
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 1150–1162
December 6-10, 2023 ©2023 Association for Computational Linguistics

In-Context Demonstration Selection with Cross Entropy Difference

Dan Iter, Reid Pryzant, Ruochen Xu, Shuohang Wang,
Yang Liu, Yichong Xu, Chenguang Zhu

Microsoft Cognitive Service Research
iterdan@microsoft.com

Abstract

Large language models (LLMs) can use in-
context demonstrations to improve perfor-
mance on zero-shot tasks. However, selecting
the best in-context examples is challenging be-
cause model performance can vary widely de-
pending on the selected examples. We present a
cross-entropy difference (CED) method for se-
lecting in-context demonstrations. Our method
is based on the observation that the effective-
ness of in-context demonstrations negatively
correlates with the perplexity of the test exam-
ple by a language model that was finetuned
on that demonstration. We utilize parameter
efficient finetuning to train small models on
training data that are used for computing the
cross-entropy difference between a test exam-
ple and every candidate in-context demonstra-
tion. This metric is used to rank and select in-
context demonstrations independently for each
test input. We evaluate our method on a mix-
domain dataset that combines 8 benchmarks,
representing 4 text generation tasks, showing
that CED for in-context demonstration selec-
tion can improve performance for a variety of
LLMs over baseline selection methods.1

1 Introduction

Large language models (LLMs) have been widely
successful across many NLP tasks (Bommasani
et al., 2022; OpenAI, 2023; Bubeck et al., 2023).
The primary method for LLMs to adapt to new
tasks has been using in-context learning, where a
few examples and labels are provided as input to
the model (Agrawal et al., 2022). This simple ap-
proach has shown large improvements over zero
shot settings, and even outperformed finetuning
methods when the training dataset is small. How-
ever, the model’s performance can be greatly influ-
enced by which in-context demonstrations (ICDs)
are selected into the prompt (Lu et al., 2022; Zhao
et al., 2021a; Min et al., 2022).

1Code is available at https://github.com/microsoft/LMOps

Selecting the best in-context demonstrations can
be challenging. The variance in performance of
similar demonstrations can be large, and the se-
lected examples can introduce unfavorable prior bi-
ases on the output label space (Zhao et al., 2021b).
The naive approach is to randomly sample demon-
strations from the same source dataset. Previous
methods for selecting ICDs include simple meth-
ods such as selecting nearest neighbors by embed-
ding distance (Liu et al., 2022b) and retrieval-based
methods that require training a retriever model (Ru-
bin et al., 2022). This work presents a new method
of selecting demonstrations that can be applied
to any sized training data, requires training small
PEFT models only and outperforms the nearest
neighbor baseline on GPT-Davinci-003 (Ouyang
et al., 2022).

We propose a cross entropy difference (CED)
method for ICD selection. CED has been used to
select in-domain data from large mixed-domain
datasets for domain adaptation (Axelrod et al.,
2011; Moore and Lewis, 2010; Wang et al., 2018).
We borrow this idea to conduct ICD selection.

Specifically, we utilize parameter efficient fine-
tuning to train small models on training data that
are used for computing the CED between a test
example and every candidate in-context demon-
stration. The CED scores are used to rank and
select in-context demonstrations. We present a the-
oretical explanation for the effectiveness of CED.
CED approximates the gradient alignment between
training and test examples. Our analysis builds
on previous findings that demonstrations operate
as “meta-gradients” and shows that demonstrations
with gradients similar to those of test inputs lead to
improved performance in downstream tasks (Dai
et al., 2022).

We evaluate our proposed CED-ICD selection
method on a mixed-domain dataset composed of 8
datasets on 4 tasks: binary classification, multiple
choice and extractive question answering and ab-
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stractive question answering. We show that down-
stream model performance using CED-ICD out-
performs nearest neighbor baselines and transfers
across models allowing training small models for
selection but evaluating test examples on much
larger models including GPT-3.5.

The contributions of this work are the following:
1) We present a method for selecting in-context
demonstrations based on cross entropy difference.
2) We provide theoretical guidance for why select-
ing demonstrations based on their gradient align-
ment with test example is an effective heuristic.
3) We evaluate our method on a mixed-domain
benchmark composed of 8 datasets from 4 tasks. 4)
We evaluate our method on different sizes of GPT3
models, showing that this method transfers to larger
models leading to performance improvements over
baseline selection methods.

2 Related Work

Our work combines ideas from three bodies of re-
search: In-context learning (ICL), data selection
for domain adaptation and parameter efficient fine-
tuning (PEFT).

While in-context learning (Agrawal et al., 2022)
has shown very strong results for few-shot settings,
recent work has shown that LLMs are very sensi-
tive to the selected examples leading to large vari-
ance in performance (Zhao et al., 2021b), sensi-
tivity to the order of examples (Lu et al., 2022)
and even lack of sensitivity to the actual labels
(Min et al., 2022). Other work has attempted to
mitigate these challenges by selecting in-context
demonstrations by the nearest neighbor examples
in embedding space (Liu et al., 2022b), or training
a retrieval mechanism (Rubin et al., 2022). We
build on this line of work by proposing a novel
selection method that combines the observations
from Min et al. (2022) that domain similarity is
a key characteristic of good in-context demonstra-
tions, and observations from Gonen et al. (2022)
that using perplexity could be a good heuristic for
prompt selection.

Previous work on domain adaptation has focused
on finding in-domain examples from a large out-
of-domain dataset to train a model that achieves a
better generalization on a target distribution (Moore
and Lewis, 2010; Axelrod et al., 2011; Grangier
and Iter, 2022). Data selection is intended to maxi-
mize the distributional similarity between a training
dataset and test dataset. However, cross entropy dif-

ference has not been used previously at the example
granularity to rank the “in-domainness” of training
data in reference to just a single target example. We
propose a natural extension of this framework for
selecting demonstrations that are “in-domain” for
a test input, which we demonstrate is an effective
metric for selecting demonstrations for in-context
learning.

Parameter efficient finetuning (PEFT) proposes
a class of methods for augmenting model parame-
ters with a small number of additional parameters
that can be trained and stored efficiently (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022a;
Hu et al., 2022). However, PEFT is usually used
independently from in-context learning. Liu et al.
(2022a) report that combining in-context learning
and PEFT has not been effective. Sun et al. (2023)
does report some settings where PEFT and ICL can
be combined, but only under specific task condi-
tions. We report similar findings, that in-context
demonstrations do not improve PEFT models when
selected randomly, however, we do see improve-
ments in PEFT performance when combined with
CED for selecting in-context demonstrations dur-
ing both training and inference time. We also uti-
lize the ability of a PEFT model, T-Few (Liu et al.,
2022a), to train on very few examples to be able to
effectively compute CED scores without overfitting
to the target domain.

3 Methodology

We propose a method for selecting in-context
demonstrations (ICDs) by finding the training data
that would minimize the perplexity of a test exam-
ple, if a language model were finetuned on that
training example. This approach stems from pre-
vious findings that in-context examples may act as
a type of meta-gradient on the frozen LLM (Dai
et al., 2022) and the assumption that models per-
form better on in-domain test data. As we show in
the following sections, our method of using cross
entropy difference finds the demonstrations that
appear most likely to be from the same domain as
the test example.

3.1 Cross-Entropy Difference for In-Context
Demonstration Selection

Generally, large language models are trained to
minimize the negative log likelihood of a token
given some context C by training on samples from
a dataset D. The parameters of the model are rep-
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resented by θ.

L(θ;D, C) = − 1

|D|
∑

y∈D
logP (y|θ, C) (1)

In-context learning is the setting where the
model weights θ are frozen and the only way to
minimize the loss is to select an optimal context.
In this work we also constrain the context to be ex-
amples from the training data. Note that the more
general case is often referred to as prompt learn-
ing or prompt engineering where the context can
include any natural language including instructions
or descriptions in addition to examples.

We define a class of selection methods W, were
each function in the set outputs a subset of the
training dataset and the size of the subset is at most
k, where k is the number of shots to include in the
context. The selection may condition on the input
so it is not restricted to selecting a single in-context
demonstration for all test examples. The optimal
selection method W∗ is defined as the selection
method that minimizes the loss on the test domain.

W∗ = arg min
W∈W

− 1

|D|
∑

(x,y)∈D
logP (y|θ,W(x))

(2)
Given a training set Dtrain =

{(x1, y1), (x2, y2), ..., (xn, yn)} with n ex-
amples, where xi is the i-th input and yi is the
corresponding label, the goal of few-shot learning
is to learn a function f : X → Y that can
accurately predict the label y for a new input x,
given only a small number of training examples.
For simplicity of analysis, we focus on the case
were only 1 demonstration is selected. This is
especially useful for scenarios where each example
is long, such as background documents. We
leave multiple-demonstration selection to future
investigation.

Cross-entropy difference (CED) is the difference
between the cross-entropy losses from two models;
a generic or base domain model (e.g. a pretrained
language model) and a target domain model (e.g. a
language model finetuned on a target distribution).

CED = logP (y|x; θtargeti)− logP (y|x; θbase)
(3)

CED, in various forms, has been used extensively
for data selection for domain adaptation (Axel-
rod et al., 2011; Moore and Lewis, 2010; Iter and

Grangier, 2021; Mindermann et al., 2022). Since
we are selecting the argmax domain model per test
example, as seen in Equation 2, in practice we can
compare the cross-entropy of the target domain
model directly as the base model loss is fixed per
test example. Note that this differs from the stan-
dard data selection setting where there is one target
domain and many data points which are scored.

For each xi in Dtrain, a separate target model is
trained on the language modeling objective, produc-
ing n models, M1, ...,Mn. Given a test example
xT , we apply each Mi to compute xT ’s perplexity
L(Mi(xT )). We then select the training sample as-
sociated with the language model giving the lowest
perplexity as the in-context demonstration for xT :

ICD = xargmini L(Mi(xT )) (4)

Unlike the domain adaptation setting, rather
than scoring all the training data using a single
in-domain model, each training example is treated
as its own domain. Each test example can be scored
for "in-domain-ness" across all training examples.

To train each model on a single example, we use
the (IA)3 PEFT method with a T-Few 3B parame-
ter model (Liu et al., 2022a). The effectiveness of
PEFT to train a model on a small dataset without
catastrophic forgetting allows us to train a model
on a single example. The model is trained for mul-
tiple epochs and a small development set is used to
test for overfitting and early stopping. Also, since
a small fraction of parameters are updated, stor-
ing each model only requires 2MB on disk. Liu
et al. (2022a) also showed that training a T-Few
model was equivalent in FLOPs to approximately
20 forward passes of a 175B parameter GPT model.
Since our finetuned models only require an aver-
age of 20 steps to train, the training cost in FLOPs
per model is less than one forward pass of a 175B
parameter GPT model.

3.2 Clustering for Large Training Sets

Training many small models on each training exam-
ple and storing the respective weights may become
prohibitively expensive, even when using small
models trained with PEFT. We present a simple
method to apply cross-entropy difference for in-
context demonstration selection on larger training
sets by clustering the training data. The approach
from Section 3.1 can be scaled to larger training
datasets by training each model Mi on a set of
examples that can be obtained by clustering the
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training data. Our experiments found that trivial
clusters based on document embeddings did not
perform well. Instead, we present a method for
clustering which initializes k finetuned models on
k random examples and uses cross-entropy differ-
ence to cluster the training data.

We sample a number of examples that is smaller
than the size of the training datasets. For each
example, a small model is trained with PEFT as in
Section 3.1. All examples in the training dataset
are scored with each model, producing a score for
each example-model pair. The lower the loss on a
model, the “closer” that point is to the model cluster.
We use these scores to create equal sized clusters
using only the initialization step for same-size k-
means variation described by Schubert (2022). Mi

models are retrained on each cluster, producing
a new set of k models. For selecting in-context
demonstrations, we can either randomly sample
from the cluster or use the original seed of the
cluster (i.e. the centroid by CED).

3.3 ICDs as Meta-Gradients

Dai et al. (2022) describe in-context demonstra-
tions as “implicit finetuning”, where a component
of the attention mechanism can be interpreted as
a “meta-gradient”. This formulation suggests that
training directly on the in-context demonstration
would have a similar effect to in-context learning
with an LLM. Under this interpretation, the best se-
lection strategy would be to choose examples that,
if the model were to be trained on these examples,
would result in the lowest loss on the test example.
This strategy of decreasing the loss of a test exam-
ple to measure domain similarity has been shown
to correlate with performance on the downstream
tasks in a domain adaptation setting (Grangier and
Iter, 2022; Axelrod et al., 2011; Moore and Lewis,
2010). We apply the principle to the problem of
in-context demonstration.

Dai et al. (2022) define an approximation to the
standard attention head Attn(V,K, q) as linear at-
tention that removes the softmax and scaling factor.
V , K, and q are the value, key and query respec-
tively and correspond to attention weight matrices,
WV and WK . We omit the full derivation from Dai
et al. (2022) but include the expanded form of the
linear attention in line 2 of Equation 5. q is the
attention query vector, q = WQx, and the input
is [X;X ′] where X ′ is the in-context demonstra-
tion that is concatenated to the input X . Dai et al.

(2022) rewrites the linear attention head weight
matrix as a reparameterization of the zero shot at-
tention head WZSL where the delta applied to the
weights depends on the original wieghts and the
in-context demonstration.

Attn(V,K, q)

≈ WV X(WKX)T q +WV X
′(WKX ′)T q

= (WZSL +∆WICL)q

(5)

∆WICL can be seen as an update that is applied
to the zero shot weights of the attention mecha-
nism WZSL. Here we see that including in-context
demonstrations is akin to finetuning the LLM on
the selected demonstrations.

If the loss of the large language model can only
be modified by selecting in-context examples and
these examples act as a meta-gradient on the lan-
guage model, the optimal selection would be the
training example with a gradient most similar to
test example. Computing similarities between gra-
dients would be computationally expensive given
the size of large language models and gradients of
a test example can not be computed because the
model can not access the labels of test instances.
Cross entropy difference (Axelrod et al., 2011),
used in data selection for domain adaptation, has
been show to be effective at selecting in-domain
examples using the perplexity of the input features
without the label.

Grangier (2019); Wang et al. (2020) describe
cross entropy difference as an approximation of the
dot product between the gradient of the target do-
main and the gradient of a single training example.

logP (y|x; θtarget)− logP (y|x; θbase)
≈ λg(x, y; θbase)

T g(Dtarget, θbase)
2 (6)

Here the cross entropy difference is approximat-
ing the gradient alignment between a single train-
ing example and a target domain. CED is simply
defined as the difference between the log probabil-
ities of a text span y evaluated on two models, a
base model and a target specific model. The base
model represents the background distribution for
which we can use any pretrained language model.
The target model represents the distribution of a

2This holds when the base model and finetuned model are
close, which is the case in finetuning. For ICDs and finetuning
on a single example, this is even more limited than general
finetuning.

1153



target domain. Unlike cross entropy difference, in-
context learning is input specific rather than dataset
specific. To adapt the CED method to in-context
demonstration selection, we need a model that is
finetuned on a single example. In Section 3.1 we
describe how we are able to finetune such a model
with parameter efficient finetuning (PEFT) without
overfitting to the single example and limiting the
space requirements to store independent parame-
ters per training example.

Equations 2 and 5 say that we want to find the
examples that would minimize the loss if used as
finetuning data. Equation 6 states that examples
that have a gradient most similar to the actual test
data can be approximated by finding the examples
that most increase the likelihood of a test exam-
ple. This provides the motivation for using CED
to select ICDs. In the next section we describe in
depth how to train models for each single-training-
example domain and score the training data for
selecting in-context demonstrations.

4 Experiments

We evaluate CED-ICD selection on both small mod-
els and the transfer of the selection method to larger
models, including GPT-Davinci-003. We evaluate
the selection method in a mixed-domain setting
where random demonstrations are not trivially in-
domain. We do not provide task or dataset labels
as input to the selection model. We show in Sec-
tion 5.2, both CED and the nearest neighbors base-
line do not exclusively select in-domain demon-
strations in the mixed domain setting. In fact, we
show in Section 5.2 that out-of-domain examples
may also be strong in-context demonstrations. In
practical settings, a single LLM may be used for
multiple tasks and there may not be labels for the
task type, especially with the more common chat
interfaces. We find this mixed-domain setting to
better reflect these realistic challenges.

4.1 Datasets and Models

To evaluate the ICD-CED selection method, we
measure the performance of several data selection
methods on 8 datasets from 4 tasks; binary clas-
sification(BoolQ, Clark et al. (2019), NPBoolQ,
Khashabi et al. (2020a)), extractive question an-
swering (Squad2, Rajpurkar et al. (2018), NewsQA
(Zhang et al., 2020)), abstractive question answer-
ing (NarrativeQA, Kočiský et al. (2018), Natu-
ralQA, Kwiatkowski et al. (2019)) and multiple

choice (RACE, Lai et al. (2017), OpenBookQA
Mihaylov et al. (2018)). All tasks are cast as a
text generation task, in accordance to the evalua-
tion used in UnifiedQA (Khashabi et al., 2020b).
Binary classification and multiple choice are mea-
sured by accuracy, extractive QA is measured by F1
score based on the generated tokens and abstractive
QA is measured by RougeL.

We combine these 8 datasets to create a larger
mixed-domain dataset. We sample 32 examples
from each dataset to create a medium-sized few-
shot dataset with total of 256 training examples.
We evaluate each dataset independently but with
in-context demonstrations that can be selected from
any dataset. We select one in-context demonstra-
tion as many examples have long “background”
documents, where the input exceeds input length
limits and need to be truncated.

We evaluate 2 settings, (1) small model perfor-
mance combining PEFT with in-context learning
and (2) in-context learning on LLMs. Our smaller
model is T-Few 3B model (Liu et al., 2022a). Pre-
vious results don’t report ICL performance because
the authors did not find improvements from includ-
ing ICL examples, however, as we show in our em-
pirical results, T-Few can benefit from in-context
learning if high quality demonstrations are selected.
Further improvements are realized by finetuning
T-Few with selected ICDs instead of random. For
LLMs, we evaluate 3 sizes of GPT-3 (Babbage,
Curie and Davinci (davinci-003)) (Ouyang et al.,
2022).

We evaluate the following model settings, with
the name corresponding to the rows in Table 1.
Small Model Experiments
T-Few PEFT is the standard parameter efficient
finetuning setting where the model is finetuned on
all the training data and inference does not include
in-context demonstrations.
T-Few PEFT + Random ICL includes randomly
selected in-context demonstrations at inference.
T-Few PEFT + NN uses OpenICL (Wu et al., 2023)
to retrieve the most similar examples as measured
by nearest neighbors in euclidean distance between
embedding vectors.
T-Few PEFT + CED is our proposed model which
selects in-context demonstrations using CED
scores.
T-Few PEFT + CED (training) is our proposed
model but includes using in-context selection
during both training and inference.
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Boolq
(Acc)

NP-
Boolq
(Acc)

NarQA
(RougeL)

NatQA
(RougeL)

Squad2
(F1) NewsQA

(F1)

RACE
(Acc)

OBQA
(Acc) AVG

Zero shot 0.313 0.402 0.328 0.336 0.328 0.378 0.048 0.054 0.27
PEFT FT 0.629 0.574 0.347 0.376 0.368 0.509 0.552 0.576 0.49
+ Random ICL 0.481 0.574 0.480 0.326 0.322 0.490 0.585 0.432 0.46
+ NN 0.597 0.609 0.514 0.255 0.386 0.477 0.594 0.468 0.49
+ CED ICL 0.621 0.602 0.506 0.265 0.414 0.471 0.580 0.510 0.50
+ CED ICL w/ (tr) 0.629 0.695 0.504 0.276 0.399 0.467 0.593 0.469 0.50
Loss Oracle 0.875 1.000 0.515 0.392 0.703 0.767 0.750 0.781 0.72
Oracle ICL 0.969 1.000 0.650 0.454 0.784 0.794 0.813 0.906 0.80

Table 1: T-Few results on 8 datasets. Metrics are denoted next to dataset name.

Boolq NP-Boolq NarQA NatQA Squad2 NewsQA RACE OBQA AVG
Davinci Rand 0.813 0.750 0.582 0.365 0.371 0.507 0.710 0.728 0.603
Davinci NN 0.860 0.751 0.549 0.379 0.366 0.532 0.780 0.813 0.629

Davinci CED 0.848 0.758 0.623 0.387 0.415 0.541 0.788 0.825 0.648
+ Clusters 0.876 0.762 0.618 0.394 0.424 0.539 0.780 0.768 0.645
Curie Rand 0.662 0.648 0.387 0.253 0.259 0.405 0.228 0.306 0.394
Curie NN 0.678 0.634 0.396 0.264 0.297 0.386 0.292 0.336 0.410

Curie CED 0.776 0.678 0.407 0.294 0.392 0.430 0.344 0.356 0.460
Babbage Rand 0.542 0.482 0.316 0.220 0.213 0.369 0.254 0.306 0.338
Babbage NN 0.590 0.468 0.315 0.220 0.225 0.341 0.248 0.304 0.339

Babbage CED 0.664 0.504 0.321 0.242 0.281 0.371 0.262 0.322 0.371

Table 2: GPT-3 results using random, nearest neighbor and CDS in-context demonstration selection.

T-Few PEFT + Loss Oracle evaluates all available
ICDs for each test example and reports the
highest possible score when selected based on
cross-entropy loss.
T-Few PEFT + Oracle ICL is similar to the above
but the best ICD is selected based on the respective
evaluation metric for each task as a true upper
bound.
Large Language Model Experiments
[GPT Model] Rand randomly selects in-context
examples similar to T-Few PEFT + ICL.
[GPT Model] NN uses OpenICL (Wu et al., 2023)
to retrieve the most similar example from the test
set as the in-context example.
[GPT Model] CED is our proposed model which
selects in-context demonstrations using CED
scores.

In-context demonstrations that do not fit entirely
into the T-Few context window are truncated in the
“background” section of the input exclusively, to
keep the question, answer choices and answer in-
tact. A simple prompt is used for GPT requests that
labels the sections as “background”, “question”,
“answer” and “example”. We found that perfor-
mance dramatically improved for binary classifica-
tion by including an instruction to answer with a
yes or no answer.

We also report the performance of CED-ICD
with a larger set of candidate in-context demonstra-
tions in Table 2, "+ Clusters" row. We sample 256
examples per task (total 2,048) and cluster them as
described in Section 3.2. The total number of mod-
els used to select in-context demonstrations is 256,
the same as the other rows in the table. The ICD
for each cluster is selected as the cluster centroid
(i.e. the seed example).

4.2 Results

Our results show that selecting in-context demon-
strations using cross-entropy difference (CED)
both outperforms baselines on a small trainable
model and transfers to larger models, even improv-
ing results on GPT3-Davinci003. Table 1 reports
the results of different selection methods on the T-
Few 3 billion parameter model. Parameter efficient
finetuning (PEFT) is a strong baseline that fine-
tunes T-Few on the full set of training data, which
is a total of 256 training examples. PEFT acheives
the best results on T-Few for both BoolQ and Natu-
ralQA datasets. Liu et al. (2022a) report that “[i]n
preliminary experiments, we found that T0 was
not able to perform few-shot ICL – performance
actually decreased as we increased the number of
in-context examples”, which seems to be the case
using random in-context demonstrations. However,
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when incorporating stronger ICD selection meth-
ods, we show that performance does improve on
NQ-BoolQ, NarrativeQA, Squad2, NewsQA and
RACE. We found that T-Few does not perform
well with in-context demonstrations if they are not
included in the finetuning phase. When finetun-
ing with in-context demonstrations, we evaluated
both random ICD selection and CED selection. We
found that on some datasets, we get further im-
provements by using CED selection during train-
ing as well as inference, which we expected as
the training data will have more examples where
the in-context demonstration is helpful for label
prediction.

We report oracle in-context demonstration se-
lection, the performance of an ideal example se-
lector given the training data. In this setting, we
evaluate every training example as an in-context
demonstration and report the metric as the average
of the best scores per example. Evaluating gener-
ated text requires a verbalizer to map the text to
the labels for some tasks. Due to this mapping
and metrics that do not directly correlate with loss,
such as Rouge and token matching F1, we report
both oracle scores based on selecting in-context
demonstrations by the lowest loss and by the high-
est task metric performance. The latter is the true
oracle performance but the former suggests that
there may be some limitations to the extent that a
cross-entropy based model may approximate the
downstream performance on a task.

Oracle results show that there is still a large
gap between our method and the oracle, show-
ing that there may be many opportunities to im-
prove smaller model performance with better selec-
tion methods. However, Figure 1 shows that very
few examples yield substantial improvements over
the average in-domain performance, meaning that
while in-context demonstrations may come from
a small set, statistical outliers may compound to
make a significant improvement but a predictive
method for determining which examples are out-
liers may not exist. Similar figures for all datasets
are in the appendix.

Ultimately, in-context demonstrations are best
used on large language models that can not be fine-
tuned. Although our proposed selection method
is based on the perplexities measured by smaller
and finetuned models, we show that our selection
method transfers to large models, including GPT-
Davinci-003. These results are reported in Table 2.

Our proposed method for selection outperforms
the baseline of using nearest neighbor retrieval on
macro average across 8 datasets and on each of the
3 GPT model sizes evaluated. Clustering a larger
set of candidate in-context demonstrations has sim-
ilar performance overall. We use the same number
of CED models (256) but train them on clusters of
2,048 candidate examples, showing we can main-
tain similar performance with more training data
without substantially increasing compute. To es-
timate variance in this method, we sampled 256
training/in-context examples 5 times. We execute
the end-to-end pipeline of training target models,
selecting in-context demonstrations and running
evaluation. From the evaluation sets, we boot-
strap 50,000 sets to estimate the standard devia-
tion. We find standard deviation on the text-davinci-
003 model to be 0.011 and on text-curie-001 to be
0.007.

Figure 1: Losses for each in-context demonstration in-
cluding both in-domain and out-of-domain examples
for SQuAD2. Examples below the red line outperform
the average in-domain performance.

5 Analysis

We analyze the quality of cross entropy difference
selection by computing the rank of selected demon-
strations compared to an oracle. We also explore
the presence of strong in-context demonstrations
selected from out-of-domain data, compared to in-
domain data.
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% In-Domain % In-Task Oracle
Dataset NN CED NN CED In-Domain In-Task OOD
BoolQ 0.50 0.50 0.72 1.00 0.91 0.91 1.00

NP-Boolq 0.84 1.00 0.84 1.00 0.88 0.91 1.00
NarQA 1.00 0.34 1.00 0.69 0.91 0.91 1.00
NatQA 0.66 0.91 0.69 0.91 0.84 0.91 1.00
Squad2 0.34 0.47 0.63 0.78 0.91 0.97 0.94

NewsQA 0.56 0.81 0.63 0.81 0.97 0.97 0.94
RACE 0.75 0.84 0.78 1.00 0.94 0.94 0.97
OBQA 0.94 0.94 0.97 1.00 0.91 0.94 0.97

Avg 0.70 0.73 0.78 0.90 0.91 0.93 0.98

Table 3: The percentage of selected in-context demonstrations that are in-domain to the inference task is reported on
the left. On the right, we report the percentage of oracle best in-context demonstrations that appear in each category,
of in-domain, in-task and out-of-domain. Different in-context demonstrations can result in the same output and
different outputs may score the same on the final metric so the oracle best in-context demonstration may appear
both in-domain and out-of-domain.

Dataset NN CED
Boolq 24 8

NP-Boolq 23 4
NarQA 26 32
NatQA 20 12
Squad2 10 23

NewsQA 31 24
RACE 15 15
OBQA 15 15
Average 20 16

Table 4: Average rank of the top 1 selected in-context
demonstration for nearest neighbor selection and cross
entropy difference selection. Rank is computed as the
position is the full rank against all other in-context ex-
amples, computed using an oracle evaluated on the final
metric for each dataset.

5.1 Ranking Selected ICDs
Oracle experiments provide a full ranking of all
training data as in-context demonstrations. Ta-
ble 4 shows the average rank of the top 1 selected
in-context demonstration per dataset and average,
comparing between CED selection and nearest
neighbor selection. CED is better at selecting in-
context demonstrations as a measured by the oracle
ranking, 0 is the highest rank and 255 is lowest.
The average rank of a CED selected demonstration
is 16 out of 256.

Table 5 shows one example of in-context demon-
strations selected by nearest neighbor and cross-
entropy difference. While the nearest neighbor
demonstration has significant lexical overlap with
the test example, the demonstration is taken from a

different task. Conversely, the cross-entropy differ-
ence selected-demonstration is sampled from the
same task and displays more similarity to the test
example in the type of question.

5.2 In-Domain vs Out-of-Domain ICDs
Table 3 reports the percentage of selected in-
context demonstrations that are from the same do-
main or same task as the inference dataset. The task
refers to boolean classification, multiple choice, ab-
stractive question answering and extractive ques-
tion answering. Although the nearest neighbors
approach attempts to directly find the most sim-
ilar examples, cross entropy difference tends to
select more in-domain demonstrations. In-domain
demonstrations are a subset of in-task demonstra-
tions so in-task selection percentage is always
larger than in-task but CED has a larger propor-
tion of in-domain selections indicating that CED
is better at distinguishing the domain format even
when there are other datasets that have a similar
format or task structure.

Table 3 reports the percentage of oracle best in-
context demonstrations that appear in each subset
of in-domain, in-task and out-of-domain demon-
strations. Different in-context demonstrations can
result in the same output and different outputs may
score the same on the final metric so the oracle
best in-context demonstration may appear both
in-domain and out-of-domain. Interestingly, this
table shows that an oracle selection method that
only has access to out-of-domain demonstrations
can still achieve the best performance from this
model on 98% of examples, showing that out-of-
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Question Is the Tour de France different every year?
Context: (Tour de France) Traditionally, the race is held ... circuits of France.
Answer: Yes

NN-Selected In-
context Demo

What is the name for the state secondary schools begun by Napoleon that were
intended to standardize education across France?
Context: (Napoleon) Napoleon’s educational reforms laid the foundation ... outper-
formed its European counterparts, many of which borrowed from the French system
Answer: Lycées

CED-Selected
In-context
Demo

Is china the third largest country in population?
Context: (China) China, officially the People’s Republic of China (PRC), is ... and
the special administrative regions of Hong Kong and Macau.
Answer: No

Table 5: An example of an in-context example selected by nearest neighbor versus one selected by Cross-Entropy
Difference.

domain selection of in-context demonstrations can
be highly effective. This suggests that for datasets
that have very few or no demonstrations, out-of-
domain demonstrations may still improve model
performance.

6 Conclusion

This work shows that cross entropy difference
can be used as a heuristic for selecting in-context
demonstrations for in-context learning. We moti-
vate our approach by linking previous observations
that in-context demonstrations operate as meta-
gradients on a frozen large language model to the
data selection literature which has shown that CED
is a method that selects examples that have a gra-
dient most similar to the in-domain examples. We
empirically show that we can use smaller models to
compute CED scores and that this selection method
effectively transfers to large models, such as the
175 billion parameter GPT3, and is able to improve
performance over baseline selection methods.

7 Limitations

The main limitation of this work is the added
complexity of training multiple small models and
the tradeoff between this extra computational and
space cost and the improvement over baselines that
may require less computation. While PEFT train-
ing tends to be stable, it does require searching for
an appropriate learning rate, although in this work
we found 3e-2 to be appropriate for all datasets.
As we report, clustering and using fewer models
does degrade performance so a valuable direction
for future work would be to better scale to larger
training datasets. Also, as mentioned earlier, we

focus on the one shot in-context learning setting
as many of the datasets that we evaluate contain
“background” as part of the input such that includ-
ing one in-context demonstration often exceeds the
maximum input length for both GPT and T-Few.
This requires careful truncation that may effect per-
formance. However, recent GPT-4 releases have in-
cluded extended input lengths, up to 32,000 tokens,
which allow for many more in-context examples
and overall better performance on tasks.

Although we evaluate difference sizes of LLMs,
we only evaluate using GPT models. With recent re-
leases of open-source LLMs such as LLaMa (Tou-
vron et al., 2023), it would be of value to com-
pare the effectiveness of different selection meth-
ods across different flavors of LLMs. Furthermore,
while there are significant limitations for finetun-
ing or accessing LLM weights of proprietary GPT
models, open-source models open the opportunity
to include a finetuning phase for the LLM or us-
ing activations from the LLM as a signal for the
selection method.
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Figure 2: Losses for each in-context demonstration including both in-domain and out-of-domain examples for all
datasets. Examples below the red line outperform the average in-domain performance.
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