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Abstract

There have been a lot of interest in the scal-
ing properties of Transformer models (Kaplan
et al., 2020). However, not much has been
done on the front of investigating the effect
of scaling properties of different inductive bi-
ases and model architectures. Do model ar-
chitectures scale differently? If so, how does
inductive bias affect scaling behaviour? How
does this influence upstream (pretraining) and
downstream (transfer)? This paper conducts
a systematic study of scaling behaviour of ten
diverse model architectures such as Transform-
ers, Switch Transformers, Universal Transform-
ers, Dynamic convolutions, Performers, and re-
cently proposed MLP-Mixers. Via extensive
experiments, we show that (1) architecture is
an indeed an important consideration when per-
forming scaling and (2) the best performing
model can fluctuate at different scales. We be-
lieve that the findings outlined in this work has
significant implications to how model architec-
tures are currently evaluated in the community.

1 Introduction

There have been a lot recent interest in the scaling
properties of Transformer models (Kaplan et al.,
2020; Hernandez et al., 2021; Bahri et al., 2021;
Henighan et al., 2020; Tay et al., 2021b; Abnar
et al., 2021). However, not much is understood
about the scaling properties of different inductive
biases imposed by model architectures. Improve-
ments at a a specific scale (compute, size etc) are
often assumed to transfer to different scales and
compute regions (So et al., 2019; Choromanski
et al., 2020; Lan et al., 2019; Dehghani et al., 2018)
and new research is often presented in a point-wise
fashion with respect to scale. In short, it is not un-
common for new methods to be presented with data
points at very specific or limited compute regions
(e.g., base size). We believe that understanding the
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interaction between architecture and scaling laws
is crucial as designing models that perform well at
diverse scales will likely have significant impact.

This paper is an attempt to understand the ef-
fect of inductive bias (architecture) on scaling laws
of language models. To this end, we pre-train and
finetune over ten diverse model architectures across
multiple compute region and scales (e.g., from 15M
to 40 Billion parameters). In total, we pre-train and
finetune over 100 different models of different ar-
chitectures and sizes and present insights and chal-
lenges at scaling these ten diverse architectures.

We consider a broad spectrum of models in
our extensive experiments. Concretely, we con-
sider several well-established Transformer vari-
ants (Vaswani et al., 2017) such as Evolved Trans-
former (So et al., 2019), Universal Transformers
(Dehghani et al., 2018) and Switch Transformers
(Fedus et al., 2021). We also consider lightweight
models such as ALBERT (Lan et al., 2019) and/or
efficient Transformers (Tay et al., 2020) such as
Performer (Choromanski et al., 2020) and Funnel
Transformers (Dai et al., 2020). In our comparison,
we are also interested in finding out if general im-
provements to the Transformer architectures such
as Mixture-of-Softmax (Yang et al., 2017) and/or
Gated Linear Units (Dauphin et al., 2017; Shazeer,
2020) influence the scaling behaviour of models.
Finally, we also evaluate models outside the fam-
ily of Transformers including Lightweight convo-
lutions (Wu et al., 2019), Dynamic convolutions
(Wu et al., 2019) and the recently proposed MLP-
Mixers (Tolstikhin et al., 2021). Figure 1 illustrates
an overview about the experiments we run.

We also note that scaling these models is not as
straightforward as it seems, i.e., there are intricate
details of scale that are intertwined with architec-
tural choices which we study in detail in this pa-
per. For example, a distinct feature of Universal
Transformers (and ALBERT) is parameter sharing.
Hence, compared with standard Transformers, this
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Figure 1: An overview compute-performance (FLOPs vs performance) plot of all the diverse models and architectures
we pretrained and finetuned in this study. Colors represent different model architectures and size of the circles
represent the size of the model (parameters).

architectural choice significantly warps the scaling
behaviour not only with respect to performance
but also amongst compute metrics such as FLOPs,
speed and number of parameters (Dehghani et al.,
2021a). Conversely, models such as Switch Trans-
formers are on the other end of the spectrum with
an uncommon relationship between FLOPs and
number of parameters, i.e., they have high parame-
ter to FLOPs ratio. This difficulty makes navigating
this landscape challenging.

Our Contributions and Insights The key con-
tributions of this paper are as follows:

• For the first time, we derive scaling laws for dif-
ferent inductive biases and model architectures.
We find that this scaling coefficient differs greatly
from model to model. We believe this is an impor-
tant consideration in model development. It turns
out that amongst all ten architectures that we con-
sider, the vanilla Transformer has the best scal-
ing behaviour, even if its absolute performance
at each compute region is not the greatest.

• We observe that models that operate well in one
compute-scale region is not necessarily the best
in another compute-region. Moreover, we find
that certain models have difficulty scaling de-
spite performing decently (comparably) at lower-
compute regions. This has implications, since
it is difficult to get the fulll picture of a model’s

scalability with pointwise comparisons at a cer-
tain compute-region.

• We find that when it comes to scaling different
model architectures, upstream pre-training per-
plexity might not correlate well with downstream
transfer. Hence, the underlying architecture and
inductive bias is also crucial for downstream
transfer.

• We highlight the difficulties of scaling with cer-
tain architectures and show that some models do
not scale (or scale with a negative trend). We
also find concerning trends where linear-time at-
tention models such as Performer struggle with
scaling up.

2 Related Work

Kaplan et al. (2020) studied empirical scaling laws
of the decoder-only Transformer language mod-
els. They focused on the standard left-to-right lan-
guage modeling objective with the cross-entropy
loss as the performance metric. One of the main
findings is that the loss scales as a power-law with
three major characteristics of the model training:
model size, dataset size and the training compute.
Another somewhat surprising finding is that the
model shapes such as width or depth of the Trans-
former network have minimal effects on the cross-
entropy loss for a wide range of scales. Subsequent
works (Henighan et al., 2020; Hernandez et al.,
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2021) made similar conclusions for autoregressive
generative modeling and for transfer learning, re-
spectively. This finding is also generally supported
by (Tay et al., 2021b) but discrepancies were found
for the gap between pretraining and finetuning -
highlighting the fact that observing downstream
performance of large language model is indeed im-
portant. In (Tay et al., 2021b), the effect of depth
was unusually pronounced for downstream perfor-
mance.

Raffel et al. (2019) studied the effect of pre-
training objectives, model structures (e.g., encoder-
decoder, decoder-only), pre-training dataset size
and training strategy on the transfer learning. They
showed that the downstream performance mono-
tonically increases with the model scale (from 60M
to 11B parameters). While they studied several
model structures, the Transformer implementation
is mostly the same as the original Transformer
by Vaswani et al. (2017). Conneau et al. (2020);
Goyal et al. (2021) scaled-up multilingual encoder-
only architectures up to 11B parameters while
maintaining the original Transformer implemen-
tation. They found that scaling the model improves
its cross-lingual ability. Fedus et al. (2021) scaled
a sparse model based on Mixture of Experts (MoE)
models up to trillion parameters.

While previous studies have repeatedly shown
the benefits of scale for language understanding
tasks for both dense and sparse Transformers and
cross-lingual abilities, all of these used the same
Transformer implementation within each studies.
With a plethora of improved Transformer architec-
tures proposed in the literature, it is timely to inves-
tigate which of these improved architecture has the
best scaling properties. The main goal of this pa-
per is to systematically study how inductive biases
imposed by these Transformer variants affect the
scaling behavior in a shared software and hardware
settings. This is in similar spirit to (Narang et al.,
2021) that studies the impact of architectures on
performance. Our analysis extends that of (Narang
et al., 2021) to the model scale axis.

We note that increasingly the number of tokens
seen during pretraining has been incorporated in
the study of scaling laws (Hoffmann et al., 2022;
Muennighoff et al., 2023). Hoffmann et al. (2022)
trains decoder-only Transformer language models
with casual langauge modeling and evaluates on
zero and few-shot tasks. In this work we consider
architectures modifications that do not necessar-

ily support causal masking and autoregressive de-
coding. Due to this, we consider encoder-decoder
configurations trained with span corruption, and
evaluate on downstream finetuned tasks. This cre-
ates a more level playing field for architectures that
do not support in-context learning. As such we
follow (Raffel et al., 2019) to fix the number of
pretraining tokens (i.e. sequence length, training
steps, batch size) seen by each model. Given the
large space of model architectures and scales we
aim to study, this also fixes the data size dimension,
making our empirical study more tractable. Since
we finetune models until convergence, we antici-
pate the effect of pretraining token amount to be
less pronounced than studied in (Hoffmann et al.,
2022).

3 Methods

This section outlines our experimental setup.

3.1 Models
This section describes the models we evaluate
in our experiments. Our models are largely im-
plemented in a sequence to sequence framework
(Sutskever et al., 2014) following the convention of
T5 (Raffel et al., 2019). Encoder-decoder models
are a natural choice for this experimentation be-
cause they can universally express both encoding
and decoding tasks.

Transformer Variants We consider several stan-
dard Transformer variants.

• Transformers (Vaswani et al., 2017) - The basic
vanilla Transformer architecture. Our basic setup
considers the T5-style of Transformers (Raffel
et al., 2019), which largely follows the vanilla
Transformer except that it uses relative attention
instead of sinusoidal position embeddings and
pre-layer normalization, i.e. layer normalization
is applied before each sublayer.

• Evolved Transformers (So et al., 2019) - A
transformer architecture learned via AutoML.
The architecture comprises of convolutions and
attention. We scale Evolved Transformers fol-
lowing the same pattern as vanilla Transformers.

• Universal Transformers (UT) (Dehghani et al.,
2018) - A Transformer architecture with shared
parameters and recurrent-like computation for
transform layers. Scaling UTs are challenging
because of parameter sharing. While we are able
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to also increase dFF or dmodel, the increase in
parameters is of magnitude Nlayers than stan-
dard Transformers. Another axis of exploration
is to scale r the number of repeated computation
at each UT layer - this increases computation
(number of FLOPs) but does not increase the
parameter size of the model.

• Switch Transformer (Fedus et al., 2021) - a
sparsely activated mixture-of-experts architec-
ture. The Sparse Transformer is another model
with an unusual relationship between number of
parameters and compute. When we scale this
model uniformly, the number of parameters eas-
ily reaches the ballpark of 40B.

Efficient Transformer Variants These class of
models are mainly concerned at reducing computa-
tional costs, memory usage, or parameter count of
models.

• Performer (Choromanski et al., 2020) - A linear
time attention model using generalizable kernel
attention. For simplicity, we adopt the relu kernel
variant for our experiments. We scale Performer
in the similar fashion (i.e., uniform scaling) as
vanilla Transformers.

• Funnel Transformer (FT) (Dai et al., 2020) A
Transformer architecture that downsamples the
input sequence across the layer stack. Our imple-
mentation uses FT only in the encoder and reverts
to vanilla Transformer in the decoder following
Narang et al. (2021).

• ALBERT (Lan et al., 2019) - A lightweight trans-
former architecture that shares parameters across
all layers and factorizes the embedding and out-
put softmax layers. For our seq2seq ALBERT,
we also share the weights of encoder and decoder.

General Improvements We consider general im-
provements that are not necessarily tied to Trans-
formers. We select candidates that have shown to
do well in Narang et al. (2021).

• Mixture of Softmaxes (Yang et al., 2017) -
A transformer architecture adopting the MoS
method at the Softmax layer.

• Gated Linear Units with GeLU (GLU-
Transformer) - Replacing position-wise feed-
forward-networks in Transformers with Gated
Linear Units (Dauphin et al., 2017).

Non-Transformer Architectures We are inter-
ested in the scaling behaviour of non-Transformer
based architectures such as convolutions and/or
mixer architectures.

• Lightweight Convolutions (Wu et al., 2019) -
Lightweight depthwise convolutions that have
shown promise over Transformer architectures.

• Dynamic Convolutions (Wu et al., 2019) - An
extension of the Lightweight Convolution to cre-
ate time-dependent kernels.

• MLP-Mixers (Tolstikhin et al., 2021) - Mixers
are recently proposed architectures that learn a
lightweight mixing of tokens. Since Mixers have
not been used in autoregressive decoding, we
only use token-mixers on the input encoder.

4 Experiment Setup

Our setup, along with all models, are implemented
in Mesh TensorFlow (Shazeer et al., 2018), a li-
brary with similar interface to TensorFlow but en-
ables distributed model parallelism across multiple
workers. For fair comparison, all models are pre-
trained for 219 steps on the english C4 corpus op-
timized using an inverse square root learning rate
with Adafactor (Shazeer and Stern, 2018). All mod-
els use the same SentencePiece tokenizer (Kudo
and Richardson, 2018) containing 32K subwords.
This closely follows the setup in the T5 paper (Raf-
fel et al., 2019). Finetuning is performed for 100K
steps on a mixture of GLUE (Wang et al., 2018),
SuperGLUE (Wang et al., 2019) and SQuAD (Ra-
jpurkar et al., 2016). We evaluate on both upstream
(pre-training) validation perplexity as well as down-
stream transfer for NLU tasks (GLUE + Super-
GLUE + SQuAD) after fine-tuning. We pretrain
and finetune our models with 16 TPU-v3 chips with
data parallelism. All large models have a model
parallelism of 2 and XL models have a model par-
allelism of 8.

Model Sizes We consider several different model
sizes for each architecture. For models that are
straightforward to scale, we simply follow the stan-
dard convention in Raffel et al. (2019), moving
from small to base, to large and XL. We include a
tiny version of each model to observe how differ-
ent models behave at lower compute regions. For
models where it was not straightforward to scale
(e.g., Universal Transformers, ALBERT), we tried
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Figure 2: Upstream Negative Log-Perplexity of vanilla Transformer compared to other models.

to scale them in a similar fashion but faced obvi-
ous limitations such as getting ALBERT to have
the same number of parameters as T5 XL without
incurring a huge number of cost in terms of FLOPs.
For convolutional models, we consider dmodel to
be the hidden size (i.e., channel depth) for the one-
dimensional convolution layers. Values such as
dkv, NH then become redundant. Details on scal-
ing details1 of each architecture can be found in the
supplementary material.

5 Main Results

We report the main results of this paper in Table
1. We report the number of trainable parameters,
FLOPs (of a single forward pass) and speed (steps
per second). We also report on validation perplex-
ity (on upstream pre-training) and results on 17
downstream tasks. The results are reported aggre-

1The largest Switch transformer was scaled in a pretty
sub-optimal way. So we don’t think it is representative of the
full potential of the Switch family. Take the last data point of
Switch with a pinch of salt.

gates of GLUE, SuperGLUE and SQuAD. While
we use the same Mesh TensorFlow-based codebase
used by Raffel et al. (2019) and hence expect our
experimental results to match theirs, we verify that
our T5 base does achieve similar results to what is
reported in Raffel et al. (2019).

5.1 Do all models scale the same way?

We compare on both upstream perplexity and down-
stream finetuning performance here.

Upstream Perplexity Figure 2 reports the scal-
ing behaviour of all models as we increase the
number of FLOPs. We observe that the scaling be-
haviour of all models are quite unique and distinct,
i.e., most of them are quite different from standard
Transformers. Perhaps the biggest finding here is
that most models (e.g., LConv, Evolved) all seem to
be on-par or better than standard Transformers but
fail to scale with a higher compute budget. Another
interesting trend is that “linear" Transformers such
as Performer fail to scale as shown in Figure 2i.
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(b) DConv
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(c) Evolved
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(d) Funnel
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(e) Transformer-GLU
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(f) LConv
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(g) MLP Mixer
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(h) MoS Transformer
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(i) Performer
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(j) Switch Transformer
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Figure 3: Downstream accuracy of vanilla Transformer compared to other models.

The pre-training perplexity metric only decreases
by 2.7% going from base to large scale compared
to 8.4% of the vanilla Transformer.

Downstream Transfer Figure 3 reports the scal-
ing curves of all models on downstream transfer.
The overall finding that most models have distinct
scaling curves compared to Transformers is also
evident in downstream tasks. It is also noteworthy
that most models have a different upstream and
downstream scaling curve. We find that some mod-
els such as Funnel Transformer and LConvs that
seem to hold out pretty well on upstream but suffer
substantially on downstream. As for Performer, the
performance (disparity) seems to be even greater
in downstream as compared to upstream. Notably,
the SuperGLUE downstream tasks generally re-
quire pseudo cross-attention on the encoder, which
models such as convolutions are not equipped to
handle (Tay et al., 2021a). To this end, we find
that certain models may have difficulty learning
the downstream tasks despite good upstream per-
formance.

5.2 Are the best models at each scale
different?

Figure 1 shows the Pareto-frontier when plotting
compute against upstream and downstream perfor-
mance. Since the colors of the plot represent dif-
ferent models, we can observe that the best model
for every scale and compute region might be differ-
ent. Moreover, from Figure 3, we can also observe
this. For example, the Evolved Transformer seems
to do well against the standard Transformer at
tiny to small region (downstream) but this quickly
changes when scaling the model up. We also ob-
serve this with MoS-Transformer where it clearly
outperforms vanilla Transformers at some regions
but not at others.

5.3 Scaling Law for Each Model

Table 2 presents the slope of the fitted linear line
α for each model across multiple scenarios. We
derive α by plotting F (FLOPs), U (upstream per-
plexity), D (downstream accuracy), P (number of
parameters). In general, most values of α depict
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Table 1: Results on pre-training and finetuning ten different model architectures. Full results (further varying
hyperparameters of these models) can be found in the Appendix.

Model #Params FLOPs Speed Neg Log Ppl GLUE SGLUE SQuAD
Transformer Tiny 16M 1.21 38.4 -2.47 69.3 56.9 73.6
Transformer Small 60M 3.70 22.7 -2.02 78.1 65.3 81.9
Transformer Base 223M 11.4 9.3 -1.75 83.8 74.0 86.3
Transformer Large 738M 34.3 3.6 -1.61 86.4 78.3 88.6
Transformer XL 2.9B 63.8 1.3 -1.49 87.8 81.5 89.5
Evolved Transformer Tiny 19M 1.31 39.7 -2.45 69.6 57.1 69.6
Evolved Transformer Small 79M 4.23 23.7 -2.04 75.7 66.2 80.2
Evolved Transformer Base 218M 10.2 8.9 -1.79 83.0 70.5 84.8
Evolved Transformer Large 1.0B 49.3 2.1 -1.62 86.2 77.1 88.0
Evolved Transformer XL 2.2B 71.3 0.8 -1.55 87.0 78.3 88.2
Universal Transformer Tiny 11M 1.77 38.1 -2.73 69.8 56.1 62.3
Universal Transformer Small 52M 7.30 18.3 -2.12 76.8 64.2 75.4
Universal Transformer Base 127M 20.3 8.4 -1.91 80.0 67.9 80.1
Universal Transformer Large 283M 27.6 1.6 -1.67 84.0 73.4 85.4
Switch Transformer Tiny 174M 3.25 29.7 -2.01 78.2 63.8 80.7
Switch Transformer Small 460M 4.63 22.3 -1.85 80.3 68.0 82.9
Switch Transformer Base 2.0B 12.7 8.4 -1.66 84.2 74.1 86.5
Switch Transformer Large 3.9B 23.0 4.1 -1.56 84.6 75.8 87.9
Switch Transformer XL 29.6B 43.3 0.8 -1.62 84.0 75.2 87.5
Performer Tiny 16M 1.14 42.0 -2.88 50.5 48.8 15.0
Performer Small 61M 3.50 39.0 -2.44 57.8 51.1 31.1
Performer Base 224M 10.8 11.7 -2.23 61.4 53.4 37.8
Performer Large 739M 32.8 4.4 -2.16 62.4 52.4 30.8
Funnel Transformer Tiny 16M 1.10 39.9 -2.58 63.4 49.4 54.6
Funnel Transformer Small 61M 2.96 32.7 -2.11 70.0 58.5 75.1
Funnel Transformer Base 223M 8.10 11.9 -1.83 76.3 62.9 81.6
Funnel Transformer Large 739M 22.6 5.0 -1.69 79.8 67.1 83.8
Funnel Transformer XL 2.9B 40.3 1.89 -1.61 79.8 68.0 83.7
ALBERT Small 15M 3.57 42.0 -2.36 73.7 62.0 77.1
ALBERT Base 21M 9.40 16.4 -2.28 69.0 57.2 64.3
ALBERT Large 34M 31.6 5.1 -2.20 62.9 54.1 27.3
MoS-Transformer Tiny 27M 1.29 39.7 -2.37 70.6 57.9 74.1
MoS-Transformer Small 81M 3.70 26.3 -1.98 79.7 67.1 83.1
MoS-Transformer Base 257M 11.4 8.6 -1.70 84.5 73.9 86.8
MoS-Transformer Large 800M 35.0 3.4 -1.56 86.5 79.7 89.1
MoS-Transformer XL 2.9B 112 1.2 -1.45 88.2 81.4 90.0
GLU-Transformer Tiny 26M 1.29 31.7 -2.35 70.5 57.0 74.2
GLU-Transformer Small 77M 3.70 26.4 -1.97 79.1 67.4 83.0
GLU-Transformer Base 248M 11.4 8.6 -1.71 84.6 74.5 87.2
GLU-Transformer Large 748M 35.0 3.4 -1.56 84.2 74.3 86.2
GLU-Transformer XL 2.85B 61.3 1.0 -1.49 87.6 82.9 89.4
LConv Tiny 17M 1.20 31.2 -2.50 51.1 51.3 49.5
LConv Small 67M 3.80 12.8 -2.10 71.8 59.9 64.7
LConv Base 210M 10.6 12.8 -1.95 73.8 63.6 70.3
LConv Large 741M 41.0 3.0 -1.76 76.8 65.6 76.3
LConv XL 2.3B 77.0 1.0 -1.75 73.3 64.1 72.9
DConv Tiny 22M 1.39 27.3 -2.46 51.1 48.9 30.2
DConv Small 96M 4.97 19.8 -2.08 68.6 57.4 64.3
DConv Base 324M 15.3 7.6 -1.90 72.9 60.1 63.7
DConv Large 1.2B 78.0 1.1 -1.82 70.8 58.5 58.2
MLP-Mixer Small 67M 3.83 22.3 -2.15 65.4 55.1 58.7
MLP-Mixer Base 233M 12.4 10.7 -1.90 64.4 58.1 60.5
MLP-Mixer Large 739M 38.3 3.9 -1.73 52.2 47.8 60.9
MLP-Mixer XL 2.86B 48.3 1.2 -1.61 57.3 58.9 65.7
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Table 2: Slope of a fitted linear line for each model,
when we compare FLOPs vs. upstream performance
(F,U ), FLOPs vs. downstream performance (F,D),
parameter size vs. upstream performance (F,U ), pa-
rameter size vs. downstream performance (P,D), and
finally upstream vs. downstream performance (U,D).

Model αF,U αF,D αP,U αP,D αU,D

Transformer 0.54 0.28 0.47 0.24 0.49
GLU-Trans. 0.49 0.24 0.42 0.22 0.46
LConv 0.32 0.13 0.29 0.11 0.48
Funnel 0.47 0.22 0.38 0.18 0.46
Switch 0.23 0.14 0.13 0.08 0.58
Universal 0.50 0.20 0.56 0.22 0.35
ALBERT 0.08 -0.12 0.13 -0.21 -1.67
Evolved 0.44 0.22 0.42 0.21 0.47
Performer 0.25 0.05 0.24 0.05 0.24
MoS-Trans. 0.43 0.21 0.43 0.20 0.47
MLP-Mixer 0.32 -0.03 0.26 0.65 -0.02

how well a model scales. For example αF,U is plot-
ting FLOPs against Upstream performance. The
only exception is αU,D which is a measure of up-
stream vs downstream performance. A high αU,D

value means that the transfer to the downstream
tasks is better as a model scales. Overall, the α
value is a metric that represents how well a model
performs relatively across all scales

Analysis of Slope for each Model In general,
we find that the vanilla Transformer has the highest
values of α. Models such as Evolved Transformer,
GLU-Transformer, MoS-Transformer and Funnel
Transformer tend to have similar scaling properties
to the vanilla Transformer. The GLU-Transformer
has similar and slightly worse scaling properties
to the vanilla Transformer, even if it was observed
to do better in absolute sense on some compute-
regions. On the other hand, we also observe that
there are models which are difficult to scale such
as LConv, UT, MLP-Mixer and Performer. This is
even more evident on downstream task. We also
note that ALBERT scales (trends) negatively2 (gets
worse) as we scale the model up. On the other hand,
the metric αU,D measures how the downstream per-
formance scales with upstream performance. Over-
all, the Switch Transformer does the best on this
metric where downstream performance scales well
with upstream performance. Generally, models
that make less changes to the main Transformer ar-
chitecture (GLU-Transformer, MoS-Transformer)
tend to retain similar scaling behaviours and chang-
ing the inductive bias also significantly alters the

2This version of ALBERT shares parameters across en-
coder and decoder which may partially explain why we had a
hard time scaling up.
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Figure 4: Scaling depth
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Figure 5: Scaling width of FFN

scaling property of the model.

5.4 Do Scaling Protocols influence model
architectures in the same way?

We are interested in how different scaling protocols
influence the model architectures. Figure 4 shows
the effect of scaling depth of four model archi-
tectures (MoS-Transformer, Transformer, Evolved
Transformer and LConv). Figure 5 shows the ef-
fect of scaling width on the same four architec-
tures. Firstly, on upstream (negative log perplex-
ity) curves, we note that while different architec-
tures have a distinct difference in absolute perfor-
mance, the scaling trend remains quite similar. On
downstream, depth scaling (Figure 4) seems to act
equally on most architectures with the exception of
LConv. Meanwhile, for width scaling, it seems that
Evolved Transformers scale slightly better when
applying width-scaling. It is also interesting to
note that depth-scaling has a much more substan-
tial impact on downstream scaling as opposed to
width-scaling.

6 Epilogue and Conclusion

In this paper, we conducted extensive experiments,
pretraining and finetuning of up to 100 models
ranging from 10 well-established Transformer and
non-Transformer architectures. We showed that
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different model architectures can have different
scaling behaviours and models performing well in
one compute region (or model size) may not do
identically well in another compute region. We
also showed that model architectures may do well
on upstream perplexity but fail to transfer to down-
stream tasks. Hence, practitioners should be cau-
tious about developing architectures that not only
scale well with respect to the upstream perplexity,
but also based on downstream performance. While
we certainly do not expect researchers to always
report model performance across all scales (espe-
cially large-scale), we believe that it is good to
keep in mind that architectures can perform quite
differently at different compute regions. Hence,
this might be a good dimension to consider when
designing new inductive biases. As such, perform-
ing evaluation at a certain compute region may be
insufficient to capture the full picture. It is also
good to consider if different inductive biases will
result in different extents of emergent capabilities
(Wei et al., 2022a; Abnar et al., 2020).

We also showed that different model architec-
tures may react differently to different scaling pro-
tocols, reaffirming that comparing and benchmark-
ing these models can be very challenging (De-
hghani et al., 2021b). When it comes to scaling
large models, we show that novel inductive biases
can be indeed quite risky which might explain why
most state-of-the-art large language models (Rae
et al., 2021; Chowdhery et al., 2022; Tay et al.,
2022) are based on relatively vanilla architectures.
Our advice is to be cautious when staking an expen-
sive run on an architecture that drastically modifies
the attention mechanism. Finally, we acknowledge
that not every practitioner or researcher would re-
quire models that are able to scale to billions of
parameters. In that case, inductive biases that are
tailored to small or low compute will be sufficient.

7 Limitations

As with all empirical studies, ours come with its
own set of limitations. We only present a sampling
of Transformer variants, and it is not exhaustive.
Our selection is aimed towards sampling a diversity
of architecture approaches to have representation
across the entire space of Transformer architec-
tures. As such, we do not claim that our findings
hold within a subcategory; for example efficient
Transformer variants, which there are many recent
works not covered here. Additionally, given the

huge number of models considered in this work,
while we scaled each model to the best of our abil-
ity and present details on how they were scaled,
there could always be unexplored hyperparameter
settings and other tricks that could get a model to
"work" at larger scales. Beyond this work, one
could also study the differences in prompting tech-
niques, e.g. chain-of-thought prompting (Wei et al.,
2022b), between different architecture and scales.
Such findings would be of importance for the re-
search community in the future. Although in either
case here, we believe that our findings, i.e. models
scale differently and need to be tested, will con-
tinue to be relevant. This space will only continue
to grow, and future researchers and practitioners
must continue to assess the scalability of new mod-
els under new use cases.
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8 Appendix

8.1 Scaling Details for Individual Models
For most models, it was reasonable to follow the
uniform scaling method in the main T5 sizes. At
each size, the hyperparameters are as follows:

Model NL dff dmodel dkv NH #Params
Tiny 4/4 1024 256 32 4 16M
Small 6/6 2048 512 32 8 60M
Base 12/12 3072 768 64 12 220M
Large 24/24 4096 1024 64 16 738M
XL 24/24 16384 1024 128 32 3B

Table 3: Table of model configurations. NL is the num-
ber of layers, dff is the size of the MLP, dmodel is the
hidden size of the model. dkv is the size of each key-
value vector. NH is the number of heads.

Scaling for Switch Transformer For Switch
Transformers, we use the following scaling:

Model NL dff dmodel dkv NH NE #Params
Tiny 4 1024 512 64 12 32 173M
Small 6 2048 512 64 12 32 460M
Base 12 3072 768 64 12 32 2B
Large 24 3072 768 64 12 32 8B
XL 48 3072 768 64 12 128 30B

Table 4: Scaling for Switch Transformer. NE is the
number of experts.

Scaling for Universal Transformer Scaling
UTs are generally difficult as described in the main
text. There were two main considerations for scal-
ing UTs. Initially we tried scaling the number of
recurrent operations. However, we found that even
with an increase of FLOPS, this does not lead to
improved performance. Overall, the UT model
might be pretty slow and therefore a model with
the same hparams as vanilla XL might be infeasible
to run. Hence, we explored increasing the width of
the MLPs to 32K to see if UTs would scale in this
manner.

Model NR dff dmodel dkv NH #Params
UT Tiny 3/3 1024 128 32 8 11M
UT Small 3/3 2048 512 32 8 52M
UT Base 3/3 3072 768 64 12 127M
UT Large 3/3 32768 1024 64 16 283M

Table 5: Table of model configurations. NR is the num-
ber of recurrent operations, dff is the size of the MLP,
dmodel is the hidden size of the model. dkv is the size
of each key-value vector. NH is the number of heads.

8.2 Full Results
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Figure 6: Quality-FLOP trade off for the upstream Negative Log-Perplexity of vanilla Transformer compared to
other models.
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Figure 7: Quality-Parameter trade off for the upstream Negative Log-Perplexity of vanilla Transformer compared to
other models.
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Figure 8: Quality-Throughput trade off for the upstream Negative Log-Perplexity of vanilla Transformer compared
to other models.
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Figure 9: Quality-FLOP trade off for the downstream SuperGlue Accuracy of vanilla Transformer compared to
other models, with respect to FLOPs, number of parameters, and throughput.
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Figure 10: Quality-Parameter trade off for the downstream SuperGlue Accuracy of vanilla Transformer compared to
other models.
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Figure 11: Quality-Throughput trade off for the downstream SuperGlue Accuracy of vanilla Transformer compared
to other models.
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Figure 12: Quality-FLOP trade off for the downstream Glue Accuracy of vanilla Transformer compared to other
models.
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Figure 13: Quality-Parameter trade off for the downstream Glue Accuracy of vanilla Transformer compared to other
models.
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Figure 14: Quality-Throughput trade off for the downstream Glue Accuracy of vanilla Transformer compared to
other models.
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Figure 15: Quality-FLOP trade off for the downstream Squad Accuracy of vanilla Transformer compared to other
models.
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Figure 16: Quality-Parameter trade off for the downstream Squad Accuracy of vanilla Transformer compared to
other models.

12363



1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

Albert Small

Albert Base

Albert Large

Tiny
Mini
Small

Base
Large XL

Albert

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

DConv Tiny

DConv SmallDConv Base

DConv Large

Tiny
Mini
Small

Base
Large XL

DConv

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0 2.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

Evolved Tiny

Evolved Small
Evolved Base

Evolved LargeEvolved 3B

Tiny
Mini
Small

Base
Large XL

Evolved

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

Funnel Tiny

Funnel Small

Funnel Base
Funnel LargeFunnel 3B

Tiny
Mini
Small

Base
Large XL

Funnel

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

LConv Tiny

LConv Small

LConv Base

LConv Large
LConv 3BTiny

Mini
Small

Base
Large XL

LConv

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y MLP Mixer SmallMLP Mixer BaseMLP Mixer Large

MLP Mixer 3B

Tiny
Mini
Small

Base
Large XL

MLP Mixer

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

MoS- Tiny

MoS- Small
MoS- Base

MoS- Large MoS- 3B

Tiny
Mini
Small

Base
Large XL

MoS-Transformer

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

Performer Tiny

Performer Small

Performer Base

Performer Large

Tiny
Mini
Small

Base
Large XL

Performer

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0 2.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

Switch 173M
Switch 460M

Switch 2BSwitch 4B Switch XL3

Tiny
Mini
Small

Base
Large XL

Switch

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

GLU Tiny

GLU Small
GLU Base GLU Large

GLU 3B

Tiny
Mini
Small

Base
Large XL

TransformerGLU

1.6e-2 3.1e-2 6.3e-2 1.3e-1 2.5e-1 5.0e-1 1.0e+0

1/Throughput

10

20

30

40

50

60

70

80

90

S
qu

ad
 A

cc
ur

ac
y

UT Tiny

UT Small
UT Base

UT Large

Tiny
Mini
Small

Base
Large XL

UT

Figure 17: Quality-Throughput trade off for the downstream Squad Accuracy of vanilla Transformer compared to
other models.
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