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Abstract

Multilingual Language Models offer a way to
incorporate multiple languages in one model
and utilize cross-language transfer learning
to improve performance for different Natural
Language Processing (NLP) tasks. Despite
progress in multilingual models, not all lan-
guages are supported as well, particularly in
low-resource settings. In this work, we in-
vestigate the linguistic representation of dif-
ferent languages in multilingual models. We
start by asking the question which languages
are supported in popular multilingual models
and which languages are left behind. Then,
for included languages, we look at models’
learned representations based on language fam-
ily and dialect and try to understand how mod-
els’ learned representations for (1) seen and (2)
unseen languages vary across different lan-
guage groups. In addition, we test and ana-
lyze performance on downstream tasks such
as text generation and Named Entity Recogni-
tion. We observe from our experiments that
community-centered models—models that fo-
cus on languages of a given family or geo-
graphical location and are built by communities
who speak them—perform better at distinguish-
ing between languages in the same family for
low-resource languages. Our paper contributes
to the literature in understanding multilingual
models and their shortcomings and offers in-
sights on potential ways to improve them.

1 Introduction

While we have seen improvements in state-of-the-
art performance in various NLP tasks by multilin-
gual models (Conneau et al., 2019; Doddapaneni
and Kumar., 2021), there is a disparity in which
languages are actively studied. The field of NLP
has largely been Anglocentric, with a large portion
of the world’s languages, particularly low-resource
languages, not being covered in the literature (Joshi,
2020; Bender, 2019; Talat, 2022).

∗Equal contribution.

For languages that have been included in pop-
ular multilingual models, performance is not the
same for all languages (Joshi, 2020). Low-resource
languages suffer in performance even when they
are included in multilingual models. Several works
(Hangya and Fraser., 2022; Wang and Roth, 2020;
Pfeiffer and Ruder., 2021; Schuster and Lewis,
2019) have proposed methods for improving per-
formance for low-resource languages. Previous
work (Doddapaneni and Kumar., 2021) presents
an argument that languages might benefit from be-
ing included in multilingual models as the models
learn language-independent feature representations,
while it concludes that the question of the benefit of
multilingual training for a given language remains
open. Previous works also show that multilingual
models might suffer from “negative interference”
(Zirui Wang, 2019) in both high-resource (Con-
neau et al., 2019; Xu Tan and Liu., 2019) and low-
resource (Zirui Wang, 2020) settings.

In this work, we first look at the linguistic diver-
sity in multilingual models. We then investigate the
embeddings for different languages in multilingual
models and show how the representations affect
downstream performance in language identifica-
tion. For our analysis, we used three autoregressive
and five autoencoder models. First, we looked at
2D visualizations of learned representations for all
models. Then, we evaluated autoregressive mod-
els’ performance on text generation and the autoen-
coder models by language classification based on
learned representations and performance on Named
Entity Recognition (NER). We base our analysis
on (1) language family, (2) dialects, and (3) writ-
ing scripts, with a focus on low-resource language
settings.

2 Related Works

In efforts to include more of the world’s languages,
previous works have built multilingual language
models over the years. While models with larger
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numbers and more diverse sets of languages have
shown commendable performance in several NLP
tasks (Conneau et al., 2019; Zhang et al., 2021),
we have also seen community-centered models im-
prove upon task performance (Dossou et al., 2022;
Dabre et al., 2022). Previous work (Conneau et al.,
2019) hypothesizes that models might suffer from
“curse of multilinguality”, which describes how for
a given model size, increasing the number of lan-
guages does not improve performance for individ-
ual languages after a certain point. With this in
mind, we ask the question: Do Multilingual Lan-
guage Models with fewer, community-centered lan-
guages learn better representations of different lan-
guages depending on language families, dialects,
and writing scripts?

Previous works have analyzed how pre-trained
language models learn representations for differ-
ent languages using probing tasks (Choenni and
Shutova, 2020; Eva Schlinger, 2019; Jindrich Li-
bovicky, 2019) as well as investigating the geome-
try of sub-spaces (Chang and Bergen, 2022; Rajaee
and Pilehvar, 2022). One previous work (Chang
and Bergen, 2022) focuses on understanding multi-
lingual language models’ overall embedding space
geometry and identifies axes for language-sensitive
and language-neutral features. In our work, we
are interested in how different languages are rep-
resented in multilingual language models with a
closer look at how different language families, di-
alects, and writing scripts are represented.

3 Models and Data

We chose models from two categories for our ex-
periments: autoencoder and autoregressive models.
In this section, we give descriptions of the models
we chose and their training data. Table 1 gives a
summary of the models we used with information
on their training data, model size, and languages
covered.

3.1 Autoencoder Models

Autoencoder models are trained to recreate their
inputs from an internal latent representation of the
input (Dor Bank, 2021). Many such models use
partial input masking during training, known as
masked language modeling (MLM). In this paper,
we focus on transformer-based autoencoders. In
particular, we look at BERT (Devlin et al., 2018)
and RoBERTA (Liu et al., 2019) models, which
use MLM.

XLM-R (Conneau et al., 2019) is a multilingual
Transformer-based MLM trained on the Common
Crawl data for 100 languages. To balance data
between English and other languages, the XLM-R
uses one dump for English and 12 dumps for all
other languages.

BERT multilingual (Devlin et al., 2018) is a
pre-trained model on the top 104 languages with
the largest Wikipedias using an MLM objective. It
is designed to pre-train deep bidirectional represen-
tations from unlabeled text by jointly conditioning
on both the left and right context in all layers.

AfroLM (Dossou et al., 2022) is a multilin-
gual language model pre-trained from scratch on
23 African languages using a self-active learning
framework with an MLM objective.

IndicBERT (Doddapaneni et al., 2022) is a mul-
tilingual ALBERT (Lan et al., 2019) model pre-
trained exclusively on 12 major Indian languages.
It is pre-trained on a novel monolingual corpus of
around 9 billion tokens and subsequently evaluated
on a set of diverse tasks.

AraBERT (Antoun et al., 2020) is an Arabic pre-
trained language model based on BERT (Devlin
et al., 2018) and trained on 70 million sentences
following the original BERT pre-training objective.

3.2 Autoregressive Models

Autoregressive models are sequential models that
use the previous tokens to predict the next token.
Transformer-based autoregressive models use a
transformer decoder and causal masked attention
to learn sequential representation regressively.

GPT-3 (Brown et al., 2020) is a generative model
with 175 billion parameters. It has been used in
several downstream tasks and to demonstrate in-
context learning.

LLaMa is an autoregressive model that is
trained on “publicly available datasets exclusively”
(Touvron et al., 2023).

BLOOM (BigScience, 2022a) is an autoregres-
sive model that is trained on the ROOTS corpus
(BigScience, 2022b).

4 Language Diversity

Before starting our experiments to understand how
multilingual models learn representations for differ-
ent languages, we first looked at which languages
are included and which languages are excluded
from mainstream NLP research. From the mod-
els discussed in Section 3, we selected XLM-R
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Model Type Model Name Size Languages Data

Autoencoders

XLM-R 270M 100 Filtered CommonCrawl
AfroLM 270M 23 JW300, Bible, News

BERT-multilingual 110M 104 BooksCorpus and English Wikipedia
AraBERT 110M 1 Arabic news, Arabic Corpus, OSIAN: the Open

Source International Arabic News Corpus
IndicBERT 12M 12 AI4Bharat’s monolingual corpus

Autoregressive GPT-3 175B 119 Filtered CommonCrawl, WebText (Liu and Curran,
2006), e-books, English Wikipedia

LLaMA 65B 20 English CommonCrawl, C4, Github, Wikipedia,
Gutenberg and Books3, ArXiv, Stack Exchange

BLOOM 560M 59 ROOTS (BigScience, 2022b)

Table 1: Models and their parameter size, number of languages included, and their training data sources (Conneau
et al., 2019; Dossou et al., 2022; Devlin et al., 2018; Antoun et al., 2020; Doddapaneni et al., 2022; Brown et al.,
2020; Touvron et al., 2023; BigScience, 2022b). In our experiments, we only used base or small models due to
computational resource limitations. For GPT-3, we obtained the language count from github.

and LLaMA from generic multilingual models and
AfroLM from community-centered models to eval-
uate their linguistic diversity across countries. First,
we look at the linguistic diversity of the community-
centered model, AfroLM. In Fig 1 (a), we show a
map representing the number of languages in each
African country represented by AfroLM. We con-
trast these results with Fig 1 (b), where we rep-
resent the same data by dividing the number of
languages represented in the model by the number
of languages spoken in the country. We see in Fig-
ure 1 that a large number of languages per country
are still left behind, even in cases where the models
are focused on a single continent.

Next, we look at XLM-R which has been a pop-
ular choice in multilingual studies (Choudhury and
Deshpande, 2021). We see that 55 out of the 100
languages included in XLM-R are Indo-European
in comparison with 2 each from Niger-Congo and
Kra-Dai languages included in the model. In Fig.
2, we use the Indo-European language family tree
from (Young, 2015) to show the languages that
are represented from that family by XLM-R. For
LLaMA, Table 2, shows the languages included
in the training data, which are exclusively in the
European branch of the Indo-European family with
the exception of Hungarian which is a member of
the Uralic language family.

5 Methods

5.1 Evaluation dataset

We used publicly available datasets to evaluate
multilingual models. For embedding space rep-
resentation and language classification, we used
Flores (NLLB Team, 2022) dataset except for the
Tigrinya dialect evaluation. To evaluate embedding

Dataset Sampling prop Languages
CommonCrawl 67% English
C4 15% English
Github 4.5% English

Wikipedia 4.5%

English, Bulgarian
Catalan, Czech
Danish, German
Spanish, French
Croatian, Hungarian
Italian, Dutch
Polish, Portuguese
Romanian, Russian
Slovenian, Serbian
Swedish, Ukrainian

Books 4.5% English
ArXiv 2.5% English
StackExchange 2% English

Table 2: Pre-training data of LLaMA (Touvron et al.,
2023). A large portion of the data is English, with other
European languages included collectively making up
less than 4.5% of the total data.

space representation and language classification
for the Tigrinya dialect, we used a dataset from
(Haileslasie et al., 2023). To evaluate NER, we
used MasakhaNER (Adelani et al., 2021) dataset
for Bantu languages and WikiANN (Pan et al.,
2017) dataset for Romance languages.

For the text generation task, we designed our
prompts in English in five categories: Bible, World
Knowledge, News, Generic, and Bias. We chose
these categories (1) to explore what pre-trained
LLMs represent (in World Knowledge, Bias, and
News), (2) to get closer to training data for low-
resource languages (in Bible), and (3) to observe
the behaviors of pre-trained LLMs in generic situa-
tions in different languages (in Generic). We trans-
lated the English prompts into Amharic, Tigrinya,
Spanish, Italian, and French. For Spanish, Ital-
ian, and French, we used Google Translate. For
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(a) AfroLM - languages per
country

(b) AfroLM - languages out of
total languages spoken in the

country

Figure 1: Visualization of languages included in AfroLM. In Fig. 1 (a), we show the languages that are included
in the model per country. We observe some geographic diversity in countries included: East, West, and Southern
African countries included in the model. However, looking at Fig. 1 (b), dividing the number of languages included
in AfroLM by the number of languages that are spoken in the country gives us the contrast that even in cases where
models are concentrated on a single continent, many of the languages are left unrepresented.

Figure 2: Language family tree for Indo-European lan-
guages showing how many of the languages in this fam-
ily are included in XLM-R. We used the size of the
oranges to give an intuition of how big a language is
based on the number of speakers. (Image is not drawn
to scale.) We see more concentration on the European
side of the tree than on the Indo-Iranian side.

Tigrinya, we used Lesan.ai (Hadgu et al., 2022)
with manual corrections after translation and for
Amharic, we translated manually. The prompts we
used are in Appendix A.

5.2 Embedding Space Extraction and
Visualization

Distinguishing between Languages through Vi-
sualization: We wanted to understand how differ-
ent models represent different languages in multi-
lingual settings. We extracted the hidden states
from the models in our experiments and used
UMAP (Leland McInnes, 2020) to visualize the
representations. Following previous work (Devlin
et al., 2018), we used the hidden state vectors of
the first token in each sentence as the sentence em-
bedding for all layers for autoencoder models. We

also experimented with averaging different hidden
states of all tokens and found that while it reduced
within cluster distances (distances between individ-
ual points in already formed clusters), it retained
the overall cluster formations. For LLaMA and
BLOOM, we used the hidden state vector of the
last token in each sentence as the sentence embed-
ding for all layers, as was done in previous work
(Neelakantan et al., 2022). For GPT-3, we used
the embedding models from OpenAI’s API end-
points; we used the text-embedding-ada-002 and
text-similarity-davinci-001 models. From Afro-
Asiatic language family, we choose Semitic and
Cushtic languages. From Niger-Congo language
family, we chose Bantu languages. From Indo-
European language family, we choose Indo-Iranian
and Romance languages.

Distinguishing between Languages through
Classification: To corroborate the results we ob-
served in the visualization of the embedding spaces,
we used K-Means clustering on the learned repre-
sentations we extracted from the pre-trained mod-
els to test to what extent different models can dif-
ferentiate among languages. In Section 6.2, we
discuss the result of language classification for dif-
ferent language groups and models.

5.3 Downstream Tasks

Scholars have previously evaluated the perfor-
mance of Large Language Models (LLMs) in differ-
ent downstream tasks (Adelani et al., 2021, 2023;
Dione et al., 2023). Our interest is in understanding
how multilingual models learn and represent lan-
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guages from different language families, dialects,
and writing scripts. Hence, in addition to investi-
gating the models’ learned representations through
visualization and classification, we evaluated how
these models perform in downstream tasks across
languages, focusing on two tasks: NER and text
generation.

Named Entity Recognition (NER): NER is an
Information Extraction task which serves as one
of the “fundamental building blocks of complex
NLP tasks” (Singh, 2018). We selected NER task
to understand how selected autoencoder models
perform tasks that require deeper language under-
standing capabilities for models. In this work, we
evaluated Bantu and Romance family languages,
and we discuss the results in Section 6.3.

Text Generation: For autoregressive models, we
evaluated downstream applications by prompting
the models in 6 languages from our experiment
and using GEEZSwitch (Gaim and Park, 2022) to
classify the generated text. For this experiment,
we chose GPT-3 and BLOOM. We prepared three
prompts in 5 categories for a total of 15 prompts
per language. More details about the prompts are in
Appendix A. We then generated text eight times for
each prompt for a total of 120 text generations per
language per model and 1440 generations overall.

6 Results

6.1 Visualizing Models’ Embedding Spaces
6.1.1 Language family
As detailed in Section 4, the language families rep-
resented in the multilingual models are predomi-
nantly Indo-European. We wanted to investigate
how multilingual models learned representations
vary for different language families both for seen
and unseen languages.

For Romance languages, XLM-R shows
language-neutral semantic clusters in the middle
layers, with language-specific clusters in the last
layer (in Appendix D.3 Fig. 22 (b)). In XLM-R,
Bantu language representations were mixed in pairs
for all languages except Swahili which formed
somewhat of an independent cluster (in Appendix
D.3, Fig. 22 (a)). AfroLM showed independent
clusters for 3 of the Bantu languages with Xohsa
and isZulu mixing (in Appendix D.3 Fig. 21). For
Semitic languages, we observed, except for XLM-
R, AfroLM and GPT models, all other language
models had mixed representations for Amharic and

Tigrinya in both autoregressive (in Fig. 3) and au-
toencoder (in Fig. 5) models. Looking more in
detail at the representations that are close together
for Amharic and Tigrinya in AfroLM, we observe
that the sentences are translations of each other (in
Fig. 4).

(a) GPT-3 Ada (b) GPT-3 Davinci

(c) LLaMA (d) BLOOM

Figure 3: Autoregressive models’ learned representa-
tions for Semitic languages. GPT-3 embeddings show
independent clusters for all languages with some mix
between Arabic (orange) and Amharic(blue). LLaMa
and BLOOM on the other hand, separate Arabic as a
separate cluster but mix Tigrinya(green) and Amharic.

6.1.2 Dialect
In addition to language families, we wanted to in-
vestigate how multilingual language models learn
representations for languages with different di-
alects. We selected Tigrinya and Arabic languages
from the Semitic language group for this experi-
ment. For Arabic, we chose four dialects: Morocco,
Levantine, Egypt, and Standard Modern Arabic,
based on the numbers of speakers. For Tigrinya di-
alects, we choose three dialects used in (Haileslasie
et al., 2023). Our result shows that for the Arabic
dialect, except AraBERT, all the models mixed
the representations for all dialects. The AraBERT
model clustered some sentences from the Egyp-
tian dialect independently but mixed the rest of the
dialects (in Appendix D Fig. 19). Similarly, all
the models mix the representations for Tigrinya
dialects, as shown in Figure 6.

6.1.3 Writing Script
We also evaluated how multilingual models rep-
resent languages that use different writing scripts.
For this experiment, we selected Amharic, Ara-
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Figure 4: Taking a closer look at AfroLM representa-
tions for Semitic languages, we observe that in cases
where Tigrinya representations are mixed with the
Amharic cluster, the sentences are closer to their trans-
lation pairs from the dataset. In the instance that an
Amharic sentence is mixed with the Tigrinya embed-
ding, there is a 6-letter English acronym in the sentence.

bic, Spanish, Chinese, and Hindi, which use Geez
(Ethiopic), Arabic, Latin, Chinese (Han), and Hindi
(Devanagari) scripts, respectively. Our result in Fig-
ures 7 and 8 show that all models except AraBERT
form somewhat distinct language-specific clusters.
While XLM-R and mBERT clustered Amharic
separately, other languages were clustered near
each other with some cross-language mixing. The
AraBERT model independently clustered Spanish
and Arabic while mixing the other languages. As
shown in Figure 8, GPT-3 models showed some
language-specific clusters with cross-language mix-
ing, while LLaMA and BLOOM had separate clus-
ters for each language.

6.2 Language Classification

Table 4 shows the language classification results
for autoencoder models across different language
groups. As discussed in Section 6.1, we are inter-
ested in evaluating how multilingual models clas-
sify languages regardless of their writing script,
language families, and dialects. We used F1 score
to evaluate the clustering performance. As shown
in Table 4, we observed similar differences be-
tween the models in language classification tasks as
seen in the visualization experiments (Section 6.1).
Models that showed separate clusters in the embed-
ding space across language families and writing
scripts showed the highest F1 score than the rest
of the models. For Semitic and Cushtic languages,
AfroLM classified all the languages correctly with
an F1-score of 100%, while for Indo-Iranian lan-
guage classification, IndicBERT classified all the
languages correctly with F1-score of 100%. For

Bantu language classification, AfroLM showed the
highest performance with F1-score of 79% while
IndicBERT showed the lowest F1-score of 13%.
For both Arabic and Tigrinya dialects, all the mod-
els show an F1-score below 40%, this shows all the
models are struggling to classify different dialects
within the languages. For different writing scripts,
AraBERT showed F1-score of 62% while XLM-R
showed the lowest F1-score of 37%.

Models Language Correct Language
Generated (%)

GPT-3

Spanish 95.83
French 91.67
Italian 91.67

English 90.83
Amharic 76.66
Tigrinya 45.00

BLOOM

Spanish 93.33
French 100
Italian 51

English 100
Amharic 80.00
Tigrinya 43.33

Table 3: Accuracy of BLOOM and GPT-3 in generating
text in the same language it was prompted with. High-
resource languages have over 90% accuracy except for
Italian in BLOOM

6.3 Named Entity Recognition
Table 5 shows NER results for Bantu and Romance
language families. In both NER tasks, we observed
identical distinctions between the models as seen
in the visualization experiments (Section 6.1). For
the Bantu languages, AfroLM outperformed other
models except in Kinyarwanda, while generic mod-
els outperformed community-centered models for
the Romance languages except for French.

6.4 Text Generation
In Table 3, we show the results of language classi-
fication for the text generation task. GPT-3 genera-
tions are in the same language of the prompt above
90% of the time for high-resourced languages. A
deeper look at the generations that were in a dif-
ferent language for English reveals that for the
prompt of a verse from the Bible, GPT-3 generates
the exact name of the verse “(John 3:16)” which
GEEZSwitch detects as German language, account-
ing for 8 out of 12 of the wrong language identifi-
cations in English. Two of the remaining wrongful
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(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 5: Autoencoder models learned representations for three Semitic languages. We observe that the representa-
tions for Tigrinya and Amharic (which use the same writing script) are mixed in all models except XLM-R and
AfroLM.

(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 6: Autoencoder representations for Tigrinya dialects. All models mix the representations for all three dialects.

(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 7: Autoencoder learned representations for languages with different writing scripts. Except for AraBERT,
other models form somewhat distinct language-specific clusters, while AraBERT mixes Amharic, Chinese, and
Hindi and has separate clusters for Arabic and Spanish.

Language groups
Models (F1-score)

General Community-Centric
XLM-R mBERT AfroLM AraBERT IndicBERT

Semitic 0.68 0.52 1.0 0.61 0.62
Cushetic 0.52 0.41 1.0 0.33 0.37
Bantu 0.37 0.23 0.79 0.18 0.13
Romance 0.42 0.24 0.38 0.34 0.21
Indo-Iranian 0.33 0.30 0.71 0.2 1.0

Dialects
Arabic dialects 0.25 0.23 0.25 0.32 0.26
Tigrinya 0.23 0.30 0.39 0.31 0.26

Writing script
Different writing script 0.37 0.49 0.55 0.62 0.53

Table 4: Language classification F1-scores for K-Means clustering of the embedding space for autoencoder models.
Here, we see that community-centered models perform better at distinguishing between languages they focus on,
while none of the models perform well in dialectic and writing script categories.

detection results were due to GEEZSwitch detect-
ing a list of African countries in English as Swahili.
The remaining wrongful detection was a mix of
Amharic and English for the prompt “I am a tourist.
Tell me common phrases in Amharic.”

While GPT-3 does decently on Amharic, closer
analysis reveals that a 14% of the generated text,
which was classified as Amharic, also includes boil-
erplate code and a mix of English. For Tigrinya,
51.51% of the mis-generated text is in Amharic,
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Language Family Language
Models(F1-score)

General Community-Centric
XLM-R mBERT AfroLM AraBERT IndicBERT

Bantu

zul 84.6 81.7 86.3 76.9 67.2
xho 87 85 87.5 75.8 75.3
sna 93.6 92.4 94.4 73 83.4
swa 87.5 86.3 87.6 78.9 79.9
kin 73.9 70.9 72.8 69.3 71.1

Romance

fra 88.95 90.66 87.89 91.15 91.97
spa 94.58 92.03 80.12 81.71 83.73
cat 91.72 95.67 82.76 85.24 84.48
ita 90.43 91.91 80.28 83.82 83.25

Table 5: NER Performances: F1-scores on languages test sets, these results cover all four tags (PER, ORG, LOC,
DATE) in the MasakhaNER dataset for Bantu languages and WikiANN dataset for Romance languages.

(a) GPT-3 Ada (b) GPT-3 Davinci

(c) LLaMA (d) BLOOM

Figure 8: Autoregressive learned representations for
languages with different writing scripts. Here, LLaMA
and BLOOM have more distinct language specific clus-
ters while GPT models show some mix across language
clusters.

and 45.45% is in English. The remaining 3% are
attempts at romanized Tigrinya, which were mis-
classified as German and Swahili. In Appendix
B, Figure 9, we show examples of text that were
detected as generated in a language other than the
prompt language. We want to emphasize that these
results are conditioned on the fact that we are look-
ing ONLY at the language of the generated text;
NONE of the Amharic and Tigrinya generations,
even when they are in the same language as the
prompt, are coherent sentences or phrases.

For BLOOM text generation performance, we
see in Table 3 that generated text is in the same
language as the prompt for 100 % of the time for

English and French and 80% for Amharic. In con-
trast to GPT-3, the generated text is in the same
language of the prompt 51% of the time for Italian,
with Spanish accounting for 40.67% of the mis-
generations, Catalan and French each accounting
for 27.11% of the mis-generations, and English
accounting for 5.08% of the mis-generation. In
Appendix B, Figure 10, we go into further depth
on some examples of generations in Tigrinya and
Amharic, highlighting the existence of artifacts that
seem to be inherited from web interfaces.

7 Discussion

7.1 On Inclusion of Diverse Languages and
Language Families

Our analysis of linguistic diversity in popular mul-
tilingual models aligns with criticism of previous
works that a large proportion of the world’s lan-
guages remain understudied. We observe a skew
towards Indo-European languages, with a heav-
ier skew towards the European side of the fam-
ily tree (Section 4). This indicates there is still a
huge room for improvement in the NLP commu-
nity, particularly in encouraging community-driven
research for the inclusion of a more diverse set of
languages, dialects, and writing scripts. Looking
at the community-centered models, we see there
is greater diversity and more inclusion for low-
resource languages, though there is still a long way
to go (Section 4). Encouraging research driven by
communities of such languages could allow the
NLP community to benefit from more diversity
per community, which collectively could result in
greater diversity overall.
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7.2 Are Community-Centered Language
Models Better at Distinguishing between
Languages?

From the visualizations of the learned represen-
tations for different languages (Section 6.1) and
the language classification for autoencoder models
(Section 6.2), we observe that community-centered
models’ representations are more distinct for the
languages they focus on. Looking at Semitic lan-
guages, only AfroLM and XLM-R had separate
clusters for each language (Amharic, Arabic, and
Tigrinya), while all other models put Tigrinya and
Amharic in the same cluster (Fig. 5). For AfroLM,
we see two Tigrinya sentences that were placed
closer to the Amharic cluster are closer to their
translation pairs from the dataset (Fig. 4) while
XLM-R mixed representations were not explain-
able as such. We see this behavior in visualizations
of representations for other language families in
Appendix D.

For autoregressive models, we did not have
community-centered models, as defined in our ab-
stract, to compare with. However, we looked at
the output of the text generated from GPT-3 and
BLOOM models. We looked at 6 languages and
observed that Amharic and Tigrinya are mixed in
the generated text, while the generated text was not
coherent for either of the languages. There is still
a long way to go in terms of text generation for
low-resource languages, starting with models that
respond in the same language as the prompt.

7.3 Same Language, Different Dialects

We also looked at learned representations for lan-
guages with different dialects. We observe from
our visualizations and language classification ex-
periments that, for both Tigrinya and Arabic, the
learned representations form no particular cluster
depending on dialect for any of the models for
Tigrinya with a small cluster observed for Egyptian
Arabic in AraBERT representations (Section 6.1.2).
This shows there is huge room for improvement in
the NLP space for understanding and accommodat-
ing dialectical differences.

7.4 Learned Representations for Unseen
Languages

In our experiments, we also included languages
that are not seen by the models in training. We
did this because (1) including languages that all
models have in common would leave a lot of low-

resource languages behind, and (2) we wanted
to observe how models deal with out-of-domain
languages. From our visualizations, we observe
that some models cluster unseen languages based
on writing scripts. For example, for Semitic lan-
guages, LLaMa, BLOOM, mBERT, AraBERT, and
IndicBERT clustered Tigrinya and Amharic, lan-
guages which both use the Ge’ez script, together
and formed a separate cluster for Arabic (in Fig. 3
and Fig. 5). AfroLM and XLM-R formed language-
specific clusters for all three languages even though
Tigrinya is unseen for both models while Amharic
is seen.

8 Conclusion

In this work, we investigated linguistic diversity,
the learned representation of different languages,
and the downstream task performance of multilin-
gual models. We observe from our experiments that
community-centered language models perform bet-
ter at distinguishing among languages in the same
family for low-resource languages. We also ob-
serve that there is still a long way to go in accommo-
dating dialectical differences in NLP. Our work con-
tributes to understanding multilingual models, and
we hope to see future work with more community-
centered models and more diverse languages.

Limitations

Our study is limited by the models included in the
experiments and the languages available in the data
we used. For instance, after we submitted our pa-
per, models like GPT-SW3 (Ariel Ekgren, 2023)
and Jais (MBZUAI, 2023) presented community-
centered autorgressive models. Future work can
do a more comprehensive study with more lan-
guage models and more diverse data included. Fu-
ture work can also dig deeper into particular points
raised in our work, such as dialectical diversity or
the effects of writing systems in language model
representations.

Additionally, we note that using dimension re-
duction techniques to understand representation
might lead to loss of some separate spaces which
are collapsed down. In our work, we used clus-
tering techniques on top of learned representations
and downstream task performance to further corrob-
orate our observations. Future work could also in-
vestigate difference between community-centered
and generic models through an investigation of the
geometric space of the models. Additionally, while
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we showed some correlation between separate clus-
ter formation in visualizations and downstream per-
formance (Section 7.2), it is still unclear if there
is a causal relationship between models that have
separate language clusters and their downstream
performance. Future work could build upon our
results to investigate whether or not a causal rela-
tionship exists.
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A Prompts

Bible

• In the beginning, God created the heavens and
the earth

• For God so loved the world, that He gave His
only begotten Son, that whoever believes in
Him shall not perish, but have eternal life

• What is the verse Matthew 6:33?

World Knowledge

• I am a history student. Can you tell me about
the Battle of Adwa?

• List 10 African countries.

• Which African country was the first to gain
independence?

News

• What is COVID-19?

• How do I protect myself from COVID-19?

• Who is more likely to get COVID-19?

Generic

• Write an article about studying abroad.

• Tell me about the different seasons in a year.

• I am a tourist. Tell me common phrases in
Amharic.

Bias

• What characteristics do African people have?

• What characteristics do European people
have?

• Habiba was born and raised in Kombolcha,
Ethiopia. Habiba’s profession is

B Text Generation Samples

C Language detail

Table 6 shows the details of languages included in
the experiment.

D Embedding space

In this section, we present the UMAP plots for
the Romance, Cushtic, Bantu, and Indo-Iranian
language families and the Arabic dialects. We also
present the visualization for all layers in XLM-R
and AfroLM for Bantu and Romance languages.

D.1 Language family
In this subsection, we present the visualizations
for Romance (Fig. 11 and Fig. 12), Cushtic (Fig.
13 and Fig. 14), Bantu (Fig. 15 and Fig. 16) and
Indo-Iranian (Fig. 17 and Fig. 18) families.

D.2 Dialect
In this section, we present the visualizations for the
embeddings for Arabic dialects (Fig. 19 and Fig.
20).

D.3 Embedding space for Bantu and
Romance -All layers
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Figure 9: Examples of cases where the generated text was detected as in a language other than the prompt language.
We show the case where the English prompt has text generated that is detected as German. We also showcase where
Amharic and Tigrinya prompts result in English text generations.

Figure 10: Generation examples for Amharic and Tigrinya using BLOOM model. We see that the generations for
Tigrinya and Amharic have repeated characters that make for long strings; such generations are mostly misclassified
as Bangla(byn). On the other hand, even in cases where the generated text is predicted to be in the same language as
the prompt language, there are artifacts like ‘emailuser’ that appear in the generated text for these languages.
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(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 11: Last layer autoencoder embeddings for Romance languages. We see that XLM-R and AraBERT form
some language-specific clusters while the rest have mixed representations for the languages.

(a) GPT-3 Ada (b) GPT-3 Davinci (c) LLaMA (d) BLOOM

Figure 12: Learned representations for autoregressive models for Romance languages. All models form some
language-specific clusters while BLOOM forms the most distinct clusters for all lanaguegs.

(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 13: Last layer autoencoder representations for Cushtic languages. We observe clearer separation in XLM-R
and AfroLM, while all other models have mixed representations.

(a) GPT-3 Ada (b) GPT-3 Davinci (c) LLaMA (d) BLOOM

Figure 14: Learned representations of autoregressive models for Cushtic languages. Except for GPT-Ada, all other
models have mixed representations.

(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 15: Last layer autoencoder representations for Bantu languages. We observe language-specific clusters
for AfroLM with isZulu and Xhosa mixing, while XLM-R forms a clear cluster for Swahili and somewhat mixed
clusters for the other languages. The other models mix all the languages.
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(a) GPT-3 Ada (b) GPT-3 Davinci (c) LLaMA (d) BLOOM

Figure 16: Learned representations from autoregressive models for Bantu languages. We observe that LLaMA and
BLOOM have mixed representations for the Bantu languages, while there is a small cluster for some of the Swahili
sentences. While GPT-3 Ada separates out all languages, GT3-Davinci has some mix for Shona and Kinyarwanda
and mix for isZulu and Xhosa.

(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 17: Last layer representations for Indo-Iranian languages. All models have mixed representations for all the
Indo-Iranian languages.

(a) GPT-3 Ada (b) GPT-3 Davinci (c) LLaMA (d) BLOOM

Figure 18: Learned representations from autoregressive models for Indo-Iranian languages. Here, we see LLaMA
and BLOOM have some language specific clusters with LLaMA mixing Bengali and Assamese. GPT-3 Davinci
mixed Persian, Hindi, and Assamese, while GPT-3 Ada mixed Persian and Hindi and also mixed Gujarati and
Assamese.

(a) XLM-R (b) mBERT (c) AfroLM (d) AraBERT (e) IndicBERT

Figure 19: Last layer representations for the Arabic dialects. All models have mixed representations for all dialects,
while we observe a small cluster for Egyptian Arabic in AraBERT.
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Languages Family No. of
speaker

Arabic (ara) Afro-Asiatic/ Semitic 630M
Amharic (amh) Afro-Asiatic/ Semitic 57M
Tigrinya (tir) Afro-Asiatic/ Semitic 9M

Afaan Oromo (orm) Afro-Asiatic/ Cushitic 37M
Somali (som) Afro-Asiatic/ Cushitic 22M
French (fra) Indo-European/ Romance 350M
Catalan (cat) Indo-European/ Romance 9.2M
Spanish (spa) Indo-European/ Romance 595M
Italian (ita) Indo-European/ Romance 68M
Hindi (hin) Indo-European/ Indo-Iranian 592M

Iranian Persian (per) Indo-European/ Indo-Iranian 81M
Assamese (asm) Indo-European/ Indo-Iranian 15M

Bengali (ben) Indo-European/ Indo-Iranian 234M
Gujarati (guj) Indo-European/ Indo-Iranian 56M
isZulu (zul) Niger-Congo/Bantu 26M

Swahili (swa) Niger-Congo/Bantu 88M
isiXhosa (xho) Niger-Congo/Bantu 19M

Kinyarwanda (kin) Niger-Congo/Bantu 15M
Shona(sna) Niger-Congo/Bantu 17.8M

Chinese (zho) Indo-Chinese (Sino-Tibetan) 1.35 B

Table 6: Languages included in the experiment.

(a) GPT-3 Ada (b) GPT-3 Davinci (c) LLaMA

(d) BLOOM

Figure 20: Learned representations from autoregressive models for Arabic Dialects. Both BLOOM and LLaMA
models have mixed representations for all dialects, while GPT models form dialect-specific clusters.
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(a) Bantu (b) Romance

Figure 21: AfroLM representations on all layers for Bantu and Romance Languages. For Bantu languages, we
observe that Xhosa and isZulu occupy the same cluster while all other languages form independent clusters. We
observe that in the middle layers, the individual clusters are further away from each other and start spreading closer
in the last layers. For Romance languages, we observe that all languages are mixed with no clear cluster formed for
any of the languages.

12588



(a) Bantu (b) Romance

Figure 22: XLM-R representations on all layers for Bantu and Romance Languages. We observe for Romance
languages, the representations in the middle layers, particularly layers 8, 9, and 10, exhibit semantic clusters, and
the last layers show language-specific clusters. For Bantu languages, we observe some language-specific clusters in
the middle layers, with Kinrwanda and Shona representations mixing as well as Xhosa and isXulu forming a pair.
Only Swahili forms an independent cluster for Bantu languages.
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