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Abstract

Although existing neural retrieval models re-
veal promising results when training data is
abundant and the performance keeps improv-
ing as training data increases, collecting high-
quality annotated data is prohibitively costly.
To this end, we introduce a novel noisy self-
training framework combined with synthetic
queries, showing that neural retrievers can be
improved in a self-evolution manner with no
reliance on any external models. Experimental
results show that our method improves consis-
tently over existing methods on both general-
domain (e.g., MS-MARCO) and out-of-domain
(i.e., BEIR) retrieval benchmarks. Extra anal-
ysis on low-resource settings reveals that our
method is data efficient and outperforms com-
petitive baselines, with as little as 30% of la-
belled training data. Further extending the
framework for reranker training demonstrates
that the proposed method is general and yields
additional gains on tasks of diverse domains.'

1 Introduction

As an important task, information retrieval (IR)
refers to the task of finding relevant texts from a
large collection of passages or documents to satisfy
the specific information needs of users. The infor-
mation need is usually expressed as a short textual
query, and the task is formulated as retrieving texts
that are most relevant to the given query.
Recently, impressive achievements have been
made in neural retrieval models through adopting
large-scale pre-trained models (Devlin et al., 2019).
Dual-encoders typically serve as the backbone ar-
chitecture, which enables retrieving relevant knowl-
edge from collections with millions or billions of
passages in a fraction of time (Karpukhin et al.,
2020). Unlike traditional term-matching-based lex-
ical retrievers, such as TF-IDF (Manning et al.,
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'Source code is available at https://github.com/
Fantabulous-J/Self-Training-DPR

2008) or BM25 (Robertson and Zaragoza, 2009),
which can be applied without any training, neu-
ral retrieval methods normally require training on a
sufficient number of human-labelled query-passage
pairs to work well. Nevertheless, due to the high
cost of human annotations, the number of available
query-passage pairs is way smaller compared to
the size of passage collections (500k at most (Bajaj
et al., 2016) v.s. 21M passages (Kwiatkowski et al.,
2019)). Moreover, the situation becomes increas-
ingly worse in out-of-domain applications, where
only a few or no training examples are available.
Directly applying neural retrieval models trained
on high-resource datasets typically achieves low
out-of-domain performance and lags behind their
lexical counterparts (Thakur et al., 2021).

In this work, we aim to improve the performance
of state-of-the-art neural retrieval models on both
general domain and out-of-domain datasets, by us-
ing automatically synthesised queries. For this pur-
pose, we use a query generator to automatically
synthesise queries for each passage in the target
dataset, which we then use for pre-training, based
on a self-training objective (Scudder, 1965). More
specifically, instead of directly training the model
on synthetic query-passage pairs (Ma et al., 2021),
we use a neural retrieval model that was trained on
the labelled dataset as the teacher to generate soft
labels for each synthetic query, providing a supervi-
sion signal which is more robust to noise in the gen-
erated data. This ameliorates issues with the syn-
thetic queries which are often generic or ambigu-
ous, meaning that the query is only weakly related
to its originating passage, and accordingly, other
passages may match the synthetic query equally
well or better. Table 1 shows a motivating exam-
ple, where the synthetic query is spuriously-related
to its originating passage with only the keyword
achievement matched. However, the top-2 sampled
“negatives” are highly related to the query in topics
and semantics, according to both human judgment
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Synthetic Query: what was the major achievement of the manhattan project?

Originating Passage

| Logits | Hard

...The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what
their success truly meant; hundreds of thousands of innocent lives obliterated.

0.14 1

Sampled Negatives

...success of the 20th century was the Manhattan Project. The Manhattan Project assimilated concepts and | 1.0 0

leaders from all scientific fields and engineering disciplines to construct the first two atomic bombs.

The Manhattan Project was an epic, secret, wartime effort to design and build the world’s first nuclear
weapon. ... the $20 billion project resulted in the production of the first uranium and plutonium bombs.

0.92 0

The Manhattan Project is an American film, released in 1986. The plot revolves around a gifted high school | 0.4 0

student who decides to construct an atomic bomb for a national science fair.

Table 1: A motivating example for the issue of weak-relation between synthetic query and originating passages ,
where top-2 sampled ‘negatives’ are way more relevant to the query than its originating passage. Negatives and
associated Logits are from a dense model fine-tuned on MS-MARCO and are normalised for clarity.

and model predictions. By contrast, simply tak-
ing the originating passage as positive and equally
treating all negatives with hard labels regardless of
their relevance to the query will completely mis-
lead the model, leading to poor semantic matching
patterns between query and passages.

Furthermore, to prevent the student from blindly
imitating the teacher’s behaviour, we pollute its
inputs either in the query or passage by injecting
noise. This ensures that the student has a differ-
ent view on inputs compared to the teacher, en-
couraging it to learn generalised signals from the
teacher. Moreover, by polluting the inputs (e.g.,
shuffling), the student is encouraged to capture
salient phrases in addition to semantic matching,
being more robust to possible perturbed inputs (Fig-
ure 4). After completing pre-training on synthetic
queries, we further finetune the model on labelled
data. Through iterating the pre-training and fine-
tuning steps by using the latest model to relabel
synthetic data, the resulting model can significantly
outperform the one trained only using labelled data.
In summary, the contributions are as follows:

1. We proposed a novel self-training framework
to make use of automatically generated data
more wisely for neural retrieval models (§3).

2. Our experimental results on general-domain
benchmarks show that the proposed frame-
work can not only significantly boost the per-
formance of state-of-the-art neural retrievers,
but also yield superior results in low-resource
settings. We further show our framework is
general and can be extended to improve more
powerful cross-encoder-based rerankers (§4).

3. Further experiments are conducted on the out-
of-domain BEIR benchmark (Thakur et al.,

2021), and both neural retrievers and rerankers
surpass a series of strong models (§4.6).

2 Preliminaries

2.1 Task Definition

We focus on the task of short-passage retrieval (IR)
in this work. Given a query in the form of a short
text, the task requires retrieving a small set of pas-
sages that can satisfy the information needs, from
a collection of passages in million or billion scale.
Formally, suppose we have a passage collection
P = {p1,p2, - ,pn}, the retriever is required to
fetch top-k passages P, = {p1,p2,- - ,px} from
‘P that are relevant to a specific query gq.

2.2 Dense Passage Retrieval

In contrast to traditional IR methods, such as
BM25 (Robertson and Zaragoza, 2009), which rep-
resent texts in high dimensional and sparse vec-
tors with inverted index, dense retrieval methods
alternatively adopt neural models to encode texts
(queries or passages) in dense latent vectors with
much smaller dimensions. A dense passage re-
trieval model (Karpukhin et al., 2020) typically
adopts the dual-encoder architecture, where neural
models are used to encode the query and passage
into dense vectors separately. The relevance is mea-
sured by the dot product between their embeddings:

s(q,p;0) = By(q;0) " - Ep(p;0) (1)

where E.(-;0) is an encoder parameterised by 6.
The adoption of this form of ‘dual-encoder’ ar-
chitecture decouples the encoding of query and
passage. At inference, all passages in P can be en-
coded offline. When a query ¢ comes in, efficient
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nearest neighbour search (Johnson et al., 2021) can
be performed to fetch the top-k passages.

Contrastive learning is applied to train the dual-
encoder. Given a query ¢, we have a positive pas-
sage p* and a set of n negative passages P, =
{p; }i—,. The model is being optimised by min-
imising the negative log likelihood of the positive
passage:

£CL = - IOgD(p+|Q7 P’ 9)
s(q,p™;0)

2
Zpe{p+}u7>q— s(q,p; 0)

= —log

P, is the set of irrelevant passages constructed
from in-batch negatives (Chen et al., 2020) (i.e.
positive passages of other queries in the same mini-
batch) and mined hard negatives from existing re-

trievers (Karpukhin et al., 2020; Xiong et al., 2021).

3 Method

3.1 Self-Training with Synthetic Queries

Self-training (Yarowsky, 1995) has been shown ef-
fective in improving model performance through
using unlabelled or synthetic data. It first use la-
belled data to train a good teacher, then the teacher
is used to generate pseudo labels on unlabelled
data. Finally, an identical student model is first
pre-trained on unlabelled data with soft labels and
then finetuned on labelled data. Recently, it has
been shown to work well for a variety of tasks,
including image classification (Xie et al., 2020)
and neural machine translation (He et al., 2020).
However, its effectiveness has not yet been eval-
uated for dense passage retrieval, especially with
automatically synthesised queries.

Suppose we have a well-trained query genera-
tor, which is used to generate a set of synthetic
query-passage pairs 7' = {(¢’,p'")}. Moreover,
we assume that a teacher dense retrieval model that
is fully trained on labelled data is available. The
student retriever has the same architecture as the
teacher, but it only accesses the soft labels produced
by the teacher during training. This ensures that all
involved negatives are not treated equally but with
different soft labels, and more relevant passages
are more likely to be penalised less. Moreover, we
assume the use of teacher supervision will make
the supervision signal for problematic queries (e.g.,
general or ambiguous queries) much more diverse,
as the teacher will have little clue and a correspond-
ing high entropy predictive distribution. Formally,

the learning process is conducted via KL diver-
gence by closing the distribution distance between
the student and teacher:

EST = KL(T(|q/,P(/1/7 HT)a S("qlaptle 05)) (3)

where P}, = {p'"} UP;,_, which is the union of the
pseudo positive passage of synthetic query ¢’ and
the sampled negatives as in §2.2. T'(-|¢', P;,, 0r)
and S(-|¢', Py, 0s) are the distributions from the
teacher and student, respectively.

We further inject noises into student’s inputs,
hoping that it can generate more robust embeddings.
Through injecting noises, the student needs to im-
itate the behaviour of the teacher with perturbed
inputs (i.e. different views), being encouraged to
learn generalised signals from the teacher (He et al.,
2020). Inspired by Wu et al. (2019), we use follow-
ing strategies for noise injection:

1. Shuffle: randomly choose some words in the
query or passage as candidates for shuffling,
then randomly shuffle these candidates.

2. Delete: randomly delete some words in the
query or passage.

3. Mask: randomly mask some words in the
query or passage with a [MASK] token.
Empirically, we found that applying them sequen-
tially to both queries and passages with a proba-
bility 0.1 achieves the best results. Thus, the self-

training loss of noised version becomes:

Lst = KL(T(|q", Pl 0r), S(|d, Py, b)) (4)

where q~’ and ﬁé, are noised query and passages.

3.2 Training Pipeline

Algorithm 1 summarises the training pipeline, with
an overview shown in Figure 1. More specifically:

Teacher Preparation (line 3 in Alg. 1) We first
train a teacher model in labelled data using a two-
stage training similar to (Gao and Callan, 2022).
In the first stage, the retriever is trained with hard
negatives sampled from a BM25 retriever. Then,
the retriever trained in the first stage is used to
discover hard negatives, which are later used to
train a second-stage retriever. The resulted retriever
serves as the teacher A7 in our algorithm.

Index Building & Hard Negative Mining (lines
4-5 in Alg. 1) The teacher model 7 encodes all
passages on P into dense vectors, which are later
used to build the ANN search index with FAISS.
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Figure 1: The overview of noisy self-training algorithm. Line numbers in Algorithm 1 are above each arrow type.

Algorithm 1 Noisy Self-Training with Synthetic Queries

Require: Gold query-passage pairs 7 = {(¢,p™)}

Require: Passage collection P
1: Train a query generator G on gold pairs 7.
2: Generate queries from P and construct synthetic query-
passage pairs 7' = {(q/7p/+)}¥7’l\.

: Train a dual-encoder retriever 67 on gold pairs 7.

: Use 07 to build ANN index on P

: Retrieve negatives P, for each (¢,p™) € T and P, for
each (¢/,p'") € T’

6: Use O as the teacher to generate soft-labels on synthetic

queries 7' = {(¢',p"", P)}

7: Pre-train a student retriever s on soft-labelled synthetic
queries 7, with noises injected to fs’s inputs

: Finetune 05 on gold pairs T = {(¢,p", P, )}

9: Take 0s as new teacher: 07 < 65 and go back to line 6

D B~ W

[ee)

Hard negatives for both labelled data {(g, p™)} and
synthetic data {(¢’,p'")} are retrieved using the
built index, by taking k-nearest neighbours while
excluding the gold passage.

Noisy Self Training & Fine-tuning (lines 6-8 in
Alg. 1) A student model g is first pre-trained on
the synthetic queries with the noised self-training
objective (Eq. 4), after which it is fine-tuned on
labelled data according to Eq. 2.

Iterative Training (line 9 in Alg. 1) The teacher
model can be replaced by the student to generate
new pseudo labels and do noisy self-training and
fine-tuning all over again.

4 General Domain Experiments

4.1 Datasets

We evaluate our method on two general-
domain datasets: MS-MARCO passage rank-
ing (Bajaj et al., 2016) and Natural Questions
(NQ) (Kwiatkowski et al., 2019). MRR @10, Re-
call@50, Recall@1000 on the MS-MARCO dev
set are reported, where MRR represents the Mean
Reciprocal Rank, which is calculated as the sum
of the reciprocal rank of the first retrieved relevant

passage for each query; and Recall @k is the pro-
portion of relevant passages that appear in the top-k
retrievals. Recall @k (k=5, 20, 100) is reported on
Natural Questions, which is the proportion of top-k
retrieved passages that contain the answer string to
each query. The evaluation script provided by Py-
serini (Lin et al., 2021) is used for all experiments.

4.2 Experimental Settings

We replicate the coCondenser model (Gao and
Callan, 2022) using PyTorch (Paszke et al., 2019)
and treat it as our baseline.

For self-training, the coCondenser model that
was fully trained on labelled data serves as the
teacher, which we use to train the student retriever
on synthetic queries. After self-training, the student
is further finetuned on labelled data, with hyperpa-
rameters following Gao and Callan (2022). The last
checkpoint is selected for evaluation on test set for
all experiments. More details are in Appendix A.1.

4.3 Main Results

Table 2 shows the results of our model compared
with a range of lexical and neural retrievers. We ob-
serve that the performance of our replicated coCon-
denser is competitive with that of Gao and Callan
(2022), achieving slightly better results on Natural
Questions but slightly worse on MS-MARCO. By
applying our proposed noisy self-training frame-
work, the student coCondenser outperforms the
state-of-the-art results on both datasets, resulting in
significant improvements over coCondenser (1.2%
MRR @10 and R@5 on MS-MARCO and Natural
Questions, respectively). This also shows that al-
though coCondenser has already been pre-trained
on the target corpus, continuing pre-training it on
synthetic queries with noisy self-training can still
lead to further performance boost.

To test if the proposed method is general, we also
combine it with various pre-trained models, includ-
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MS-MARCO Natural Questions

Method

MRR@10 R@50 R@lk R@5 R@20 R@100
BM25 (Robertson and Zaragoza, 2009)* 18.7 59.2 85.7 - 59.1
DeepCT (Dai and Callan, 2020)* 24.3 69.0 91.0 - - -
docT5query (Nogueira and Lin, 2019)* 27.7 75.6 94.7 - - -
GAR (Mao et al., 2021)* - - - 60.9 74.4 85.3
DPR (Karpukhin et al., 2020)* - - - - 74.4 85.3
ANCE (Xiong et al., 2021)* 33.0 - 95.9 - 81.9 87.5
ColBERT (Khattab and Zaharia, 2020)* 36.0 82.9 96.8 - - -
DPR-PAQ (Oguz et al., 2022)*
- BERTbase 314 - - 74.5 83.7 88.6
- RoOBERTapyse 32.3 - - 74.2 84.0 89.2
Condenser (Gao and Callan, 2021)* 36.6 - 97.4 - 83.2 88.4
coCondenser (Gao and Callan, 2022)* 38.2 - 98.4 75.8 84.3 89.0
Our coCondenser (Teacher) (Gao and Callan, 2022)" 37.8 85.5 98.2 75.9 85.0 89.4
Student coCondenser 394 86.7 98.5 77.0 85.5 89.5

Table 2: Results on MS-MARCO dev set and Natural Questions test set. * indicates results directly copied from Gao
and Callan (2022) and Khattab and Zaharia (2020). T indicates our implementation. The best results are marked

bold and unavailable results are left blank.

MS-MARCO (Synthetic + Gold Data)
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Figure 2: Results on MS-MARCO dev and SCIDOCS
test sets when using different pre-trained models.

MS-MARCO Natural Questions

Method

MRR@10 R@1 R@5 R@20
Teacher Reranker 43.0 61.9 80.0 864
Student Reranker 43.7 62.7 80.3 86.8

Table 3: Compared results between the teacher and stu-
dent reranker. The top-50 and top-100 predictions from
student coCondenser are re-ranked on MS-MARCO and
Natural Questions, respectively.

ing BERT (Devlin et al., 2019), Contriever (Izacard
et al., 2021), Condenser (Gao and Callan, 2021),
and RetroMAE (Xiao et al., 2022). Note that all
models share the same architecture and only differ
in their initial weights. Figure 2 shows the results
on MS-MARCO. It is observed that the student
model achieves consistent improvements on all pre-
trained models. Moreover, for worse teachers, the
benefits gained by adopting the proposed method
are generally more significant (e.g., 2.3 MRR@10
on BERT vs 1.3 MRR@10 on RetroMAE).

Method MS-MARCO NQ
MRR@10 R@50 R@5 R@20
Student coCondenser 394 86.7 77.0 855
w/0 noises 38.8 86.6 76.7 85.5
w/o pseudo labels 38.8 845 759 842
consistency filtering 38.8 86.2 765 853
joint training 38.4 86.1 76.8 853

Table 4: Results of different variants compared to the
student model on MS-MARCO and Natural Questions.

We also adapt the proposed framework to see if
it can be applied to improve an expensive reranker.
Similarly, a teacher reranker that was fully trained
on labelled data? is used to generate soft labels on
synthetic data, and an identical student reranker is
pre-trained. A cross-encoder model is used as the
backbone to jointly encode both query and passage.
As shown in Table 3, we see that by reranking the
student coCondenser’s top-k predictions, the stu-
dent reranker can outperform the teacher, boosting
the performance with another 0.7% and 0.8% gains
on MRR@10 and R@1, respectively.

4.4 Ablation Studies

We conduct ablation studies to further understand
our methods, with results reported in Table 4.

Noise Injection We remove noise injection dur-
ing pre-training, and the pre-training objective
changes from Eq. 4 to Eq. 3. It is observed that the
noisy injection strategies show positive impacts in
helping the model rank correct answers higher.

The teacher retriever hard negatives in Figure 1 are used
as negative examples for training. See Figure 5 for full details.
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Pseudo Labels We remove line 4 in Algorithm 1
and directly use synthetic labels {(¢’,p'")} to-
gether with hard negatives for pre-training in line
5. The results show that directly pre-training on
synthetic query-passage pairs leads to inferior per-
formance on both datasets, resulting in significant
performance degradation on all metrics, especially
on Natural Questions where the R@20 score is
even worse than the coCondenser baseline. This
indicates that synthetic query-passage pairs contain
a large number of noises, and adopting our pro-
posed method can effectively alleviate the negative
impacts of noises, which validates our hypothesis.

Consistency Filtering We take the teacher as a
consistency filter (Alberti et al., 2019) to remove
noises contained in synthetic data. More specif-
ically, for a given synthetic query-passage pair
(¢,p'"), if p'T can be retrieved by the teacher in
the top-1 position, this pair is kept; otherwise, it
will be discarded. Although this strategy can effec-
tively improve the quality of synthetic data and also
yields competitive performance, taking the teacher
as a pseudo-label generator leads to better results.

Joint Training We jointly train the student model
on both synthetic and labelled data, where the loss
becomes £ = Lgs1 + L1 Different batch sizes are
also used for synthetic and labelled data to ensure
the overall update steps are roughly the same as in
pre-train + finetune. We observe that joint training
leads to significantly worse results on MS-MARCO
but comparable performance on Natural Questions.

4.5 Analysis

Data Efficiency We further analyse how the size
of labelled query-passage pairs used for training
affects the retrieval performance of our method.
Smaller datasets are randomly sampled from the
full MS-MARCO training data with different sizes,
ranging from 1% to 70%. Note that in each data
size setting, all involved models are restricted to
that specific amount of labelled data samples.? Fig-
ure 3 compares the performance of the teacher and
student model trained on labelled data with dif-
ferent sizes. The results reveal that the student
surpasses the teacher under all data sizes, and the
performance gap becomes larger as the number of

3The teacher retriever, query generator and student re-
triever are all trained on the same amount of labelled data
in each setting. The size of synthetic data remains unchanged
across all settings.

40
—&— Teacher
—#— Student

T T T T T T
1% 10% 30% 50% 70% 100%
Data Size

Figure 3: Impacts of labelled training data size on MS-
MARCO dev set. Teacher refers to coCondenser.

40

32
—4— Teacher

Student w/o noise
—#— Student

30

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% Shuffled Tokens

Figure 4: Impacts of randomly shuffling different pro-
portions of tokens on MS-MARCO dev queries at test
time. Teacher refers to coCondenser.

labelled data samples decreases. Moreover, the stu-
dent is superior in terms of data efficiency, achiev-
ing performance comparable to the teacher model
using full data samples (i.e., our coCondenser in
Table 2) with as little as 30% of labelled data, and
the performance continues to improve when more
data is available.

Robustness to Shuffled Query Figure 4 com-
pares the performance when different proportions
of tokens in each test query are randomly shuffied.
We observe that the student model is significantly
more robust to queries with tokens in random or-
ders. By removing noise injection during training,
the performance drops become increasingly larger
with more tokens shuffled, indicating that the noise
injection strategy not only leads to performance
gains in normal settings but also improves the ro-
bustness towards perturbed inputs. This also signi-
fies our model learns lexical matching in capturing
salient phrases to some extent, a property typically
held in sparse retrievers (e.g., BM25).

4.6 Out-of-Domain Experiments

We further test the domain adaptation ability of our
proposed method by reporting the performance on
the BEIR benchmark (Thakur et al., 2021), which

11996



Model (—) | Lexical & Sparse |

Dense Retriever |

Retriever + Reranker

* o
s 5 Y| & = o % 535 F §6 59
o 3 < 8 ~ &) 3

¥ qQ g | & & < <) _, @Q? & EL a2

Model Size | - - - |110M 110Mx18 66Mx18 110M 110Mx11 110M |110Mx11 110M 110M
QGen. Size | - - 220M | - 220M  220M 220M 137B  220M | 137B - 220M
TREC-COVID [65.6 40.6 713 | 741 684 700 736 727 767 | 760 716 165
BioASQ 46.5 407 431 [ 295 310 442 447 - 35.7 - 46.8  46.8
NFCorpus 325 283 328 [33.1  34.6 345 349 334 349 | 360 310 326
NQ 329 188 399 | 484 444 483  49.0 - 50.3 - 585 59.1
HotpotQA 60.3 503 580 | 569 565 582 563 604 584 | 712 666 684
FiQA-2018 236 19.1 29.1 |301 330 344 346 404 333 459 391 396
Signal-IM (RT) [33.0 269 30.7 | 278  27.0 276 270 - 295 | - 265 281
TREC-NEWS [39.8 22.0 420 | 40.1 407 421 428 - 438 - 439 442
Robust04 40.8 28.7 437 | 436  40.6 437 469 - 46.8 - 462 486
ArguAna 31.5 309 349 | 373 463 557 534 5338 50.1 521 551 578
Touché-2020  |36.7 15.6 347 | 305 179 255 244 266 304 | 278 333 350
CQADupStack [29.9 268 325 | 326 355 357 362 - 35.8 - 350 355
Quora 789 69.1 802 | 856  86.1 83.6  83.6 - 86.8 - 80.0 825
DBPedia |31.3 17.1 331 | 375 363 384 381 364 372 | 413 415 433
SCIDOCS |15.8 124 162 | 143 152 169 167 163 16.1 | 19.1 156 164
FEVER 753 353 714 | 718 692 759 759 762 722 838 821 82.1
Climate-FEVER [213 6.6 20.1 | 17.6 218 235 234 214 222 | 226 233 233
SciFact 66.5 63.0 67.5 | 61.0  66.2 674 676 623 65.1 732 708 721

Avg. Performance

PTR-11 Subsets |41.8 29.0

All 423 30.7 434 | 429 42.8

42.6 ‘ 42.2 423

455 454 455 452
459  46.1 -

49.9 48.7  49.7

45.9 - 48.5

Table 5: Results on BEIR benchmark (nDCG@10). Best results are marked bold and second best results are
underlined. * indicates results copied from Thakur et al. (2021). { indicates our implementation. § means methods
using synthetic queries. § means methods learning from cross-encoder rerankers, thus are not directly comparable
to ours. xXn means that these methods train specialised models for each datasets.

contains 18 datasets from retrieval tasks of diverse
formats and domains. The average nDCG@10
score over all datasets is used for evaluation.

Implementation Details We use the coCon-
denser model that was fine-tuned on MS-MARCO
as the teacher model in our algorithm, which we
call Teacher henceforth. For synthetic queries, we
directly use the publicly available ones released
by Wang et al. (2022).* Since labelled data is not
available, the fine-tuning step is eliminated. Unlike
previous methods that train specialised retrievers
for each task, we train a single universal retriever
on the union of synthetic queries from all tasks. We
directly use the last checkpoint for evaluation on
the test set of each task. To ensure fair comparison,
we also re-implement GPL by following the same
configurations as in Wang et al. (2022) except that

4https ://public.ukp.informatik. tu-darmstadt.
de/kwang/gpl/generated-data/beir

we employ the Teacher retriever for initialisation’
and train a single model, denoted as GPL-S.

We also investigate if the proposed method
can improve the reranker’s out-of-domain perfor-
mance. Similarly, the reranker trained on MS-
MARCO serves as the teacher: Teacher-Reranker,
guided by which an indentical Student Reranker
is trained. At inference, both rerankers are applied
to rerank the top-100 predictions of the Student
Retriever. The official evaluation script is used for
experiments.® More details are in Appendix A.2.

Main Results We compare our proposed model
with a variety of models, including BM25 (Robert-
son and Zaragoza, 2009), DocT5query (Nogueira
and Lin, 2019), DeepCT (Dai and Callan, 2020),
GenQ (Thakur et al., 2021), GPL (Wang et al.,

51t achieves better performance compared to TAS-B used
in their original implementations.
6https ://github.com/beir-cellar/beir
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2022) and PTR (Dai et al., 2023).” Table 5 shows
the experimental results. We first notice that the
Teacher model already achieves strong results
compared to other baseline models. GenQ which
further finetunes Teacher on synthetic data does
not show positive effects, indicating that synthetic
queries are extremely noisy and directly using them
for training is not beneficial. By contrast, the stu-
dent retriever trained using our noisy self-training
framework significantly improves over Teacher,
increasing the averaged nDCG @10 by 3.0%. Even
when being compared to GPL and GPL-S, the
models that also use query generation for train-
ing data augmentation but take a prohibitively ex-
pensive reranker as a pseudo-label generator, and
PTR that prompts a 137B instruction-tuned large
language model for query generation, our model
can still achieve competitive averaged performance
and beats these task-specialised retrievers on 6 out
of 18 tasks while being comparable on the rest.
Note that our model does not rely on any exter-
nal models, and it is improved in a self-evolution
manner, managing to exhibit a high degree of effi-
ciency. More specifically, when being compared to
GPL, our method significantly diminishes training
time by roughly a factor of three (204h — 74h),
and it achieves a 25x speed-up in relevance la-
belling (20ms/q — 0.8ms/q). Figure 2 shows that
our method achieves consistent improvements and
beats GenQ across different pre-trained models on
SCIDOCS, a dataset that is significantly different
from MS-MARCO in retrieval needs and domain.
See Table 10 for full details.

When adopting the same framework to rerankers,
the student rereanker can further boost the perfor-
mance with another 1.1 average points over the
teacher reranker. The results again confirm that our
method is general and can be extended to improve
a powerful reranker in out-of-domain settings.

Discussion The adaptation of our proposed
framework in out-of-domain tasks can be inter-
preted as a specific type of unsupervised domain
adaptation (UDA) algorithm (Wang and Deng,
2018), where a model aims to maximise its per-
formance on target domains when only labelled
data from in-domain sources and unlabelled data
from target domains are available. In our case,
the query generator trained on in-domain data (i.e.,
MS-MARCO) is employed to generate synthetic
queries on unlabelled target-domain data (i.e., cor-

’See Appendix B for more baseline details.

pus in BEIR datasets). Meanwhile, the retriever
trained on in-domain data (i.e. Teacher) gener-
ates soft labels for these synthetic queries. As a
result, the query generator fabricates distributions
of potential queries that could be possibly asked in
the target domain; while the teacher retriever cap-
tures prevalent patterns of correspondence between
queries and passages within the target domain, by
leveraging the knowledge it has acquired from the
labelled in-domain data. When exposing it to such
silver target-domain data during training, a new
student retriever is enforced to acquire relevant
knowledge that is required to complete retrieval
tasks in target domains. Consequently, the expo-
sure to pseudo target-domain data mandates the
improvement of domain-specific aptitude within
the student retriever, allowing it to effectively re-
trieve information within target domains.

4.7 Self-Training Iterations

Table 6 compares the models trained with varying
numbers of iterations. We observe that employing a
single iteration yields optimal results, while perfor-
mance diminishes with more iterations. We conjec-
ture that errors produced in relevance labelling may
accumulate over successive iterations, potentially
reinforcing the model’s bias towards particular er-
ror types as the training process continues.

4.8 Quality of Pseudo Labels

To assess the quality of the generated soft labels,
we randomly sampled 100 synthetic queries and
verified the relatedness of the originating passage
to each synthetic query through manual examina-
tion. We observed that 49 of these queries were
indeed related to their source passages. Among
this subset of 49 queries, we noted that, 93% of
the time, the soft labels effectively identified alter-
native passages capable of accurately responding
to the query. This was indicated by the assign-
ment of a high probability mass to these alternative
passages. In contrast, for the remaining 51 query-
passage pairs, where the association was found to
be incorrect, soft labels can identify better-matched
passages for 42 of them. This observation pro-
vides strong evidence for the effectiveness of our
proposed self-training methodology.

5 Related Work

Neural Dense Retriever Neural retrievers adopt
neural networks to encode texts into low-
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Iteration|[ MM TC BA NF NQ HP FQ SG TN RB AA T2 CQ QU DB SD FE CF SF |Avg

0 37.3 74.1 29.5 33.1 484 569 30.1 27.8 40.1 43.6 37.3 30.5 32.6 85.6 37.5 143 71.8 17.6 61.0|42.9
1 39.4 76.7 35.7 34.9 50.3 58.4 33.3 29.5 43.8 46.8 50.1 30.4 35.8 86.8 37.2 16.1 72.2 22.2 65.1|45.9
2 39.1 75.7 36.9 34.9 49.2 57.5 33.7 28.7 42.8 46.4 50.6 29.2 36.5 86.2 35.8 16.5 70.9 22.2 66.7 |45.6

Table 6: Ablations on the number of self-training iterations. Tasks are ordered as in Table 5. MM indicates
MS-MARCO and is excluded when computing the average.

dimensional embeddings and show superiority over
lexical retrievers when being trained on sufficient
data. Karpukhin et al. (2020) adopts a dual-encoder
structure to use two independent neural encoders to
encode queries and passages into fix-sized vectors
separately with their dot product as the relevance
score. The model is trained to discriminate pos-
itive passages from randomly-sampled irrelevant
ones or more informative negatives (Xiong et al.,
2021). Other works adopt the poly-encoder archi-
tecture (Humeau et al., 2020), where query and
documents are represented as multiple vectors to
allow token-level interactions (Khattab and Zaharia,
2020). Although effective, the benefits come at the
cost of increased index size and a more complex
scoring function. In this work, we adopt the dual-
encoder structure for its simplicity. However, our
proposed method is orthogonal to model architec-
tures, and we believe its combination with poly-
encoder retrievers is worth further exploration.

Synthetic Queries for Information Retrieval
Synthetic queries have been widely used in infor-
mation retrieval. Early work expands passages with
synthetic queries for lexical retrievers (Nogueira
and Lin, 2019). Recent neural models take syn-
thetic queries and their originating passages as
positive pairs for model pre-training, resulting
in boosted performance (Lu et al., 2021), bet-
ter domain adaptation ability (Ma et al., 2021;
Gangi Reddy et al., 2022) and promising zero-shot
results (Dai et al., 2023). In order to reduce the
noise in synthetic data, Wang et al. (2022) exploits
a cross-encoder reranker to generate pseudo labels.
It incurs expensive costs in generating soft labels
and training task-customised retrievers, resulting
in slow adaptation. Our work follows this direction
but significantly differs in that we do not rely on any
external model for synthetic data labelling and cre-
ate dataset-specialised retrievers. By contrast, we
empirically show that by using the retriever itself
as a more efficient pseudo-label generator, it can
be improved in a self-evolution manner with our
introduced noisy self-training framework. More-
over, we show this framework is general and can

be extended to boost reranking performance.

Self-Training Self-training (Scudder, 1965)
refers to a class of approaches that learn from
unlabelled data with pseudo labels. A good teacher
model is first trained on labelled data, which is
later used to label unlabelled data. Another student
model is then pre-trained on unlabelled data first
and further finetuned on labelled data. More
advanced methods train multiple teachers using
features of disjoint partitions on labelled data and
a student is learned from their ensembles (Blum
and Mitchell, 1998). Recently, the effectiveness
of self-training has been verified in a wide range
of tasks, including machine translation with
back translation (Wu et al., 2019) and language
generation (He et al., 2020). These approaches
are termed noisy self-training, as the inputs of the
student are perturbed. In this work, we follow this
direction to show that, for the first time, noisy
self-training can be adopted to make better use of
synthetic queries to improve neural retrievers in
both general-domain and out-of-domain settings.

6 Conclusion

In this paper, we present a novel noisy self-training
framework for neural retrieval models. It shows
that when combined with automatically generated
queries, neural retrievers can be improved in a self-
evolution manner without relying on any external
models. Empirical results on both general-domain
and out-of-domain benchmarks confirm the supe-
riority of our proposed method, significantly out-
performing a wide range of competitive existing
models. We further adapt our method to show it
can be applied to improve an expensive reranker.

Limitations

Although our proposed method does not change
model architectures and the resulting models can
perform as efficiently as previous models, the intro-
duced training framework does incur the additional
training cost, including query generation and the
associated hard negative mining. Despite these ex-
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tra costs, the training of our methods has a fairly
modest footprint by modern standards, taking about
3 days of a server with 4xA100 GPUs and 450G
CPU RAM.

We mainly experiment with dual-encoder-
based neural dense retrieval models and addi-
tionally adapt the method to reranker training in
this work. Alternative retriever methods such
as ColBERT (Khattab and Zaharia, 2020) and
SPLADE (Formal et al., 2021) are compatible with
our approach, and their incorporation should lead
to further gains. However, they introduce extra
complexity compared to the dual-encoder, e.g., re-
quiring an index over tokens rather than complete
passages. We leave their efficient integration as
future work.

For out-of-domain experiments, the current
method still relies on using general-domain
datasets to obtain the teacher model and the query
generator. How to achieve this in an unsupervised
setting needs further exploration. Moreover, on
tasks that have different retrieval needs from gen-
eral passage retrieval, synthetic queries are nor-
mally quite different from the gold standard. For
instance, some gold queries in DBPedia are gen-
eral and may have multiple matching passages (e.g.,
Give me all people that were born in Vienna and
died in Berlin.), but synthetic queries are usually
only related to their originating passages (e.g., Who
was Johannes Mayer). How to generate synthetic
queries with high quality and similar properties to
gold standard queries is the key to better retrievers.

As this work uses pre-trained language models
for generating synthetic queries, it is possible that
undesirable biases (e.g., gender and cultural) from
the language models (Wei et al., 2022) is prop-
agated to downstream models. This is in addi-
tional to existing biases in training and evaluation
datasets (Bigdeli et al., 2021). Evaluating the ex-
tent to which biases affect the synthetic data and the
resulting model is an inherently complex problem,
and remains an open question for future work.
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A Implementation Details

Statistics about the datasets used in our experiments
are reported in Table 7. Tables 8 and 9 show the
hyperparameters used in our experiments.

A.1 General Domain Datasets

co-condenser-marco® is used for model initiali-

sation on MS-MARCO and co-condenser-wiki®
on Natural Questions. For retrievers, the weights of
dual encoders are tied. The teacher is trained using
the two-stage training following the hyperparame-
ters used in (Gao and Callan, 2022) and (Karpukhin
et al., 2020). The student is pre-trained for 1 epoch
for all datasets, with a learning rate 1 x 10~° and
batch size 32. The top-100 passages retrieved by
the teacher are used as hard negatives, from which
7 negatives are sampled for each query in a mini-
batch. We empirically find conducting the training
with one iteration is enough for achieving the best
result. The training takes about 48 hours on both
datasets, with up to 4 A100 GPUs.

For generating synthetic queries, we use the
publicly available model'” to generate queries on
MS-MARCO with top-k sampling. For Natural
Questions, we first finetune a TS model on labelled
query-passage pairs for 200 epochs with learning
rate 2 x 1075, which takes about 10 hours on 1
A100 GPU. One query per passage is generated
for all datasets, which requires approximately 7
hours on MS-MARCO and 16 hours on Natural
Questions using 2 A100 GPUs.

As for the reranker described in §3, ERNIE-
base!! is used for model initialisation. The teacher
reranker is trained with the teacher retriever hard
negatives (Figure 1). It is trained for 2 epochs on
MS-MARCO, with learning rate set to 1 x 107,
batch size 12, and weight decay 0.1. Each query is
paired with 40 sampled negatives; while for Nat-
ural Questions, we train it for 10 epochs with 15
sampled negatives. For pre-training the student
rereanker, the batch size is set to 48 and 128 on
MS-MARCO and Natural Questions, respectively,
and other hyperparameters remain the same. For
the finetuning stage, the settings used for training

8https://huggingface.co/Luyu/
co-condenser-marco

9https://huggingface.co/Luyu/
co-condenser-wiki

Ohttps://huggingface.co/BeIR/
query-gen-msmarco-t5-base-v1

Mhttps://huggingface.co/nghuyong/ernie-2.
0-base-en

the teacher reranker are adopted. Completing the
whole training pipeline requires approximately 80
hours on MS-MARCO and 67 hours on Natural
Questions with up to 4 A100 GPUs.

A.2 Out-of-Domain Datasets

On BEIR benchmark, the Teacher retriever is used
to mine hard negatives for synthetic queries on
each dataset. The top-100 passages retrieved by
the Teacher retriever are regarded as the hard neg-
ative pool. Student Retriever is initialised from
the co-condenser-marco checkpoint. On each
dataset, we train a Student Retriever for 10 epochs
with learning rate 1 x 107°. The batch size is
set to 32, and each query is paired with 7 sam-
pled negatives. Training a single model on each
dataset takes about 8 hours using 2 A100 GPUs and
two iterations are used to achieve the best average
performance. For GenQ, we follow Thakur et al.
(2021) to further finetune the Teacher retriever on
synthetic queries of each dataset for 1 epoch with
batch size 64 and only in-batch negatives.

The reranker is initialised from ERNIE-base and
finetuned for 5 epochs with learning rate 1 x 10~°
and batch size 12. Each query is paired with 15
negatives sampled from the same hard negative
pool as above. Training a single model takes about
18 hours using 2 A100 GPUs.

B Baselines on BEIR

BM25 (Robertson and Zaragoza, 2009) is
a lexical retriever based on token matching.
DocTSquery (Nogueira and Lin, 2019) uses a
query generator to synthesise queries and append
them to passages as expansion. DeepCT (Dai and
Callan, 2020) uses BERT model trained on MS-
MARCO to compute the weight of each term in
the vocabulary and each passage is represented
with keywords multiplied by the term weights.
GenQ (Thakur et al., 2021) first trains a dense
retrieval model on MS-MARCO and continues to
finetune it on synthetic queries with in-batch neg-
atives through contrastive learning. GPL (Wang
et al., 2022) uses knowledge distillation to train a
dense retriever by learning from a reranker trained
on MS-MARCO. PTR (Dai et al., 2023) generates
a large number of synthetic queries by prompt-
ing an instruction-tuned large language model and
trains task-specialised retrievers.
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Task | Domain | Dataset | Train dev test #Passages
Passage Retrieval Misc. MS-MARCO 502,939 6,980 - 8,841,823
Open Domain QA Wikipedia Natural Questions 58,880 8,757 3,610 21,015,324
BEIR Benchmark
Biomedical Biomedical TREC-COVID - - 50 171,332
Information Biomedical BioASQ - - 500 14,914,602
Retrieval Biomedical NFCorpus - - 323 3,633
Wikipedia NQ - - 3,452 2,681,468
Question Answering | Wikipedia HotpotQA - - 7,405 5,233,329
Financial FiQA-2018 - - 648 57,638
Twitter Retrieval | Twitter | Signal-IM (RT) | - - 97 2,866,316
News Retrieval News TREC-NEWS - - 57 594,977
News Robust04 - - 249 528,155
. Misc. ArguAna - - 1,406 8,674
Argument Retrieval |\ r.0 Touché-2020 - - 49 382,545
Duplicate Question StackEchange | CQADupStack - - 13,145 457,199
Retrieval Quora Quora - - 10,000 522,931
Entity Retrieval \ Wikipedia \ DBPedia \ - - 400 4,635,922
Citation Prediction | Scientific | SCIDOCS | - - 1,000 25,657
Wikipedia FEVER - - 6,666 5,416,568
Fact Checking Wikipedia Climate-FEVER - - 1,535 5,416,593
Scientific SciFact - - 300 5,183

Table 7: Number of query examples in Train/Dev/Test sets and passage number in each target corpus. - means
unavailable data that was not used in our experiments. Datasets in BEIR benchmark are grouped according to Thakur
et al. (2021), please refer to their paper for full details. TREC-COVID (Voorhees et al., 2021), BioASQ (Tsatsaronis
et al., 2015), NFCorpus (Boteva et al., 2016), NQ (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), FiQA-
2018 (Maia et al., 2018), Signal-1M (Suarez et al., 2018), TREC-NEWS (Soboroff et al., 2019), Robust04 (Voorhees,
2005), ArguAna (Wachsmuth et al., 2018), Touché (Bondarenko et al., 2020), CQADupStack (Hoogeveen et al.,
2015), DBPedia (Hasibi et al., 2017), SCIDOCS (Cohan et al., 2020), FEVER (Thorne et al., 2018), Climate-
FEVER (Leippold and Diggelmann, 2020), SciFact (Wadden et al., 2020).

C Adopting Different Pre-trained Models
on BEIR

We test our method on the BEIR benchmark
with different pre-trained models. As Table 10
shows, the student model trained using our method
achieves consistent improvements on all kinds of
pre-trained models, confirming the proposed algo-
rithm is general enough to be adapted to diverse
models on out-of-domain settings. Moreover, the
patterns for improvements are similar to those in
MS-MARCO, with more obvious gains on less-
performing teachers (e.g., +4.0% on Contriever vs
+2.6% on RetroMAE). GenQ shows positive effects
on less-performing pre-trained models (i.e., BERT,
Condenser, and Contriever). However, it struggles
with beating the teacher retriever on more advanced
pre-trained models and even degrades average per-
formance. Besides, our method can consistently
surpass GenQ across all settings, again confirming
its superiority.

D License

1. MS-MARCO is licensed under the Creative
Commons Attribution 4.0 International.

2. Natural Questions is licensed under the
Apache License 2.0.

3. The BEIR benchmark is licensed under the
Apache License 2.0.
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| Hyperparameters | MS-MARCO | Natural Questions | BEIR
Max query length 32 32 32
Max Passage length 128 128 128
Shared Optimizer AdamW AdamW AdamW
Scheduler Linear warmup Linear warmup Linear Warmup
Warmup proportion 0.1 0.1 0.1
Weight Tying Yes Yes Yes
#Params 110M 110M 110M
Teacher Preparation
Learning rate 5x 1076 1x107° -
Batch size 8 128 -
Teacher Stage 1 | #hard negatives 7 1 -
Hard negative source BM25 BM25 -
#Epochs 3 40 -
Learning rate 5x107° 1x107°
Batch size 8 128 -
Teacher Stage 2 | #hard negatives 7 1 -
Hard negative source | stage 1 teacher stage 1 teacher -
#Epochs 2 40 -
Self Training
Learning rate 1x107° 1x107° 1x1075
Batch size 32 32 32
Pre-train #hard negatives 7 7 7
Hard negative source | stage 2 teacher stage 2 teacher stage 2 teacher
#Epochs 1 1 10
Learning rate 5x107° 1x107° -
Batch size 8 128 -
Finetune #hard negatives 7 1 -
Hard negative source | stage 2 teacher stage 2 teacher -
#Epochs 2 40 -
Table 8: Hyperparameter settings for retriever training.
| Hyperparameters | MS-MARCO | Natural Questions | BEIR
Max length 156 156 351
Optimizer AdamW AdamW AdamW
Shared Scheduler Linear warmup Linear warmup Linear Warmup
Warmup proportion 0.1 0.1 0.1
Weight decay 0.1 0.1 0.1
#Params 110M 110M 110M
Learning rate 1x107° 1x1075 -
Batch size 12 12 -
Teacher Reranker | #hard negatives 40 15 -
Hard negative source | stage 2 teacher retriever | stage 2 teacher retriever -
#Epochs 2 10 -
Self Training
Learning rate 1x107° 1x107° 1x107°
Batch size 48 128 32
Pre-train #hard negatives 40 15 7
Hard negative source | stage 2 teacher retriever | stage 2 teacher retriever | stage 2 teacher retriever
#Epochs 1 1 5
Learning rate 1x107° 1x1075 -
Batch size 12 12 -
Finetune #hard negatives 40 15 -
Hard negative source | stage 2 teacher retriever | stage 2 teacher retriever -
#Epochs 2 10 -

Table 9: Hyperparameter settings for reranker training.
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Model (—) | BERT | Condenser | Contriever | coCondenser | RetroMAE

Tea- Stu- Tea- Stu- Tea- Stu- Tea- Stu- Tea- Stu-

Dataset GenQ cher dent GenQ cher dent GenQ cher dent GenQ cher dent GenQ cher dent
TREC-COVID 663 604 67.9| 642 653 67.6| 580 462 62.1| 684 74.1 76.7| 70.0 70.0 74.1
BioASQ 333 257 30.1| 29.7 246 32.0| 349 306 352 | 31.0 29.5 35.7| 40.6 39.0 43.0
NFCorpus 28.8 26.0 30.2| 31.3 26.0 309 | 33.8 325 344 | 346 33.1 349| 348 343 354
NQ 40.8 45.1 459 432 446 469 | 38.6 47.1 484 | 444 484 50.3| 442 50.3 50.5
HotpotQA 525 53.0 551 | 533 525 56.2| 58.7 622 62.8| 565 56.9 584 | 59.0 62.3 62.1
FiQA-2018 28.1 244 282 277 23.1 29.1| 329 294 33.7| 33.0 30.1 33.3| 349 32.1 345
Signal-1M (RT) \ 262 24.8 27.0\ 283 273 27.3\ 273 26.7 28.4\ 27.0 27.8 29.5\ 27.8 29.0 30.5
TREC-NEWS 358 33.7 38.3| 37.3 323 40.5| 40.0 394 429 | 40.7 40.1 43.8| 394 373 40.7
Robust04 354 351 38.6| 37.9 357 409 | 368 41.5 44.6| 40.6 436 46.8| 40.0 429 44.0
ArguAna 43.1 329 42.8| 44.1 31.7 452]| 423 312 494 | 463 373 50.1| 40.3 329 43.0
Touché-2020 16.8 28.7 285| 174 29.1 30.1| 169 204 194| 179 305 304| 16.0 269 26.1
CQADupStack 319 26.0 32.3| 32.7 27.7 323| 332 324 361 | 355 326 358| 355 338 37.2
Quora 83.8 825 84.6| 85.6 849 858 | 845 84.0 86.1| 86.1 856 86.8| 853 852 86.2
DBPedia \ 32.8 325 32.0\ 347 34.0 33.9\ 374 404 38.7\ 363 375 37.2\ 354 37.7 357
SCIDOCS \ 14.1 124 14.6 \ 143 12.6 15.5 \ 15.8 148 17.0 \ 152 143 16.1 \ 16.1 147 16.9
694 68.5 72.2| 748 732 75.6| 69.2 718 722 73.0 724 76.5

Climate-FEVER | 222 184 223 | 202 147 223| 234 179 23.6| 21.8 17.6 22.2| 19.7 172 238
SciFact 654 570 634| 644 57.1 632| 686 663 69.8| 66.2 61.0 651 | 67.8 64.7 68.7

Avg. Performance‘ 40.2 38.1 41.9‘ 409 38.4 42.9‘ 42.1 409 44.9‘ 42.8 429 45.9‘ 433 435 46.1

FEVER 66.9 66.9 72.0

Table 10: Results on BEIR benchmark (nDCG@ 10) when adopting different pre-trained models. Teacher refers to
the model finetuned on MS-MARCO.
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Figure 5: The overview of adapting the self-training framework to reranker.
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