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Abstract

Speculation detection is an important NLP task
to understand text factuality. However, the ex-
tracted speculative information (e.g., specula-
tive polarity, cue, and scope) lacks structure
and poses challenges for direct utilization in
downstream tasks. Open Information Extrac-
tion (OIE), on the other hand, extracts struc-
tured tuples as facts, without examining the
certainty of these tuples. Bridging this gap be-
tween speculation detection and information ex-
traction becomes imperative to generate struc-
tured speculative information and trustworthy
relational tuples. Existing studies on specula-
tion detection are defined at sentence level; but
even if a sentence is determined to be specu-
lative, not all factual tuples extracted from it
are speculative. In this paper, we propose to
study speculations in OIE tuples and determine
whether a tuple is speculative. We formally
define the research problem of tuple-level spec-
ulation detection. We then conduct detailed
analysis on the LSOIE dataset which provides
labels for speculative tuples. Lastly, we pro-
pose a baseline model SpecTup for this new
research task.1

1 Introduction

The concept of speculation is closely connected
to modality, which has been extensively explored
in both linguistics and philosophy (Saurí, 2008).
Modality is defined as the expression of the
speaker’s level of commitment to the events men-
tioned in a text (Saurí et al., 2006). Other related
terms, such as “hedging”, “evidentiality”, “uncer-
tainty”, and “factuality”, are also used when dis-
cussing different aspects of speculation. It is argued
that information falling under speculation cannot
be presented as factual information (Morante and
Daelemans, 2009). In NLP applications, factual
information plays a critical role in comprehending

1We will release the source code upon paper acceptance.

sentences or documents. Consequently, the identi-
fication of speculative information, as potentially
opposed to facts, has garnered considerable inter-
est from NLP community (Szarvas et al., 2008;
Konstantinova et al., 2012; Ghosal et al., 2022).

The conventional task of speculation detection
involves two subtasks: cue identification and scope
detection, which are typically performed at the sen-
tence level. Speculation cue refers to a minimal lin-
guistic unit that indicates speculation (e.g., “might”,
“plans to”, “subject to”). Speculation scope is the
text fragment governed by the corresponding cue
in a sentence. Consider the following example
sentence: “The UN plans to [release a report].”,
the speculative cue “plans to” affects the mean-
ing of the scope “release a report”. Note that the
speculation, along with its cue and scope, is of-
ten unstructured. Question I arises: Can unstruc-
tured speculative information be directly applied to
downstream tasks?

To extract structured information, we can lever-
age on Open Information Extraction (OIE). OIE
aims to generate relational factual tuples from un-
structured open-domain text (Yates et al., 2007).
The extracted tuples are in form of (ARG0, Relation,
ARG1, . . . , ARGn), also called facts. By definition,
OIE system is domain-independent and highly scal-
able, thus allowing users to obtain facts with low
cost. The extracted factual tuples are beneficial to
many downstream tasks such as question answer-
ing (Khot et al., 2017), knowledge base popula-
tion (Martínez-Rodríguez et al., 2018; Gashteovski
et al., 2020), and text summarization (Fan et al.,
2019). Here, Question II arises: Shall we trust all
relational tuples extracted by OIE as facts? Appar-
ently, the answer is no, as not all sentences state
facts, partly due to speculation. Current studies on
OIE do not consider speculation, which can lead to
the use of unreliable tuples as facts, affecting the
accuracy of downstream applications.

To mitigate issues related to Question I and II,
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we propose to serialize speculative information into
relational tuples. In such a way, we can empower
information extraction with speculation detection
to produce trustworthy relational tuples by identi-
fying structured speculative information. However,
there are typically multiple relational tuples in one
sentence. A sentence that contains speculative in-
formation does not necessarily mean that all its
tuples are speculative. Also, the scopes defined
in existing speculation datasets do not align well
with the tuples extracted by OIE. Therefore, current
sentence-level speculation detection cannot be ap-
plied to OIE. To bridge this gap, we propose a new
research task that focuses on tuple-level specula-
tion detection. In simple words, we aim to indicate
whether a tuple is speculative. In other words, the
speculation scope becomes a tuple of OIE.

To the best of our knowledge, there is no dataset
specifically designed for tuple-level speculation
detection. Nevertheless, the recently released
LSOIE (Solawetz and Larson, 2021) provides a
timely preview of this interesting research task.
LSOIE is a large-scale OIE dataset converted from
the QA-SRL 2.0 dataset (FitzGerald et al., 2018).
We observe that LSOIE provides additional anno-
tation to some OIE tuples with modal auxiliary
verbs. Table 1 lists a few example sentences and
their annotated OIE tuples with speculation. The
modal auxiliary verbs include ‘might’, ‘can’, ‘will’,
‘would’, ‘should’, and ‘had’; these words express
the meaning of possibility, ability, intention, past
intention, suggestion, and past event, respectively.
It is important to note that these modal auxiliary
verbs annotated on OIE relations may (43.3%)
or may not (56.7%) appear in the original sen-
tences of the LSOIE dataset. In this study, we use
these modal auxiliary verbs as speculation labels
for relational tuples, as they express the degree of
uncertainty at tuple level.

Tuple-level speculation detection is challenging,
because it is common for only a certain portion of
a sentence to carry speculative semantics. Certain
words (e.g., “may”, “if ”, “plan to”), also known
as speculation cues, are responsible for semantic
uncertainty, making part of a sentence (or the cor-
responding extracted tuples) vague, ambiguous, or
misleading. In this paper, we develop a simple
yet effective baseline model to detect Speculation
at Tuple level (called SpecTup). SpecTup de-
tects speculation from two perspectives: semantic
and syntactic. To model relation-aware semantics,

SpecTup adds additional relation embedding into
BERT transformers, and uses BERT’s hidden state
of the tuple relation word as semantic representa-
tion. For syntactic modeling, SpecTup explicitly
models the sub-graph of dependency structure of in-
put sentence, which includes immediate neighbours
of the tuple relation word. It adaptively aggregates
nodes in the sub-graph using a novel relation-based
GCN, and uses the aggregated representation as
syntactic representation. The concatenated seman-
tic and syntactic representations are then used for
speculation detection.

Our contributions in this paper are threefold.
First, we propose a new research task to detect
tuple-level speculation. This task links specula-
tion detection and information extraction. It ex-
amines the reliability of relational tuples, which
aligns well with the goal of OIE to extract only
factual information. Second, we conduct a de-
tailed analysis on the tuple-level speculation labels
from two aspects: (i) their presence in language,
and (ii) the level of detection difficulty. Third, we
propose SpecTup, a baseline model to detect tuple-
level speculation. SpecTup leverages both seman-
tic (BERT) and syntactic (Sub-Dependency-Graph)
representations. We perform extensive experiments
to analyze the research task of tuple-level specula-
tion, and our results show that SpecTup is effective.

2 Tuple-level Speculation Analysis

We first review the annotation processes of the QA-
SRL Bank 2.0 and LSOIE datasets, with a key
focus on tuple-level speculation labels. We then
study the distribution of speculation labels, by the
perceived level of difficulty in detection.

2.1 Annotation
QA-SRL Bank 2.0 dataset consists of question-
answer pairs for modeling verbal predicate-
argument structure in sentence (FitzGerald et al.,
2018).2 A number of questions are crowdsourced
for each verbal predicate in a sentence, and each
answer corresponds to a contiguous token span in
the sentence. Examples of QA-SRL annotations
can be found in Appendix A.2. Crowdworkers are
required to define questions following a 7-slot tem-
plate, i.e., Wh, Aux, Subj, Verb, Obj, Prep, Misc.
Among them, ‘Aux’ refers to auxiliary verbs,3 and

2Question-Answer Driven Semantic Role Labeling.
https://dada.cs.washington.edu/qasrl/

3There are three main auxiliary verbs: ‘be’, ‘do’, ‘have’.
Besides them, there’s a special type that affects grammatical
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ID Example sentence OIE Tuple with speculation Meaning

1 Adults were allowed to opt out of using computers. (adults, can opt, using computers) ability
2 It is unclear if the suspects left with any property. (suspects, might left, any property) possibility
3 The UN plans to release a final report in two weeks. (the UN, will release, a final report) intention
4 Gargling with warm salt water are reasonable. (warm salt water, should gargling) suggestion

Table 1: Examples of speculation annotation in LSOIE dataset. The speculation labels are in boldface as part of
tuple relation. To facilitate understanding, we underline the speculation cues in the example sentence, and elaborate
the meaning of speculation label under the ‘Meaning’ column. Note that a sentence usually contains multiple tuples,
we truncate the long sentence and demonstrate only the tuple with speculation for conciseness.

Subset #Sent #Tuple #Spec. Tuple %Spec

wikitest 4,670 10,635 1,015 9.5%
wikitrain 19,630 45,931 4,110 8.9%
scitest 6,669 11,403 1,569 13.8%
scitrain 19,193 33,197 4,337 13.1%

Total 50,162 101,166 11,031 10.9%

Table 2: Number of sentences, tuples, tuples with spec-
ulation, and the percent of tuples with speculation.

answers to questions with modal auxiliary verbs
reflect speculative information of the fact as well.
Note that these modal verbs may or may not explic-
itly appear in the original sentence. Hence, they are
provided based on the annotator’s understanding of
the sentences.

The QA-SRL Bank 2.0 dataset is then converted
to a large-scale OIE dataset (LSOIE) by Solawetz
and Larson (2021). LSOIE defines n-ary tuples, in
the form of (ARG0, Relation, ARG1, . . . , ARGn) in
two domains, i.e., Wikipedia and Science. During
the conversion, the modal auxiliary verbs in the
QA-SRL questions are retained in tuple relations,
as shown in Table 1. In this study, we consider
these modal auxiliary verbs to reflect speculation.
Consequently, in the LSOIE dataset, tuples with
speculation are those whose relation contains any
of the following six modal auxiliary verbs: ‘might’,
‘can’, ‘will’, ‘would’, ‘should’, and ‘had’. In this
work, we follow Lobeck and Denham (2013) to
interpret 6 types of speculation labels as follows:
‘can’ shows or infers general ability; ‘will’ and
‘would’ are used to show intention or to indicate
certainty; ‘might’ shows possibility; ‘should’ is
used to suggest or provide advice; ‘had’ refers to
past actions or events.

Table 2 reports the statistics of sentences, tu-
ples, and the tuples with speculation in the LSOIE

mood (e.g., ‘will’, ‘might’), called modal auxiliary verbs.

Example sentence Category

The UN will release a report. Easy
The UN will recently release a report. Med
The UN plans to release a report. Hard

Table 3: Examples of 3 cases of speculation according
to detection difficulty. All three sentences convey the
same fact: (the UN, will release, a report).

dataset.4 Overall, 10.9% of the ground truth tu-
ples contain speculation, indicating the substantial
presence of speculative ‘facts’, some of which are
non-factual. However, as no OIE system considers
the speculation information, a considerable num-
ber of unreliable facts are being extracted, without
any speculative tags on them. We thus propose
to develop an model that tags speculation on the
extracted tuples.

To the best of our understanding, neither the
crowdsourcing process of QA-SRL Bank 2.0 nor
the conversion of LOSIE specifically focuses on
speculation, as it is not the primary focus of these
two datasets. Without explicit focus, existing an-
notations truly reflect the crowdworker’s natural
understanding, and there are no bias towards any
specific type of speculation. We manually exam-
ine a large number of the speculative labels and
observe that labels are indeed reliable enough to be
suitable for evaluating tuple-level speculations.

2.2 Perceived Level of Detection Difficulty

By analyzing the speculative labels, we have
grouped them into three categories, as listed in
Table 3, based on the perceived level of detection
difficulty. (i) The easy category refers to cases
where the speculation label (e.g., “will”) literally

4We notice that some sentences in the Wiki subset appear
again (or repeated) in the Sci subset. In this study, we remove
the repeated sentences from the Sci subset. Therefore, our
reported numbers differ from those in the original paper.
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Subset #Spec. Tuple Easy Med Hard

wikitest 1,015 20.0% 23.6% 56.4%
wikitrain 4,110 20.0% 22.3% 57.6%
scitest 1,569 22.2% 19.1% 58.8%
scitrain 4,337 22.7% 22.4% 54.9%

Total 11,031 21.3% 22.0% 56.7%

Table 4: Distribution of the tuples with speculation by
difficulty level.

appears in the sentence and is located immediately
beside the tuple relation (e.g., “will release”). (ii) In
medium category, the speculation label is present
in the sentence, but it is not located directly beside
the tuple relation (e.g., “will recently release”). (iii)
The hard category refers to the cases where the
speculation label is not present in the sentence at
all (e.g., “plans to” means “will”).

Table 4 illustrates the distribution of speculation
labels across the three levels of difficulty. As seen,
56.7% of speculative tuples in the LSOIE dataset
fall under the hard category. It is evident that detect-
ing these hard cases of speculation is challenging,
requiring deep semantic understanding of both the
input sentence and the corresponding fact. Addi-
tionally, we present a more fine-grained breakdown
of the difficulty distribution of speculation labels
for each label in Appendix A.3.

3 Task Formulation

As discussed, there are no existing OIE systems
consider speculation when extracting tuples. To
fully leverage the capabilities of existing OIE mod-
els, it is more meaningful and practical to formu-
late speculation detection as a post-processing task,
where the goal is to determine whether a tuple ex-
tracted from a sentence is speculative.

Formally, the inputs are the source sentence that
is split into words wi (or tokens) s = [w1, . . . , wn],
and a set of relational tuples T = {t1, . . . , tm}
extracted from this sentence.5 Sentence-level spec-
ulation detection makes one-pass prediction on sen-
tence s. In comparison, the task of tuple-level spec-
ulation detection is to predict whether a tuple ti is
speculative (i.e., a binary classification task), based
on ti and its source sentence s. We focus on tuple-
level speculation detection in this paper.

5Each tuple ti is represented by its components ti =
[x1, . . . , xl] where one x is the relation and the rest x’s are
arguments. Each x corresponds to a contiguous span of words
[wj , . . . , wj+k].
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Figure 1: The relation-based aggregation of SpecTup.
The tuple relation ‘release’ adaptively aggregates its
neighbours based on different dependency relations.

As the tuples set T typically contains multiple
tuples, sentence s will be analyzed multiple times
with different ti. We assume that the relation (or
relation word) of a tuple is different from the rela-
tions of all the other tuples from the same sentence
and thus that a tuple can be represented with its
relation. Note that the task can be extended to
predict if a tuple is speculative and, if speculative,
which of the six modal auxiliary verbs indicates the
speculation type of the tuple.

4 Method: SpecTup

The proposed baseline consists of three modules:
pre-trained BERT to encode semantic represen-
tation of input sequence (in Section 4.1), GCN en-
coder to capture the syntactic representation (in
Section 4.2), and linear layer for binary/multi-
class speculation detection (in Section 4.3).

Given an example tuple (the UN, release, a re-
port) in Figure 1, the words “plans to” in its source
sentence, which modifies the relation word “re-
lease”, indicate the speculation of the tuple. Note
that such a cue of the speculation of a tuple is typ-
ically syntactically related to the relation word of
the tuple in its source sentence. We thus encode the
dependency structure of a source sentence, as ex-
emplified in Figure 1, as well as the word sequence
of the sentence for the speculation detection task.

13290



4.1 Semantic (Word Sequence)
Representation

We leverage BERT (Devlin et al., 2019) as token en-
coder to obtain token representations. Specifically,
we project all words [w1, . . . , wn] into embedding
space by summing their word embeddings6 and
tuple relation embeddings:

hi = Wword(wi) +Wrel(tuple_rel(wi)) (1)

where Wword is trainable and initialized by BERT
word embeddings. Wrel is a trainable tuple relation
embedding matrix, and the function tuple_rel(wi)
returns 1 if the word wi is the tuple relation of the
instance; otherwise, 0. Specifically, Wrel initializes
all words into binary embeddings (positive embed-
ding for relation word, and negative embedding to
non-relation words). It is worth noting that, we
only utilize the tuple’s relation word for specula-
tion detection and not its arguments. Therefore,
the model explicitly emphasizes the difference be-
tween relation tokens and non-relation tokens.

Then, we use hs = [h1, . . . , hn] as the input
to BERT encoder and utilize BERT’s last hidden
states as semantic representations:

hsemi = BERT(hi) ∈ Rdh (2)

4.2 Syntactic (Dependency Graph)
Representation

Relation Sub-graph Modelling. Speculation
cue refers to a minimal unit that indicates specula-
tion e.g., “might”, “plans to”, “subject to”. How-
ever, such cue words are not explicitly labelled in
the source sentence. We assume that a speculative
tuple is the outcome of a speculation cue in the sen-
tence directly modifying the tuple’s relation word.
Therefore, we model the words that are syntacti-
cally related to the tuple’s relation word v, through
the sentence’s dependency structure.

Specifically, we extract a sub-dependency-graph
N(v) from the sentence’s dependency structure,
which consists of the immediate (or one-hop) neigh-
bours of the tuple relation word v. In N(v), each
node u directly links to v with an associated de-
pendency relation r, as highlighted by the clear
(or non-blurry) lines in Figure 1, where (u, r) de-
notes the link (or edge), omitting v since all links
share the common word node v. We call this sub-
dependency-graph as ‘sub-graph’ and the whole

6If a word maps to multiple sub-words by BERT tokeniza-
tion, we average the sub-word representations.

dependency graph of the input sentence as ‘full-
graph’, and compare their impact on the specula-
tion detection task in Section 5.3.

Relation-aware GCN. Inspired by CompGCN
(Vashishth et al., 2020), we devise a strategy to
embed each dependency relation as a vector and
aggregate the corresponding neighbouring nodes
together. The representation of word v, denoted by
hv, is updated:

hsynv = f

( ∑

(u,r)∈N(v)

φ(u, r)Wrh
sem
u

)
(3)

where f(·) is the activation function, Wr ∈
Rdh×dh is a trainable transformation matrix.
φ(u, r) is the neighbour connecting strength, com-
puted based on the dependency type r:

φ(u, r) = hsemu ·Wdep(r) (4)

where · is the dot production operator. Wdep ∈
Rdh×Ndep is a trainable matrix. Ndep is the number
of unique dependency relations.

4.3 Speculation Detection

Finally, we concatenate the semantic representation
in Equation (2) and the syntactic representation
from GCN in Equation (3) as follows:

hfinalv = hsemv ⊕ hsynv (5)

where hfinalv is used by the classification layer to
perform speculation detection.

For the binary classification taskof identifying if
a tuple is speculative in the source sentence or not,
we use binary cross-entropy loss:

LCE = − 1

N

N∑

i=1

yilog(pi) + (1− yi)log(1− pi)

(6)
where N is the number of training instances. yi
is the gold standard label, and pi is the Softmax
probability for the ith training instance.

For the multi-class classification task of classi-
fying speculative tuples into the 7 classes (non-
speculative and the six modal auxiliary verbs), we
use the multi-class cross-entropy loss:

LCEmulti
= − 1

N

N∑

i=1

7∑

j=1

yi,j log(pi,j) (7)
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5 Experiments

5.1 Experiment Setup

LSOIE Dataset. To avoid potential bias intro-
duced by any specific OIE model, in our experi-
ments, we only use tuples from the LSOIE dataset
as inputs to the proposed tuple-level speculation
detection model. For the example sentence “The
UN plans to release a report", the tuple would
be (the UN, release, a report). Our task is to de-
termine whether this tuple is speculative and, if
speculative, which of the six modal auxiliary verbs
indicates the speculation type. In our experiments,
we combine two subsets (Wikipedia and Science)
into one big dataset. As the result, we have 38,823
sentences and 79,128 tuples for training, originally
from wikitrain and scitrain sets. We have 11,339
sentences and 22,038 tuples for testing, originally
from the wikitest and scitest sets.

Evaluation Metrics. We use Precision, Recall,
and F1 measures for evaluation. We report the
results of the binary classification task from the
following three perspectives:

(1) Macro-averaged scores. This is the un-
weighted average over the two classes, i.e., specu-
lative and non-speculative tuples. Micro-average is
not used because nearly 89.1% of tuples are non-
speculative, which would dominate the measures.

(2) Positive scores. This is the set of measures
computed for the positive (i.e., speculative) class.

(3) Recall by difficulty. This is recall of the
speculative tuples by the perceived difficulty level
(Section 2.2): the percentage of easy, medium, and
hard cases that are correctly detected. 7

5.2 Baselines

As this is a new research task, there are no exist-
ing baselines for comparison. We have designed
four sets of methods to compare: (i) only semantic
representations, (ii) only syntactic representations,
(iii) both semantic and syntactic representations,
and (iv) keywords matching.

Semantic-Only. We leverage on BERT to get the
semantic representations of the source sentence s.
Note that all tokens in the sentence are encoded
with tuple relation embedding (see Equations 1
and 2). As a result, the tuple relation information
is explicitly fused to all source tokens. We then

7Precision is not applicable here, as the task is not to pre-
dict the difficulty level of each tuple.

evaluate the effectiveness of using weighted pool-
ing of all tokens in sentence (SEMsentence), in tuple
(SEMtuple), and in tuple relation (SEMrelation) for
speculation detection.

Syntactic-Only. Based on the sentence depen-
dency parsing, we evaluate SYNfull-graph and
SYNsub-graph. The former uses a GCN to aggre-
gate node information from the entire dependency
graph, while the latter only aggregates the sub-
graph with one-hop neighbors of the relation word,
as described in Section 4.2.

Semantic and Syntactic. We combine both se-
mantic and syntactic representations and imple-
ment two methods. The first one is SEMsentence
+ SYNfull-graph that uses semantic embedding and
dependencies of all tokens in the sentence. In com-
parison, SpecTup leverages only the embeddings
and sub-graph dependencies of tuple relation token,
which is equivalent to SEMrelation + SYNsub-graph.

Keywords Matching in Dependency sub-graph.
Besides the neural baselines mentioned above, we
also experiment with simple keywords matching
methods. For these methods, we use a pre-defined
speculative keywords dictionary. A tuple is classi-
fied as speculative if any of its immediate neigh-
bours in dependency parse tree is one of the words
in the dictionary. We first use the 6 modal verbs
as the dictionary. Then we additionally include
the most frequent speculative keywords (top 10,
20, and 30). Speculative keywords selection is
described in details in Appendix A.4.

5.3 Main Results

Table 5 reports the experimental results of the pro-
posed baseline methods.

Semantic vs Syntactic. The three baselines using
semantic representations significantly outperform
the two baselines using syntactic representations.
This highlights that the semantic information is
more crucial for the model to understand specula-
tion. We also observe that the recall scores of syn-
tactic models are comparable to those of semantic
models. By combining both semantic and syntac-
tic information, SpecTup outperforms all baselines,
particularly in recall and F1 scores.

Semantic: Tuple Relation vs Full Sentence / Tu-
ple. For the baselines with semantic representations
only, the baseline using tuple relation performs not
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Models Macro-averaged Positive Recall by difficulty
Pr Re F1 Pr Re F1 Easy Medium Hard

Keyword Matching (Dep sub-graph)
Modal Verbs 79.6 66.6 70.6 67.4 35.7 46.6 99.8 59.9 3.6
Modal Verbs + Top 10 speculative words 79.3 72.3 75.1 65.4 48.0 55.4 99.8 60.8 24.5
Modal Verbs + Top 20 speculative words 77.8 72.2 74.6 62.4 48.4 54.5 99.8 60.8 25.3
Modal Verbs + Top 30 speculative words 77.4 72.2 74.4 61.6 48.5 54.3 99.8 60.8 25.5

Semantic-only (BERT)
SEMsentence 86.6 72.0 76.9 80.0 45.6 58.1 99.8 46.4 25.6
SEMtuple 84.0 73.2 77.1 76.0 47.9 58.8 99.8 57.6 23.2
SEMrelation 84.5 73.1 77.3 75.7 48.3 59.0 99.8 64.4 23.4

Syntactic-only (Dependency)
SYNsub-graph 72.3 70.2 71.0 53.2 46.6 49.7 95.4 41.0 35.5
SYNfull-graph 72.8 70.0 71.2 54.3 46.2 49.9 95.6 42.5 34.7

Semantic and Syntactic
SEMsentence + SYNfull-graph 82.4 74.0 77.8 70.5 52.3 60.1 99.8 58.0 32.8
SEMrelation + SYNfull-graph 81.1 75.4 78.3 67.2 57.0 61.7 100 62.3 37.5
SEMrelation + SYNsub-graph (SpecTup) 80.7 77.5 79.0 66.9 58.9 62.6 100 67.2 40.9

Table 5: Main results for binary tuple speculation detection. The best results are in boldface.

worse than the other two baselines using more in-
formation (tuple and full sentence), suggesting that
some relations are more likely to be speculative
than others, and the BERT encoding has implicitly
considered the contextual information.

Syntactic: Sub-graph vs Full-graph. In terms
of syntactic modeling, the baselines using sub-
graphs are slightly better than those using full-
graphs, indicating that it is valuable to encode spec-
ulation cues with the other immediate neighbours
of the tuple relation.

Neural Methods vs Keywords Matching Ob-
serve that SpecTup outperforms all keywords
matching methods by a large margin. In particular,
the recall of hard case speculations in SpecTup is
nearly double that of keyword matching, indicating
the advantages of semantic and syntactic modelling
through neural networks.

Overall, SpecTup achieves the best results. How-
ever, the F1 of speculative class is only 62.6, leav-
ing a big room for future investigation.

6 Multi-class Speculation Classification

As mentioned in Section 3, we extend the task to
predict both the existence of speculation and its
specific type, as defined by the 6 auxiliary modal
verbs: ‘might’, ‘can’, ‘will’, ‘would’, ‘should’, and
‘had’. In this way, we perform multi-class classi-
fication among 7 classes: non-speculative and 6
types of speculative classes.

Spec Type #N Pr Re F1 % Hard

Non-Spec 19,456 93.5 97.7 95.6 -

Spec 2,616 66.7 46.6 54.9 57%

– can 1,003 87.6 47.9 61.9 40%
– might 720 53.9 39.0 45.3 94%
– will 339 82.4 59.3 69.0 38%
– should 283 39.4 56.2 46.3 82%
– would 170 85.3 37.6 52.2 28%
– had 101 94.4 33.7 49.6 36%

Table 6: Breakdown results of multi-class speculation
classification by speculation class.

6.1 Results Overview

As reported in Table 6, the multi-class F1 score of
speculative classes decreases to 54.9%, compared
to the positive F1 score of 62.6% in Table 5. As
expected, detecting speculative type is much more
challenging than the existence of speculation.

Table 6 also reports the break-down precision, re-
call, F1 scores of the 6 different speculative classes.
The performance of these classes are determined
mainly by two factors: (i) The hard cases are nat-
urally more challenging, because the speculation
labels do not appear in source sentences. They can
only be inferred based on the semantics. We ob-
serve that ‘might’ class consists of 94% of hard
cases, leading to the lowest F1 score 45.3% among
all speculative classes. (ii) The performance is af-
fected by the number of instances. The ‘had’ class
is a minor class, with a very low F1 score 49.6%,
even when only 36% of its labels are hard cases.
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ID Example Sentence Spec Cue OIE Tuple with Speculation

1 The UN plans to release a final report. plans to (the UN, will release, a final report)
2 The UN plans to reduce troops. plans to (the UN, might reduce, troops)
3 Charlemagne planned to continue the tradition. planned to (Charlemagne, would continue, the tradition)

Table 7: Three examples of speculative tuples in LSOIE with similar speculation cue (“plan to”), but with different
speculation labels. We truncate the long sentence and demonstrate only the tuple with speculation for conciseness.

Figure 2: Distribution Non-spec and spec labels, and the
break-down distribution of different speculative types.

6.2 Long-tail Distribution

The labels exhibit a long-tail class distribution. As
shown in Figure 2, 10.9% tuples are speculative.
Among them, ‘might’ and ‘can’ contribute to 65.9%
of the speculative labels. Other speculative types
are associated with relatively small number of sam-
ples. Such class imbalance is a key source of per-
formance degradation in classification. For com-
parison, the F1 scores of head class ‘Non-spec’ and
tail class ‘Spec’ are 95.6% and 54.9%, respectively
(with a big difference of 40.7%). Among specula-
tive classes, the F1 scores of head class ‘can’ and
tail class ‘had’ are 61.9% and 49.6%, respectively
(with a big difference of 12.3%), although the per-
cent of hard cases of ‘can’ is even higher than that
of ‘had’ (40% > 36%).

6.3 Ambiguous Speculative Types

The annotation of speculative types can be ambigu-
ous, due to subtle difference between speculation
labels. Table 7 lists three example sentences, all
containing “plan to”, which can express both like-
lihood and intention. Different annotators might
interpret the sentence in different ways, thus an-
notating the same speculation cue with different
labels. Manual checking of annotations in LSOIE
shows that such ambiguous labels are rather com-
mon, particularly among hard cases. Such ambigu-
ous hard cases are more challenging to distinguish.

7 Related Work

Speculation Detection. Speculation detection
from text is essential in many applications in in-
formation retrieval (IR) and information extrac-
tion (IE). Research in computational linguistics
has made significant advances in detecting spec-
ulations. Remarkably influential datasets include
the BioScope Corpus for uncertainty and negation
in biomedical publications (Szarvas et al., 2008),
the CoNLL 2010 Shared Task (Farkas et al., 2010)
for detecting hedges and their scope in natural lan-
guage texts, unifying categorizations of semantic
uncertainty for cross-genre and cross domain un-
certainty detection (Szarvas et al., 2012), and the
SFU Review Corpus (Konstantinova et al., 2012)
for negation, speculation and their scope in movie,
book, and consumer product reviews.

Current work on speculation is to detect the
existence of speculation and/or the speculation
cue/scope in a given sentence. The speculation
scope is the maximum number of words affected
by the phenomenon. The speculation cue refers
to the minimal unit which expresses speculation.
For instance, the most frequent 4 keywords (“if ”,
“or”, “can”, and “would”) contribute to 57% of the
total speculation cues in SFU Review Corpus. We
argue that the detection of such speculation cue at
sentence-level is relatively easier. In comparison,
tuple-level speculation cue detection requires not
only locating the correct speculative keywords, but
also assigning them to the correct tuples. It is crit-
ical for many real-world applications relying on
updated and accurate tuples in knowledge base.

Traditional and Neural OIE systems. Open
Information Extraction (OIE) was first proposed
by Yates et al. (2007). Before deep learning era,
many statistical and rule-based systems have been
proposed, including Reverb (Fader et al., 2011),
Clausie (Corro and Gemulla, 2013), and Stanford
OpenIE (Angeli et al., 2015), to name a few. These
models extract relational tuples based on hand-
crafted rules or statistical methods. The extraction
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mainly relies on syntactic analysis.
Recently, neural OIE systems have been devel-

oped and showed promising results. Neural OIE
systems can be roughly divided into two types:
generative and tagging-based (Zhou et al., 2022).
Generative OIE systems (Cui et al., 2018; Kolluru
et al., 2020a; Dong et al., 2021) model tuple ex-
traction as a sequence-to-sequence generation task
with copying mechanism. Tagging-based OIE sys-
tems (Stanovsky et al., 2018; Kolluru et al., 2020b;
Dong et al., 2022) tag each token as a sequence
tagging task. Most neural OIE models are designed
for end-to-end training and the training data are
mostly silver data generated by traditional systems.

8 Conclusion

Speculation detection, which is essential in many
applications in IR and IE, has not been explored in
OIE. So we formally define a new research task to
perform tuple-level speculation detection on OIE
extracted tuples. We notice that the LSOIE dataset,
although not dedicated for speculation detection,
provides us a timely preview of this interesting
research task. We conduct a detailed analysis on the
speculative tuples of the LSOIE dataset. To provide
a glimpse of this research task, we develop a simple
but effective model named SpecTup to detect tuple-
level speculation. As an emerging research area, we
believe there is a big room for further exploration,
from dataset construction to more effective models.
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Limitations

We analyze the limitations of our work from three
aspects as follows.

Annotation Quality of Speculation. Annotating
speculation is challenging due to the subtle dif-
ference between different speculative types. As
discussed in Section 2.1, neither the crowdsourc-
ing of QA-SRL Bank 2.0 nor the conversion of
LOSIE pays specific attention to speculation. The
annotation of auxiliary modal verbs in the question
is based on crowd workers’ natural understanding
of the sentences. Without explicit focus on spec-
ulation, the existing annotations reflect the crowd

worker’s natural understanding without any bias
towards specific focusing on speculation. There-
fore, we argue that the annotation is suitable for
evaluating tuple-level speculations.

Quality of OIE Tuples. We use the ground truth
tuples of LSOIE as inputs, to avoid potential bias
introduced by any specific OIE model (see Sec-
tion 5.1). However, existing OIE systems are not
so perfect, as we note that the state-of-the-art F1

score in LSOIE dataset is 0.71 (Vasilkovsky et al.,
2022). The tuple-level speculation detection, as a
post-possessing task, will inevitably suffer from the
imperfectly extracted tuples. However, SpecTup
can largely mitigate such issue. SpecTup only relies
on the tuple relation for the speculation detection,
rather than taking the full tuple with all arguments.
Tuple relation is usually a verb or a verbal phrase
that are straightforward to obtain. Therefore, so
long as an OIE system can extract correct tuple re-
lations, SpecTup can make predictions accordingly.

Modelling Speculation Cues. We model the im-
mediate neighbours of the tuple relation in depen-
dency parsing as speculation cues (see Section 4.2).
However, some speculation cues are not the im-
mediate neighbours of the tuple relation. However,
considering the full dependency tree leads to poorer
results. We leave it for future work to explore a
better way to effectively model speculation cues.
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A Appendix

A.1 Implementation Detail

We build and run our system with Pytorch 1.9.0
and AllenNLP 0.9.0 framework. The dependency
annotations are by spacy-transformers. 8 There are
in total 45 types of dependency labels. We tokenize
and encode input sentence tokens using bert-base-
uncased. 9 The experiments are conducted with
Tesla V100 32GB GPU and Intel® Xeon® Gold
6148 2.40 GHz CPU. The experimental results are
averaged over 3 runs with different random seeds.
Each epoch is around 15 minutes on a single Tesla
V100 32GB GPU. The hidden dimension dh for
semantic representation hsemi and that of syntactic
representation hsyni are both 768.

A.2 QA-SRL Annotation

QA-SRL stands for Question-Answer (QA) driven
Semantic Role Labeling (SRL). It is a task for-
mulation which uses question-answer pairs to la-
bel verbal predicate-argument structure (FitzGerald
et al., 2018). Given a sentence s and a verbal pred-
icate v from the sentence, annotators are asked to
produce a set of wh-questions that contain v and
whose answers are phrases in s. The questions are
constrained in a template with seven fields, s ∈
Wh×Aux×Subj×Verb×Obj×Prep×Misc, each
associated with a list of possible options. Answers
are constrained to be a subset of words in the sen-
tence but not necessarily have to be contiguous
spans. Table 8 shows example annotations of an
input sentence “The UN plans to release a final re-
port in two weeks.”. In its first annotated question:
“When will someone release something” contains a
verb and its answer is a phrase “in two weeks” in the
sentence. The answer tells us that “in two weeks”
is an argument of “release”. Enumerating all such
pairs provides a relatively complete representation
of the verb’s arguments and modifiers.

A.3 Fine-grained Breakdown of Difficulty
Distribution

Table 9 presents a more fine-grained breakdown
of the difficulty distribution of speculation labels
for each label. It shows that 92.5% of ‘might’ la-
bels and 81.5% of ‘should’ labels belong to hard
category, while the distribution of other labels is

8https://spacy.io/universe/project/
spacy-transformers

9https://huggingface.co/bert-base-uncased
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Verbal predicate 7-slot Question Answer
Wh Aux Subj Verb Obj Prep Misc

release
When will someone release something - - in two weeks
What will someone release - - - a final report
Who will - release something - - The UN

plans Who - - plans - to do something The UN
What does someone plan - to do - release a final report

Table 8: The QA-SRL annotations for a newswire sentence: “The UN plans to release a final report in two weeks.”

more even. This can help use understand better the
challenges of speculation detection task.

A.4 Speculative Keywords

Speculation keyword or cue is the minimal unit
which expresses speculation (Szarvas et al., 2008).

Konstantinova et al. (2012) annotate the Simon
Fraser University Review corpus 10 with negation,
speculation, and their cues. This corpus consists of
400 user reviews from Epinions.com. The 10 most
frequent speculative keywords in the SFU Review
Corpus are listed in Table 10.

Szarvas et al. (2012) select three corpora (i.e.,
BioScope, WikiWeasel, and FactBank) from differ-
ent domains, e.g., biomedical, encyclopedia, and
newswire. The BioScope corpus (Szarvas et al.,
2008) contains clinical texts as well as biological
texts from full papers and scientific abstracts; the
texts are manually annotated for hedge cues and
their scopes. The WikiWeasel corpus (Farkas et al.,
2010) is annotated for weasel cues and semantic
uncertainty, from randomly selected paragraphs
taken from Wikipedia pages. The FactBank is a
newswire dataset (Saurí and Pustejovsky, 2009).
Events are annotated in the dataset and they are
evaluated on the basis of their factuality from the
viewpoint of their sources. The 20 most frequent
speculative keywords in the BioScope, WikiWeasel,
and FactBank are also shown in Table 10.

Speculative Keywords Matching. As discussed
in Section 5.2, we consider keyword matching as
simple baselines. The matching relies on a pre-
defined speculative keywords dictionary. A tuple
is classified as speculative if its immediate neigh-
bours in dependency parsing tree contain any word
in the dictionary. We first use the 6 auxiliary modal
verbs (‘might’, ‘can’, ‘will’, ‘would’, ‘should’, and
‘had’) as the dictionary. Shown in Table 5, modal
verbs based matching leads to very low recall, as

10http://www.sfu.ca/~mtaboada/SFU_Review_
Corpus.html

expected. We then include more speculative key-
words in our keywords dictionary.

Specifically, we sum the frequency of all fre-
quent cues across four datasets in Table 10, and
keep the 30 most frequent cues as exemplified in
Table 11. We then build three variants on top of
the basic dictionary, by adding the top 10, 20, and
30 speculative cues to the dictionary. The enriched
dictionary largely increases the recall scores (see
Table 5). We notice that including top 10 key-
words significantly increases the recall of spec-
ulative class by 12.3%, and recall of hard case
speculations by 20.9%. In comparison, including
additional top 11-20 keywords only marginally in-
creases the recall of speculative class by 0.4%, and
recall of hard case speculations by 0.8%. Further-
more, the increase of including additional top 21-30
keywords is negligible.
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Diff.
Type can might will should would had

Num (%) Num (%) Num (%) Num (%) Num (%) Num (%)

Easy 1,111 36.1 114 3.9 512 36.3 84 8.1 349 39.7 189 34.4
Medium 1,404 33.0 104 3.6 384 27.2 108 10.4 267 30.3 162 29.5
Hard 1,743 40.9 2,676 92.5 516 36.5 845 81.5 264 30.0 198 36.1

Total 4,258 100 2,894 100 1,412 100 1,037 100 880 100 549 100

Table 9: Number and percentage (%) of speculation labels by class and by difficulty level.

SFU BioScope FactBank WikiWeasel
Cue Frequency Cue Frequency Cue Frequency Cue Frequency

if 876 suggest 810 expect 75 may 721
or 820 may 744 if 65 if 254
can 765 indicate 404 would 50 consider 250
would 594 investigate 221 may 43 believe 173
could 299 appear 213 could 29 would 136
should 213 or 197 possible 26 probable 112
think 211 possible 185 whether 26 suggest 108
may 157 examine 183 believe 25 possible 93
seem 150 whether 169 likely 24 allege 81
probably 121 might 155 think 24 likely 80
- - can 117 might 23 might 78
- - likely 117 will 21 seem 67
- - could 112 until 16 think 61
- - study 101 appear 15 regard 58
- - if 99 seem 11 could 55
- - determine 87 potential 10 whether 52
- - putative 80 probable 10 perhaps 51
- - hypothesis 77 suggest 10 will 39
- - think 66 allege 8 appear 32
- - would 52 accuse 7 until 15

Table 10: Most frequent speculation cues according to different domains/datasets. The statistics of SFU are from
paper (Konstantinova et al., 2012) and other statistics are from paper (Szarvas et al., 2012).

Top 1-10 Top 11-20 Top 21-30
Cue Freq. Cue Freq. Cue Freq.

may 1665 appear 260 probable 122
if 1294 might 256 probably 121
or 1017 consider 250 study 101
suggest 928 whether 247 allege 89
can 882 seem 228 determine 87
would 832 investigate 221 putative 80
could 495 likely 221 hypothesis 77
indicate 404 should 213 expect 75
think 362 believe 198 will 60
possible 304 examine 183 regard 58

Table 11: The 30 most frequent speculation cues by
summing the frequency in Table 10.
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