tokenization systematically improves model
generalization beyond better overfitting the train-
ing domain. The improvement on unseen domain
can also be explained by the reduction of difficulty:
training with consistent tokenization provides the
model with information that the answer must exist
within the input, thus the model is no longer re-
quired to extensively search the entire vocabulary
on a previously unknown domain.

Training with consistent tokenization leads to
faster model convergence, and improved model
confidence on the gold answer. We present the

training curves of models fine-tuned on SQuAD
in Figure 2a, and include training curves for other
datasets in Appendix E. Across all the datasets,
the consistent models converge faster than the
original ones. This corroborates our hypothesis
that solving extractive QA by simply extracting
answers at the token level can make the task easier.

To further validate this, we also examine the log
perplexity of the gold answer for each instance,
and compare the distributional difference between
consistent and original models (shown in Fig-
ure 5, Appendix F). We see that the overall dis-
tribution of log perplexity difference leans to the
negative side, suggesting that the model is more
confident in generating gold answers when tok-
enization consistency is enforced during training.

Training with consistent tokenization leads to
less textual hallucination. An important angle
to look at generative models is hallucination. It
is worth noting that while the general meaning of
hallucination, or more precisely factual hallucina-
tion, refers to the problem when a model produces
factual content that is either inconsistent with or un-
grounded to the input. In the context of extractive
QA, we instead refer to a more specific definition
of textual hallucination, where the QA model pro-
duces out-of-context answer sequence that does not
align with any given span of text in the input. We
show the percentage of instances that models gen-
erate out-of-context answers on different datasets
in Figure 2b. An example of such out-of-context
answers can be found in Appendix H.

We find that when trained with consistent tok-
enization, the model is less likely to textually hal-
lucinate. We conjecture that this is because with
inconsistently tokenized training data, the model
is undesirably exposed to a many context-answer
pairs that are not directly aligned at the token level.
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This misalignment between the tokenized answer
and its inconsistent form in the tokenized context
possibly leads to the higher hallucination rate.

6 Conclusion

We identify and address the issue of tokenization
consistency in extractive tasks. We find that con-
sistent tokenization improves model training on
in-domain performance, convergence speed, out-of-
domain generalization, and textual hallucination. It
is worth noting that inconsistent tokenization may
affect any extractive tasks. Using these findings, we
suggest to apply consistent tokenization to inputs
and outputs whenever researchers or practitioners
are tackling extractive tasks.

7 Limitations

In this work, we only investigate consistent tok-
enization in fine-tuning. Future work might con-
sider focusing on the effect of consistent tokeniza-
tion in in-context learning. In addition, it is possi-
ble that fine-tuning with consistent tokenization
does not align with model’s pre-training objec-
tive, but the role of pre-training objective is also
not explored in this work. Furthermore, besides
BPE tokenizers, there are also other tokenizers
that do not produce encoding by merging sub-
words. Whether these tokenizers will produce a
non-negligible amount of inconsistent tokeniza-
tions is unknown. Finally, the datasets used for
experiments are solely English question answer-
ing datasets. Whether the same observation holds
in multilingual setting or in other tasks requires
further examination.
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A Percentage of Inconsistently Tokenized
Samples After Adding Prefix Space

Dataset BART T5 Dataset BART T5

SQuAD 3.9 5.0 BioASQ 25.1 25.3
TriviaQA 72.7 72.8 TextbookQA 22.0 21.8
NewsQA 7.8 0.0 DuoRC 27.8 27.4

NQ 0.1 0.4 SearchQA 17.0 14.7

Table 3: Percentage of training instances whose tok-
enized gold answers do not exist verbatim in the tok-
enized context using BART and T5 tokenizer, when the
inconsistency caused by prefix space is addressed.

One of the most well-known source of tokeniza-
tion inconsistency is the prefix space, which may
not be contained in the output but might be con-
tained in the appearance of output sequence in the
input. [Explain with a tangible example, and spell
out the implication once again: “which may not..”
→ where the output is usually not prefixed with
whitespace (e.g., “1912” in Figure 1), but its ap-
pearance in the input usually is (“... in 1912”).
When the tokenizer (e.g., BPE) is sensitive to such
minute differences, the tokenization of the output
sequence can differ drastically for the output alone
compared to its appearance in the input ([“19”,
“12”] vs [“Ġ1912”]).]Peng This issue can be easily
resolved by adding a prefix space during tokeniza-
tion of the output, and we show a percentage of
inconsistently tokenized instances in Table 3 when
prefix space is resolved. [Explain that a lot of issues
cannot be addressed with prefix space – be consis-
tent with the messaging in the main text]Peng

B License of Artifacts and Intended Use

Table 4 include a list of artifacts used in this work
and their intended usage. Our use of these artifacts
aligns with their intended usage.

Artifact License Intended Usage

MRQA MIT A benchmark focuses on generalization
in extractive QA format

BART Apache-2.0 A pre-trained model for
sequence-to-sequence tasks.

Table 4: License and intended usage for the artifacts we
used.

Dataset statistics for each dataset we used is in-
cluded in Table 5.

C Hyperparameters

Before fine-tuning, we conduct minimal hyperpa-
rameter search across learning rate of 1 × 10−5,

Dataset Training Dev/Test

SQuAD 86588 10507
NaturalQuestions 104071 12836
NewsQA 74160 4212
TriviaQA 61688 7785
SearchQA 117384 16980
BioASQ - 1504
TextbookQA - 1503
DuoRC - 1501

Table 5: Number of instances for each dataset.
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Figure 3: Learning curve of BART with original tok-
enization and consistent tokenization. The models are
trained on TriviaQA.

2× 10−5, and 3× 10−5.

For each training set, we fine-tune the model
with three different random seeds and average the
resulting metrics for final performance. For each
fine-tuning trial, we used 4 Nvidia V100 GPUs,
each of which has 16GB CUDA memory.

We use a learning rate of 2e-5 and effective batch
size of 128. The maximum sequence length is
set to 1024. The model is trained for 10 epochs
and the best checkpoint is selected based on the
performance of in-domain development set.

The fine-tuning code is based on Huggingface
Transformers 2. The implementation details can be
found in our released repository.

D In-domain and Out-of-domain Exact
Match Accuracy

The exact match accuracy is shown in Table 6. Sim-
ilar to what we discover in section 5, the model
obtains a better performance whent training with
consistent tokenization.
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Training Set Tokenization SQuAD NewsQA NQ SearchQA TriviaQA BioASQ DuoRC TextbookQA Average

SQuAD original 79.2 37.4 33.6 16.5 52.2 42.1 43.8 29.8 36.5
consistent 80.4 38.4 33.9 19.3 54.0 46.6 44.2 32.0 38.4

TriviaQA original 43.5 22.9 30.8 54.0 70.7 26.2 32.2 30.7 34.3
consistent 47.8 26.9 33.3 55.5 72.2 30.4 35.8 32.6 37.5

NewsQA original 61.8 49.2 41.0 31.5 55.9 35.5 45.3 33.1 44.2
consistent 64.8 49.7 42.3 30.6 56.0 37.3 45.7 34.7 45.1

Table 6: EM of BART fine-tuned on different datasets (first column) and evaluated on in-domain and out-of-domain
datasets. Original represents models fine-tuned with original tokenization and consistent represents models
fine-tuned with consistent tokenization. All results are averaged over three random seeds.

1000 2000 3000 4000 5000
Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
al

id
at

io
n 

Lo
ss

BART-Original
BART-Consistent

Figure 4: Learning curve of BART with original tok-
enization and consistent tokenization. The models are
trained on NewsQA.

E Learning Curve on Other Training Sets

The learning curves with models training on Trivi-
aQA and NewsQA are shown in Figure 3 and 4, in
both of which consistent model exhibits a faster
convergence speed than that of original model.

F Log Perplexity Difference

Figure 5 shows the log perplexity difference be-
tween consistent and original models on in-
domain dataset. We present an example of log
perplexity difference on out-of-domain dataset in
Figure 6, using BioASQ as an example.

G Textual Hallucination Rate on Other
Training Sets

Figure 8 and 7 show textual hallucination rate when
the models are trained on NewsQA and TriviaQA.

H Example of Out-of-Context Generation

Table 7 presents an example of out-of-context an-
swer generated by the model.

2https://github.com/huggingface/transformers
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Figure 5: Instance amount distribution with respect to
LP(consistent) - LP(original), where LP represents
log perplexity. Model is trained on SQuAD. When
the instance is located on the left of the dotted line
(LP difference less than zero), the consistent model
is more confident in generating gold answer than the
original model.
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Context: CBS set the base rate for a 30-second advertisement at $5,000,000, a record high
price for a Super Bowl ad. As of January 26, the advertisements had not yet sold
out. CBS mandated that all advertisers purchase a package covering time on both the
television and digital broadcasts of the game, meaning that for the first time, digital
streams of the game would carry all national advertising in pattern with the television
broadcast. This would be the final year in a multi-year contract with Anheuser-Busch
InBev that allowed the beer manufacturer to air multiple advertisements during the
game at a steep discount. It was also the final year that Doritos, a longtime sponsor
of the game, held its "Crash the Super Bowl" contest that allowed viewers to create
their own Doritos ads for a chance to have it aired during the game. Nintendo and
The Pokémon Company also made their Super Bowl debut, promoting the 20th
anniversary of the Pokémon video game and media franchise.

Question: Which company has held contests for fans to create their own ad for the company?
Gold Answer: Doritos
Prediction: Dorfos

Context: LONDON, England (CNN) – Israeli military action in Gaza is comparable to
that of German soldiers during the Holocaust, a Jewish UK lawmaker whose
family suffered at the hands of the Nazis has claimed. A protester confronts police
in London last weekend at a demonstration against Israeli action in Gaza. Gerald
Kaufman, a member of the UKś ruling Labour Party, also called for an arms embargo
on Israel, currently fighting militant Palestinian group Hamas, during the ...

Question: What does the lawmaker say?
Answer: Israeli military action in Gaza is comparable to that of German soldiers during the

Holocaust
Prediction: Nazi soldiers during the Holocaust

Table 7: Examples of out-of-context predictions made by model. In the first example from SQuAD, the model is
spelling the answer incorrectly; and the second example the model outputs an incorrect (non-extractive) answer
although it is also factually incorrect.
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Figure 6: Instance amount distribution with respect to
LP(consistent) - LP(original) in BioASQ develop-
ment set, where LP is log perplexity. Model is trained
on SQuAD. When the instance is located on the left
of the dotted line (LP difference less than zero), the
consistent model is more confident in generating gold
answer than the original model. Compare to Figure
5, this figure shows an example of log perplexity differ-
ence on out-of-domain datasets.
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Figure 7: Percentage of instances that model generates
out-of-context answers during inference. The models
are trained on TriviaQA and numbers are averaged over
three random seeds.
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Figure 8: Percentage of instances that model generates
out-of-context answers during inference. The models
are trained on NewsQA and numbers are averaged over
three random seeds.
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