
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13222–13234
December 6-10, 2023 ©2023 Association for Computational Linguistics

DIFFERENCE-MASKING:
Choosing What to Mask in Continued Pretraining

Alex Wilf∗, Syeda Nahida Akter∗, Leena Mathur, Paul Pu Liang,
Sheryl Mathew, Mengrou Shou, Eric Nyberg, Louis-Philippe Morency

Carnegie Mellon University
{awilf,sakter}@cs.cmu.edu

Abstract
The self-supervised objective of masking-and-
predicting has led to promising performance
gains on a variety of downstream tasks. How-
ever, while most approaches randomly mask
tokens, there is strong intuition that deciding
what to mask can substantially improve learn-
ing outcomes. We investigate this in continued
pretraining setting in which pretrained models
continue to pretrain on domain-specific data be-
fore performing some downstream task. We
introduce DIFFERENCE-MASKING, a mask-
ing strategy that automatically chooses what
to mask during continued pretraining by con-
sidering what makes a task domain different
from the pretraining domain. Empirically,
we find that DIFFERENCE-MASKING outper-
forms baselines on continued pretraining set-
tings across four diverse language-only and
multimodal video tasks.

1 Introduction

Inspired by the distributional hypothesis in the lan-
guage domain (Harris, 1954), masking is a self-
supervised learning (SSL) objective in which a
model attempts to reconstruct hidden portions of
data from the surrounding context. Masking has
enabled breakthrough performance on tasks from a
variety of domains, such as language, vision, and
speech (Devlin et al., 2019; Li et al., 2021; Hsu
et al., 2021; Ericsson et al., 2022), motivating inter-
est in researching how masking strategies influence
representation learning in SSL.

Masked prediction has recently been applied to
adapt pretrained models to specific downstream
tasks by continuing to pretrain models on in-
domain unlabelled data (Dery et al., 2023). Mask-
ing in this continued pretraining setting been shown
to be particularly effective when the target do-
main differs substantially from the pretraining do-
main (Gururangan et al., 2020).

While prior work has studied how the amount
masked influences model learning (He et al., 2022),
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Figure 1: DIFFERENCE-MASKING automatically se-
lects what to mask based on what makes the task domain
different from the pretraining domain, enhancing model
learning on the end task.

most masking approaches randomly choose which
parts of the data to mask. Although it is under-
studied in SSL, deciding what to mask is a critical
component in human education (Pajares and Miller,
1997; Bjork and Linn, 2006). Educators designing
“fill-in-the-blank” assessments for students must de-
cide what content to mask in order to effectively
assess student understanding of a domain (Bae and
Lee, 2018). For example, in a real-world “fill-in-
the-blank” chemistry test, a teacher might choose
to mask domain-specific words (“density”, “sili-
con”) to assess student learning, instead of masking
domain-irrelevant words (“example”, “process”).

In this paper, we propose DIFFERENCE-
MASKING, a novel approach for automatically se-
lecting what to mask during continued pretraining.
Our strategy first identifies anchors that describe
what makes a target domain different from the pre-
training domain and then determines what to mask
during continued pretraining based on similarity to
those anchors.

In experiments spanning four diverse language-
only and multimodal video datasets (ACL-ARC,
ChemProt, TVQA, and Social-IQ), we find that
DIFFERENCE-MASKING outperforms strong base-
lines, supporting our hypothesis that masking based
on what is different about a task provides strong
representation for continued pretraining. We pro-
vide intuitions to explain the strong performance
of DIFFERENCE-MASKING, along with extensive
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Figure 2: DIFFERENCE-MASKING: an approach to choosing what to mask during continued pretraining that
prioritizes masking concepts that make the target domain different from the pretraining domain. DIFFERENCE-
MASKING does this by first selecting anchor topics relating to the downstream task, and then by masking words or
bounding boxes based on their similarity to those anchor topics.

analyses and ablations to better understand the per-
formance of our method. Our code is publicly
available.

2 Related Work

Masking relies on the distributional hypothesis,
which posits that the meaning of a word can be
inferred from its context (Harris, 1954). Masking
in NLP has functioned as an effective SSL strategy
when training models such as BERT (Devlin et al.,
2019) and XL-Net (Yang et al., 2019). Although
random masking has been more closely studied
in NLP than non-random masking, there are three
closely related works to ours from NLP.

EntityBERT (Lin et al., 2021) masks tokens
based on whether they are part of “entities” rec-
ognized by a domain-specific pretrained named-
entity-recognizer. Salient Span Masking (SSM)
(Guu et al., 2020) is a similar method that uses a
named-entity-recognition model to mask out a sin-
gle entity for the downstream task of open-domain
QA. However, these approaches require a domain-
specific pretrained entity-tagger, and the masking
strategy they determine is the same for any do-
main to which that tagger is applied. In contrast,
DIFFERENCE-MASKING determines what to mask
without pretrained entity-taggers, and its masking
strategy can change depending on the unlabelled
data in the task domain.

Selective Masking (Gu et al., 2020) uses data
from the downstream task to decide which tokens
to mask during continued pretraining by estimat-

ing how much each token contributes to improved
downstream task performance. It is important
to note that Selective Masking uses supervised
downstream task labels, whereas DIFFERENCE-
MASKING is entirely self-supervised.

Prior work from the vision community has also
contributed to an understanding of masking strate-
gies, primarily by using the attention of the model
during SSL training to determine what to mask.
MST (Li et al., 2021) uses attention maps to de-
termine “non-essential regions” to mask, while At-
tnMask (Kakogeorgiou et al., 2022) does the op-
posite by masking the most attended-to regions.
Unlike DIFFERENCE-MASKING, these approaches
do not take into account domain-specific informa-
tion when determining their masking strategy. This
can be an impediment to performance when the
model’s attentions do not already contain infor-
mation about what is important in a given input
sequence.

3 DIFFERENCE-MASKING

This section describes the motivation and imple-
mentation of DIFFERENCE-MASKING: our self-
supervised method to determine a masking strategy
for continued pretraining. The overall process is
depicted visually in Figure 2.

3.1 Problem Setting
We are given a model which has been pretrained on
multi-domain data drawn from domain distribution
XPT (e.g., a model such as RoBERTa pretrained
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on a large multi-domain corpus). We are interested
in how to adapt this pretrained model to a specific
target domain XT without observing task labels Y .

Continuing pretraining on XT has emerged as a
popular solution approach to this problem (Guru-
rangan et al., 2020; Dery et al., 2023).

3.2 Motivation and Notation
If the masking objective is used to train models to
learn word representations (Harris, 1954; Devlin
et al., 2019), a natural question emerges: which
words is it most important that our models learn
to represent? We believe that this question may
be important to effectively continue pretraining on
specialized domains. We expect that continued
pretraining can benefit from a masking strategy
that considers what makes a task-domain different.

This leads to the intuition behind DIFFERENCE-
MASKING: to train on what makes a target domain
different from the pretraining domain. For example,
in a corpus about chemistry we would expect that
the task of masking and predicting words strongly
related to chemistry such as “molecule” will lead
to better learning outcomes than words such as
“analysis”, which could be related to chemistry in
addition to many other domains.

Formally, we term XT∩PT as the concepts likely
to appear in both XT and XPT (e.g., “analysis”),
and we term XT/PT as the concepts that make the
domain XT different from XPT (e.g., “molecule”).
With this notation, we can now express our intu-
ition in terms of mutual information with the down-
stream task Y : we intuit that concepts common in
XT but uncommon in XPT (i.e., in XT/PT ) share
higher mutual information with the task label than
concepts found in both domains (XT∩PT ) do:

I(XT/PT ;Y ) > I(XT∩PT ;Y ) (1)

The goal of DIFFERENCE-MASKING then is to
learn representations during masking that capture
the information unique to the domain (XT/PT )
which is more relevant for the downstream task.

3.3 Our Approach: DIFFERENCE-MASKING

To learn masked representations that capture the
information unique to the domain (XT/PT ), our
proposed DIFFERENCE-MASKING approach pro-
ceeds in two steps:

1. Finding difference anchors: We first deter-
mine which words are most commonly found
in domain XT and not commonly found in

general domains XPT . We term these words
difference anchors that summarize the con-
cepts unique to XT .

2. Masking based on differences: Using these
difference anchors, we determine the likeli-
hood that each word should be masked based
on its similarity to these difference anchors.
We sample from this probability distribution
to decide what to mask during MLM contin-
ued pretraining.

These steps are explained in detail in the following
subsections.

3.4 Finding Difference Anchors: TF-ICF
Our goal is to determine a set of corpus-level dif-
ference anchors that are representative of the dif-
ferences between the pretraining domain XPT and
the task domain XT . Since our goal is to design a
simple yet effective method for finding these differ-
ences, we use of a modified version of the widely
used TF-IDF scoring function from the field of sta-
tistical NLP (Jones, 1972). TF-IDF determines the
ratio of how frequently a word appears in a docu-
ment compared to how frequently the word appears
in other documents in a corpus. Because we are
attempting to find words that make a target cor-
pus XT different from general pretraining corpora
XPT , the score of a word is highest when it appears
frequently in our corpus (XT ) and infrequently in
the multi-domain pretraining corpus (XPT ). We
denote our approach as TF-ICF for term-frequency,
inverse-corpus-frequency, expressed by the follow-
ing scoring function:

TF-ICF(wi) =
freq(wi, XT )

freq(wi, XPT )
(2)

To effectively capture word frequencies in the
general distribution of the English Language used
for pretraining (XPT ), we use unigram counts de-
rived from the Google Web Trillion Word Corpus
(Brants and Franz, 2006; Norvig, 2009).

We score all words in XT with this metric and
choose the top K as anchors A to represent the do-
main, where K is a hyperparameter of our method.
We analyze the impact of this hyperparameter in
Section 5.3.

3.5 Masking Based on Differences
DIFFERENCE-MASKING then masks words based
on similarity to anchors A. Formally, we define
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similarity between a word w and an anchor word
Ak as the cosine similarity of the words’ BERT
(Devlin et al., 2019) embeddings.

sim(w,Ak) = cos(BERT(w),BERT(Ak)) (3)

In order to choose words to mask, we generate
probability distribution α over the words in the
sentence x to represent the probability that each
word should be masked. We determine the weight
αi of each word wi by calculating its similarity
score with the most similar anchor word in A (we
explore other strategies in our experiments). This
value is normalized over the length of the sequence
to ensure the probability distribution sums to 1.

α(wi) =
maxk∈K sim(wi, Ak)∑N
j=1maxk∈K sim(wj , Ak)

(4)

DIFFERENCE-MASKING then masks terms by
sampling from distribution α without replacement,
and the model attempts to reconstruct the masked
terms from the surrounding context.

Multimodal Implemention of DIFFERENCE-
MASKING To apply our method to the visual
domain, we draw on work from the vision commu-
nity in which visual representations are grouped at
the object level (Baradel et al., 2018; Sajjadi et al.,
2022) and use object labels (e.g. person, car...etc)
from a state-of-the-art object detector (Wang et al.,
2021; Zhang et al., 2016) to calculate similarity
with the anchor words. A detailed description of
our implementation of DIFFERENCE-MASKING in
the multimodal setting can be found in Appendix B.

4 Experimental Settings

Our experiments evaluate whether DIFFERENCE-
MASKING’s masking strategy leads to performance
improvements on challenging language-only and
multimodal video understanding tasks. We fol-
low the experimental setting from (Gururangan
et al., 2020), in which unlabelled data from the
downstream task domain is used for continued pre-
training before eventually performing downstream
task finetuning. This is a popular SSL setting be-
cause it represents a computationally-feasible way
to test the effectiveness of self-supervised represen-
tation learning methods (e.g. without recreating
a pretrained model), and it is realistic to modern
approaches which rely heavily on pretrained mod-
els (Dery et al., 2023).

Experiments are performed to allow each model
to learn as long as needed during continued pre-
training, only stopping when validation error in-
creases (early-stopping). Each result is averaged
across five random seeds. Hyperparameter settings
and data preprocessing details can be found in Ap-
pendix A.

4.1 Datasets
Language-only Datasets As in Gururangan et al.
(2020); Dery et al. (2023), we conduct experiments
with the ChemProt dataset (Kringelum et al.,
2016), a relation classification task that uses chem-
istry documents. ChemProt is a low-resource clas-
sification task with a large amount of in-domain un-
labeled data, making it a realistic setting in which
SSL is helpful in continued pretraining.

We also conduct experiments with the ACL-
ARC task (Jurgens et al., 2018), a citation intent
task based on the ACL Anthology Reference Cor-
pus (Bird et al., 2008) used in continued pretraining
experiments in (Gururangan et al., 2020). We use
train, validation, and test splits for both datasets
from (Dery et al., 2023; Gururangan et al., 2020).

Multimodal Datasets We also experiment on
continued pretraining for two challenging multi-
modal video understanding tasks. TVQA (Lei
et al., 2018) is a dataset containing 21,792 videos
from 6 American television shows and questions
and answers related to the videos. Each question is
paired with 5 answer choices (one correct answer
and 4 incorrect answers), and corresponding video,
audio, and subtitles.

Social-IQ (Zadeh et al., 2019) contains 1,250
videos of social situations and questions and an-
swers pertaining to the videos. Each question has
corresponding video, audio, and subtitles. We use
the train, validation, and test splits from the pub-
licly available datasets.

We use performance metrics consistent with
prior work (Gururangan et al., 2020; Dery et al.,
2023): F1 score for ACL-ARC and classification
accuracy for ChemProt, TVQA, and Social-IQ.

4.2 Baseline Methods
Random Masking Most masking approaches
choose tokens or words to mask with a uniform ran-
dom probability (Devlin et al., 2019; Yang et al.,
2019). We consider both the token-level and word-
level approaches in our experiments. Formally, the
probability αi that word or token xi in a sequence
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Language-Only Multimodal
Masking Strategy ACL-ARC ChemProt Social-IQ TVQA
Random Masking (Word) 62.052.21 81.900.51 - -
Random Masking (Token) 63.741.97 82.820.23 69.050.52 73.750.31
MST (Li et al., 2021) 65.610.13 83.170.17 68.370.49 81.140.30
AttnMask (Kakogeorgiou et al., 2022) 66.301.67 83.530.56 70.180.71 81.570.12
DGA (Ke et al., 2023) 67.200.27 70.670.30 - -
Selective Masking (Gu et al., 2020) 69.061.80 82.940.47 - -
EntityBERT (Lin et al., 2021) 71.090.25 82.040.40 - -
Salient Span (Cole et al., 2023) 71.940.58 82.410.21 - -
DIFFERENCE-MASKING 74.042.01 83.940.39 71.370.58 81.731.13

Table 1: We find that DIFFERENCE-MASKING outperforms strong baselines in both the language and multimodal
experimental settings. We note that our entirely self-supervised method also outperforms Selective Masking, which
uses labelled data to inform its masking strategy. Values are average results over five trials, subscripts are standard
deviations.

of length N will be masked in random-masking is

αi =
1

N
(5)

AttnMask (Kakogeorgiou et al., 2022) is a
domain-agnostic token-based masking approach
in which the likelihood of masking a given token is
proportional to how attended-to that token is by the
[CLS] token, averaged across the different heads
of the transformer. Formally, this approach can
be seen as defining a function gatt which takes in
model fθ, sequence of tokens x, and index i and
outputs how attended-to token xi is.

αi ∝ gatt(fθ, x, i) (6)

MST (Li et al., 2021) is an approach very similar
to AttnMask, except that it masks “non-essential
regions”, effectively corresponding to an inverse
weighting based on the attention of the model to
the token xi.

αi ∝ gatt(fθ, x, i)
−1 (7)

Selective Masking (Gu et al., 2020) chooses to-
kens to mask based on whether adding each token
will improve downstream task accuracy as mea-
sured by the difference between the downstream
task performance when using the full sequence
x versus using only the sequence up to and in-
cluding the token xi. Notably, this approach uses
downstream task labels to guide the choice of mask
in continued pretraining, whereas DIFFERENCE-
MASKING is self-supervised.

αi ∝ P (y | x)− P (y | x[:i]) (8)

DGA (Ke et al., 2023) is another relevant work
that proposes a masking strategy for NLP model
adaptation. However, unlike the methods described
above, DGA chooses which attention heads to
mask instead of choosing which tokens to mask,
assigning importance to attention heads based on
the gradient of the loss between the model’s rep-
resentations of two differently-masked versions of
the same input. Additionally, DGA encourages
the model to learn integrated representations of
the target domain and general knowledge using a
contrastive loss.

EntityBERT (Lin et al., 2021) masks tokens
based on whether they are part of “entities”,
as defined by a domain-specific named-entity-
recognition (NER) model. The original paper uses
the PubMedBERT model, trained originally on the
clinical domain. We also implement Salient Span
Masking (Guu et al., 2020), which in this case is
the same as the EntityBERT approach applied only
to mask a single word in the sentence. To apply the
approach to the ChemProt and ACL-ARC domains
requires NER models effective in those domains.
For ChemProt we used the BioBERT model (Lee
et al., 2019) fine-tuned in NER task with BC5CDR-
chemicals (Li et al., 2016) and the BC4CHEMD
(Krallinger et al., 2015) corpus and for ACL-ARC
we used the popular SciBERT model (Beltagy
et al., 2019).

4.3 Experimental Methodology
Language-only We reproduce the experimental
setting from AANG (Dery et al., 2023), which em-
ploys a pretrained 110M RoBERTabase model with
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two heads: one for continued pretraining and one
for the downstream task. Our hyperparameters and
other detailed configuration notes are described in
Appendix A.

Multimodal We conduct our multimodal experi-
ments using a strong pretrained model: MERLOT-
Reserve (Zellers et al., 2022), a large multimodal
transformer pretrained with a contrastive multi-
modal prediction objective on a dataset of 20 mil-
lion Youtube videos.

To experiment with masking strategies in the
multimodal setting, we continually pretrain a
200M MERLOT-Reservebase model by masking-
and-predicting visual patches. We evaluate the
learned representation quality by freezing the
model and finetuning only the linear classifier layer
on the downstream task following (Wilf et al.,
2023)’s methodology.

A detailed description of our implementation of
DIFFERENCE-MASKING in the multimodal setting
can be found in Appendix B, and our hyperparame-
ters can be found in Appendix A.

5 Results and Discussion

5.1 Comparison with Baseline Approaches
Our experiments compare our proposed
DIFFERENCE-MASKING with established
baselines including Random Masking (at the
word and token level), AttnMask (Kakogeorgiou
et al., 2022), MST (Li et al., 2021), Selective
Masking (Gu et al., 2020), DGA (Ke et al., 2023),
EntityBERT (Lin et al., 2021), and Salient Span
Masking (Cole et al., 2023). The results are
summarized in Table 1. We find that DIFFERENCE-
MASKING shows strong results compared to
baselines across language-only and multimodal
video understanding tasks.

Notably, our approach demonstrated superior
performance on the ACL-ARC dataset with an ac-
curacy of 74.04%, a marked improvement over the
random token baseline (63.74%) and a substan-
tial improvement over the best baseline (Salient
Span Masking, 71.94%). Our approach also sur-
passed Selective Masking (69.06%). This is surpris-
ing because Selective Masking uses downstream
task labels to inform its masking strategy whereas
DIFFERENCE-MASKING is self-supervised.

Results on the ChemProt dataset are also en-
couraging, showing that DIFFERENCE-MASKING

achieves an accuracy of 83.94%, marginally better

than all the baselines, including Random Masking
(82.82%), AttnMask (83.53%), and EntityBERT
(82.04%). Similarly to Selective Masking, the En-
tityBERT and DGA masking strategies were orig-
inally tested on much larger datasets, which may
suggest a limitation of these methods in the low-
resource continued pretraining setting.

DIFFERENCE-MASKING also demonstrates ro-
bust performance in multimodal settings. On
the Social-IQ dataset, DIFFERENCE-MASKING

achieved an accuracy of 71.37%, outperforming the
Random Masking (69.05%), AttnMask (70.18%),
and MST (68.37%) methods. We were unable to
compare our approach with Selective Masking and
EntityBERT on these datasets due to the language-
only design of their entity taggers. In contrast,
our method is not limited to the language domain,
and, in fact, performs well in the multimodal set-
ting. And on the TVQA dataset, DIFFERENCE-
MASKING achieved an accuracy of 81.73%, out-
performing the Random Masking approach sub-
stantially (73.75%) and the AttnMask approach
marginally (81.57%).

These results highlight the effectiveness and ver-
satility of the DIFFERENCE-MASKING approach
across various language and multimodal datasets.

5.2 What is masked?
In this section, we investigate what is masked
by DIFFERENCE-MASKING and its link to down-
stream task performance.

On the ACL-ARC task, we find that the most
frequently masked words in the ACL-ARC task
had an interesting grounding in human intuition.
The ACL-ARC task is a citation intent task on a
corpus comprising ACL papers. As the subject of
ACL papers can vary widely, comprising multiple
sub-domains and research fields, we were curious
how DIFFERENCE-MASKING’s masking strategy
would handle this domain.

We found that the most frequently masked words
closely-aligned with the ACL paper submission
tracks describing the high-level topic categories
for papers. For example, some of the most fre-
quently masked words were “learning”, “infor-
mation”, “translation”, “semantic”, and “lexical”.
These words closely correspond to submission
tracks “Machine Learning for NLP”, “Information
Extraction”, “Machine Translation”, and “Seman-
tics: Lexical”. Since submission tracks for ACL
can be seen as a set of topics that span the space
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Figure 3: The most frequently masked words chosen by the DIFFERENCE-MASKING algorithm across the ChemProt
and ACL-ARC tasks. We find that for the ChemProt dataset, the masks we find automatically through unlabelled
data partially recover the end task labels.

of ACL papers, this supports our hypothesis that
masked words chosen by DIFFERENCE-MASKING

align with what makes this domain different.
On the ChemProt task we also found an inter-

esting pattern in what was masked. The objective
of the ChemProt task is to determine a type of
relation corresponding to a type of biochemical
interaction between entities in the text, where la-
bels include words such as “activation”, “inhibitor”,
and “antagonist”. Interestingly, we find that some
of the words DIFFERENCE-MASKING chooses to
mask most often are the same words as the labels
for the downstream task. This result is also vi-
sualized in Figure 3. Some of the most-masked
words by DIFFERENCE-MASKING are “activity”,
followed by “inhibited”, “inhibitor”, and “antago-
nist”. This is a fascinating result because it suggests
that in masking what makes the ChemProt domain
unique, DIFFERENCE-MASKING is determining a
self-supervised objective that is highly similar to
the downstream task without accessing the down-
stream task labels.

In the multimodal setting we also find an inter-
esting grounding of how DIFFERENCE-MASKING

chooses masks in human intuition. Reasoning
about social interactions is believed by many psy-
chologists to rely heavily on understanding visual
body language cues (De Stefani and De Marco,
2019; Keck et al., 2022). Social-IQ is designed to
test these kind of social intelligence capabilities
with subtle questions such as “How do the men in
the room feel about each other?” and “Do the peo-
ple in this video feel comfortable about the clown
being there?”. In contrast, TVQA tests more gen-
eral video understanding with question and answer

Method TVQA Social-IQ

Random 17% 15%
AttnMask 38% 19%

DIFFERENCE-MASKING 40% 90%

Table 2: For each method, we analyze what percent of
tokens are chosen to be masked from within bounding
boxes over people as opposed to objects.

types including those that target visual reasoning
about non-human entities and non-visual reasoning
from specifically text or audio modalities.

As such, we would expect that our continued pre-
training strategy would choose to prioritize mask-
ing tokens representing human body language more
often in Social-IQ than in TVQA. We found that
this was in fact the case. Interestingly, we found
that AttnMask baseline also picked up on a similar
trend in its attempt to mask based on where atten-
tion already focuses, although the trend is much
more pronounced in our approach.

The findings in Table 2 demonstrate that
DIFFERENCE-MASKING chooses to mask substan-
tially fewer visual tokens corresponding to peo-
ple than to objects in TVQA, (40%) in compari-
son to Social-IQ (90%). On the Social-IQ dataset,
where the performance difference is more pro-
nounced over the closest baseline (↑ 1.76% over
AttnMask), the difference between the proportion
of tokens masked from people by these approaches
is also most pronounced (90% in DIFFERENCE-
MASKING vs 19% in AttnMask).
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5.3 Sensitivity Analysis
Similarity Function As described in Sec-
tion 3, DIFFERENCE-MASKING determines mask-
ing probabilities by comparing the anchor repre-
sentations to the token representation. Because
the token representation is a single vector and the
anchors are a group of vectors, similarity can be de-
fined multiple ways. Table 1 shows results from the
“nearest-neighbor” approach to determining simi-
larity described in Section 3.5, motivated by the
intuition that a domain can have many sub-domains
and if a token is close to any one of these concepts
it should be prioritized for masking. For example,
the ACL-ARC corpus has many sub-domains, in-
cluding the over twenty different submission tracks
described in Section 5.2. If a paper is about lin-
guistics, it may be important to mask words similar
to “language”, whereas if a paper is heavy on ML
theory, another anchor might be more appropriate
to mask in order to best understand the work.

An alternative approach that could be to deter-
mine scores by relation to the centroid of the anchor
embeddings: in essence, determining whether the
token in question is similar to the anchors on ag-
gregate. We would expect that this approach would
perform similarly to ours on a narrowly-defined
dataset such as ChemProt, but substantially differ-
ently on a multi-domain dataset such as ACL-ARC.
We evaluate this alternative in Table 3.

ACL-ARC ChemProt

Centroid 69.02 83.66
Nearest-Neighbor 74.04 83.94

Table 3: Ablating DIFFERENCE-MASKING’s anchor-
scoring function based on nearest-neighbor and re-
placing it with one based on similarity with the an-
chor embeddings’ centroids leads to performance degra-
dation. This provides evidence for our hypothesis
that the nearest-neighbor scoring function helps make
DIFFERENCE-MASKING robust to anchor selections.

We find that the nearest-neighbor strategy does,
in fact, outperform the centroid strategy, especially
on the ACL-ARC task. This supports our intuition
that the nearest-neighbor strategy is particularly
helpful when there is a complex or peaky domain.

Number of Anchors In considering the relation-
ship between the anchors and the downstream task,
we also investigate how the choice of the number of
anchors (K) impacts the downstream performance.
We expect that too few anchors will not be expres-

sive enough to determine a strong masking strategy,
and too many anchors may begin to overfit to niche
concepts that are not representative of the domain.
We find that there is indeed a “sweet spot”, and
interestingly that it is the same for both datasets:
20. These results are visualized in Figure 4.

Figure 4: Performance on both tasks is best at the hyper-
parameter K = 20 anchors. We hypothesize that each
task may have an optimal setting of this hyperparameter.

6 Conclusion

In this paper we introduce DIFFERENCE-
MASKING, a method for identifying what makes a
target domain unique and using this information
to guide a strategy that chooses what to mask
during SSL continued pretraining. We find that
our method outperforms strong baselines across
diverse language and multimodal video understand-
ing tasks. We provide a detailed discussion of what
is masked in DIFFERENCE-MASKING and why our
method performs well on various tasks. The cross-
task applicability of DIFFERENCE-MASKING

supports the effectiveness of our framework for
SSL pretraining in language, vision, and other
domains.

7 Limitations

As described in Section 3, DIFFERENCE-
MASKING is based on the intuition that it is
more beneficial to mask based on what is unique
(XT/PT ) about a downstream task’s domain. How-
ever, it is challenging to find what makes a domain
unique; therefore, our method is an approximation
of XT/PT . We believe future work may find it
fruitful to investigate additional methods for ap-
proximating this, including modifications on the
TF-ICF method we proposed. In Section 5, we pro-
vided intuition, empirical results, and analysis to
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understand why our method outperformed attention
masking baselines by a larger margin on Social-IQ
than on TVQA. A broader investigation of why
DIFFERENCE-MASKING during pretraining is ben-
eficial by a larger margin to some downstream tasks
than to others would be helpful to the community.

8 Ethics Statement

We believe that self-supervised learning is a promis-
ing direction for the machine learning community.
This does not discount the salient arguments made
about the social and enviromental risks of large
models (Bender et al., 2021; Strubell et al., 2019).
We believe that works such as ours, which study
SSL in a resource-constrained context, both in-
crease access to those with limited compute re-
sources and conform to a more environmentally-
sustainable way of doing research.
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A Detailed Experimental Settings

In this section, we provide an overview of the exper-
imental conditions utilized in our study. To ensure
fair comparisons with our baselines, we maintain
a consistent set of hyperparameters for both con-
tinuous pretraining and fine-tuning. For language
tasks, we largely adhere to the hyperparameters em-
ployed in (Gururangan et al., 2020). Throughout
our experiments, we maintain a masking ratio of
25% in both language and multimodal settings. We
adopt a static masking strategy, replacing masked
tokens with random values.

CPT FTHyperparameters Language Multimodal Language Multimodal
learning_rate 0.0001 0.000005 1.00E-06 5.00E-06
num_train_epochs 150 20 10 20
eval_every_n_epochs 30 1 1 1
patience 20 5 3 5

Table 4: List of hyperparameters used in both continu-
ous pretraining (CPT) and finetuning (FT).

We reproduce MERLOT-Reserve’s original train-
ing on TVQA: we decompose samples in Social-
IQ and TVQA from the form (Question, All An-
swers, Video Information) into a list of 3-tuples:
(Question, Candidate Answer, Video Information).
MERLOT scores each candidate answer indepen-
dently, given the question and video, and is trained
with loss that encourages the model to minimize
estimated likelihood of incorrect answers and max-
imize likelihood of correct answers.

From video frames, we mask image patches
into 16x16 patches as determined by MERLOT-
Reserve’s backbone image transformer ViT (Doso-
vitskiy et al., 2021). The language experiments
took nine hours of runtime each on a single 12GB
GPU, and the multimodal vision experiments re-
quired six hours on a single TPU v2-8.

B Masking Video Tokens

Following the intuition from language, we hypoth-
esize that masking and predicting small patches
of an image may be testing local capabilities (e.g.
determining what an eye looks like from the rest
of the face) rather than global capabilities (e.g. de-
termining what a person’s face looks like from the
rest of the scene, including other people’s faces).

Accordingly, instead of masking low-level image
patches, we mask groups of patches corresponding
to a higher level semantic entity: bounding boxes
over objects in the image. We see this approach
as a visual analogue for masking at the word-level

instead of the token-level in our language exper-
iments. We found that K = 1 performed much
better than other values, where the selected anchor
word was “person”. We considered two possible
bounding boxes associated with people: bounding
boxes over faces and bodies. We evaluated both
options and found that considering entire bounding
boxes over people’s bodies (including their faces)
performed the best. These results are shown in
Table 5.

Masking Strategy TVQA Social-IQ

Random Masking 73.75 69.05
DIFFERENCE-MASKING (Face) 81.51 69.13
DIFFERENCE-MASKING (Body) 81.73 71.37

Table 5: Results of DIFFERENCE-MASKING on mul-
timodal video understanding benchmarks TVQA and
Social IQ. DIFFERENCE-MASKING leads to an improve-
ment of 8% and 2% accuracy over random accuracy.

We extracted body detection coordinates using
UniTrack (Wang et al., 2021) and face detection
coordinates using MTCNN (Zhang et al., 2016).

Apart from the bounding box strategy, we also
experimented with masking patches chosen by dif-
ferences between CLIP embeddings (Radford et al.,
2021) of the anchor and the vision patch directly
(without bounding box labels). Our experiments
validate that the CLIP-based masking strategy per-
forms poorly compared to our bounding box strat-
egy. One possible reason can be that CLIP is not
robust enough for video datasets which led to mask-
ing patches that are not relevant to the anchor word
“person”.

TVQA Social-IQ

CLIP (Radford et al., 2021) 73.58 68.75
DIFFERENCE-MASKING 81.73 71.37

Table 6: We validate our hypothesis that masking
patches using DIFFERENCE-MASKING is more effec-
tive than masking using CLIP similarity.

C Masking Language Tokens

In Section 4.3 we describe the motivation for us-
ing a word-level strategy in our implementation
of DIFFERENCE-MASKING. An alternative imple-
mentation could be to assign each token in a word
the same masking likelihood, and mask tokens only
by this probability. This could result in some tokens
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from the same word being masked where others are
not. Our intuition is that for specialized domains
such as chemistry, subword tokens may be trivial
to predict from their neighbors, but whole words
may not be trivial to predict given the context. For
example, a word such as “phosphates” would be to-
kenized into “phos” and “-phates”. We expect that
it may be trivial to predict “phos” given “-phates”
or vice versa, but it may be hard (and may promote
a better understanding of the task) to predict the
word “phosphates” given the context.

Empirically, we find that this decision improved
performance substantially, as shown in the results
in Table 7 below.

ACL-ARC ChemProt

Token 0.6501 0.8224
Word 0.7404 0.8394

Table 7: We validate our hypothesis that masking tokens
using DIFFERENCE-MASKING at the word-level is more
effective than masking at the token-level.
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