
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11978–11990
December 6-10, 2023 ©2023 Association for Computational Linguistics

Scene Graph Enhanced Pseudo-Labeling for Referring Expression
Comprehension

Cantao Wu1, Yi Cai1,2, Liuwu Li1, Jiexin Wang1,2,∗
1School of Software Engineering, South China University of Technology

2Key Laboratory of Big Data and Intelligent Robot (South China
University of Technology) Ministry of Education

taotaotao0412@gmail.com
{ycai, jiexinwang}@scut.edu.cn

liuwu.li@outlook.com

Abstract

Referring Expression Comprehension (ReC) is
a task that involves localizing objects in im-
ages based on natural language expressions.
Most ReC methods typically approach the task
as a supervised learning problem. However,
the need for costly annotations, such as clear
image-text pairs or region-text pairs, hinders
the scalability of existing approaches. In this
work, we propose a novel scene graph-based
framework that automatically generates high-
quality pseudo region-query pairs. Our method
harnesses scene graphs to capture the relation-
ships between objects in images and generate
expressions enriched with relation information.
To ensure accurate mapping between visual re-
gions and text, we introduce an external mod-
ule that employs a calibration algorithm to fil-
ter out ambiguous queries. Additionally, we
employ a rewriter module to enhance the diver-
sity of our generated pseudo queries through
rewriting. Extensive experiments demonstrate
that our method outperforms previous pseudo-
labeling methods by about 10%, 12%, and 11%
on RefCOCO, RefCOCO+, and RefCOCOg,
respectively. Furthermore, it surpasses the state-
of-the-art unsupervised approach by more than
15% on the RefCOCO dataset.

1 Introduction

Referring expression comprehension (ReC) is an
important visual-linguistic task that aims to locate
objects in images based on given textual referring
expressions. Referring expressions, such as "give
me that apple in the basket," are commonly used
in social communication. The ability to accurately
comprehend such expressions in real-world scenar-
ios is also essential for robots and other intelligent
agents to enable natural interactions (Fang et al.,
2015; Qi et al., 2020). In recent years, considerable
progress has been made in ReC task, particularly
for fully-supervised models (Chen et al., 2018b;
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Original Query from RefCOCO dataset:
the bowl that has blueberries on it

Pseudo-Q Query:
white bowl
white bowl

SGEPG Query:
corner left top bowl with blueberry above
table
on the right side, there's a white bowl
with green broccoli inside

Figure 1: Example of queries generated by Pseudo-Q
and SGEPG methods, based on two different objects
in an image from the RefCOCO dataset. Note that
the query generated by SGEPG without rewriting is
shown in red, while the query generated by SGEPG
with rewriting is shown in blue.

Deng et al., 2021; Yang et al., 2022; Ye et al., 2022)
trained on manually annotated region-query data.
However, constructing large-scale ReC datasets,
especially for textual queries referring to the ob-
jects, is rather time-consuming. To obtain the clear
textual queries, annotators need to provide specific
visual information about the referred object, such
as its category and attributes. Moreover, due to the
presence of multiple similar and confusing objects
in images, queries often require additional details
to distinguish the referred object, such as spatial in-
formation (left, right), object state (running, jump-
ing), and object relationships (e.g., person holding
ball). Although some weakly-supervised methods
(Chen et al., 2018a; Datta et al., 2019; Gupta et al.,
2020) partially alleviate the annotation burden, they
still rely on paired image-query data, limiting their
applicability in the real-world scenes.

To address the annotation challenges, several
works (Yeh et al., 2018; Wang and Specia, 2019;
Jiang et al., 2022) have explored unsupervised ap-
proaches that do not rely on paired annotations.
Nonetheless, these approaches either employ statis-
tical hypothesis testing, make simple assumptions,
or only investigate the shallow relation between
objects, leading to poor performance in complex
scenes. For instance, Pseudo-Q (Jiang et al., 2022),
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which adopts a method of generating pseudo-labels
to train a supervised model. It utilizes an offline ob-
ject detector to extract salient objects from images
and generates pseudo queries using predefined tem-
plates with object labels and attributes. However,
Pseudo-Q has two limitations: (1) It fails to capture
deep relation information among objects in images,
leading to pseudo queries that only partially cover
the semantic space of referring expressions and
deviate significantly from human expressions. (2)
The absence of a validation mechanism for the gen-
erated pseudo queries introduces the possibility of
producing incorrect instances. Both limitations can
lead to a degradation in model performance.

In this paper, we present SGEPG (Scene Graph
Enhanced Pseudo-Query Generation), an unsuper-
vised framework designed to generate high-quality
region-query pairs. SGEPG leverages the gener-
ated scene graph to extract rich semantic informa-
tion about objects and capture their complex re-
lationships, enabling the selective generation of
region-query pairs from the input image. We next
introduce a straightforward yet effective strategy
based on the scene graph, which helps filter out
ambiguous queries. It is crucial to address ambigu-
ity as unclear region-text pairs can yield incorrect
supervisory signals, which ultimately degrade the
performance of the ReC model. Additionally, we
propose a module to rewrite some of the gener-
ated queries. This rewriting process enhances the
diversity of the generated pseudo queries while
also making them more akin to human expressions.
As depicted in Figure 1, compared to Pseudo-Q,
the SGEPG method generates pseudo queries that
are both unambiguous and exhibit higher quality.
Moreover, the generated queries by SGEPG also
demonstrate more complex inference paths, such
as the paths from "bowl" to the "blueberries".

Specifically, the SGEPG framework comprises
four essential components: Core Scene Graph
Generation, which is responsible for obtaining
an informative core graph to capture object rela-
tions; Non-Ambiguous Query Generation, which
focuses on generating unambiguous queries; Diver-
sity Driven Query Rewriter, which is designed to
rewrite some of the generated queries, aiming to
increase the diversity and alleviate the differences
between pseudo-queries and human expressions;
Visual-Language Module, which aims to capture
the contextual relationship between the image re-
gions and corresponding pseudo queries.

The experimental results demonstrate the effec-
tiveness of our method, which significantly reduces
the manual labeling cost by about 40% on the
RefCOCO dataset, with only a slight decrease in
performance compared to the fully supervised set-
ting. In addition, our proposed method consistently
outperforms the state-of-the-art unsupervised ap-
proach by about 10-13 points on the RefCOCO
(Yu et al., 2016), RefCOCO+ (Yu et al., 2016), and
RefCOCOg (Mao et al., 2016) datasets. Our main
contributions can be summarized as follows:
• We propose the first scene graph-based pseudo-

labeling method for unsupervised ReC task,
which effectively represents the key visual fea-
tures of different objects and captures their re-
lationships, resulting in region-query pairs that
express richer relational information.

• To address the issue of generating ambiguous
queries that yield incorrect supervisory signals
and degrade performance, we introduce a dis-
ambiguation module based on the scene graph
structure to further align the region-query modal-
ities. Additionally, we propose rewriting some
queries to increase the diversity and make them
more closely resemble human expressions.

• Experimental results demonstrate that SGEPG
not only effectively alleviates the reliance on
manual annotation, but also outperforms coun-
terparts and achieves comparable performance
to large pre-trained vision-language methods.

2 Related Work

2.1 Referring Expression Comprehension
The task of Referring Expression Comprehension
(ReC) plays a crucial role in applications such as
robot navigation and visual question answering.
ReC methods can be roughly classified into three
types: fully supervised (Deng et al., 2021; Yang
et al., 2022), weakly supervised (Gupta et al., 2020;
Liu et al., 2019a, 2021; Sun et al., 2021), and un-
supervised (Jiang et al., 2022; Subramanian et al.,
2022; Wang and Specia, 2019; Yeh et al., 2018).
Although fully supervised methods have achieved
state-of-the-art results in the ReC task (Kamath
et al., 2021; Yang et al., 2022), they heavily rely
on vast and expensive manually annotated region-
query pairs for training. In contrast, weakly super-
vised methods aim to alleviate this reliance by train-
ing the model using only image-text pairs. Most
weakly supervised methods (Chen et al., 2018a;
Liu et al., 2021) use object detectors to obtain po-
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tential regions corresponding to the expressions,
treating them as alternatives to missing bounding
boxes for training the model. However, annotat-
ing the expressions in ReC datasets is the most
time-consuming and labor-intensive process.

To address the need for manual annotations and
reduce annotation costs, there is a growing interest
in unsupervised methods (Jiang et al., 2022; Subra-
manian et al., 2022; Wang and Specia, 2019; Yeh
et al., 2018). For instance, Wang and Specia (2019)
employ multiple detectors (e.g., Faster-RCNN (Gir-
shick, 2015)) to detect objects, scenes, and colors
in images. By comparing the similarity between
visual regions and the nouns in the query, the cor-
responding region related to the query can be iden-
tified. ReCLIP, proposed by Subramanian et al.
(2022), introduces the use of CLIP (Radford et al.,
2021) to assign scores to various image regions
based on their similarity to the query. The region
with the highest similarity score is then selected
as the final result. While these methods leverage
prior knowledge to analyze the alignment between
visual regions and text, the inference speed is rel-
atively slow due to the encoding and scoring of
image regions and text in each step. One particu-
lar unsupervised approach, Pseudo-Q (Jiang et al.,
2022), stands out by considering using pseudo-
labelling techniques. The generated pseudo-labels
can be employed to train supervised ReC models,
allowing the models to acquire grounding abilities
without the requirement for manually labeled data.
However, Pseudo-Q fails to capture deep relation
information among objects in images and does not
address the ambiguity issue, leading to poor quality
queries, as shown in Figure 1.

Unlike the existing pseudo-labeling methods
(Cheng et al., 2021; Feng et al., 2019; Jiang et al.,
2022), SGEPG incorporates scene graphs, enabling
the generation of queries with inferred paths and
rich relational information.

2.2 Scene Graph

Scene graphs contains structured semantic infor-
mation about images, including object categories,
attributes, and pairwise relationships. They can pro-
vide valuable prior information and have proven
useful for various tasks like image captioning
(Yang et al., 2019; Li and Jiang, 2019; Zhong et al.,
2020). For instance, Li and Jiang (2019) argue
that previous image caption approaches, which
treat each object individually, lack structured repre-

sentation that provides important contextual clues.
Therefore, they propose utilizing triples (subject,
relation, object) from scene graphs as additional
semantic information, along with visual features,
as input to generate caption. Yang et al. (2019)
introduce a Scene Graph Auto-Encoder module
and incorporate inductive language bias into an
encoder-decoder image captioning framework to
produce more human-like captions.

The task of scene graph generation (Dai et al.,
2017; Xu et al., 2017; Zhang et al., 2022; Zellers
et al., 2018; Tang et al., 2019) aims to obtain a
complete graph structure representation of an im-
age, where nodes represent object categories and
edges indicate relationships between objects (e.g.,
person-riding-bike). Early works on scene graph
generation focused on local visual information and
overlooked contextual information in images. To
address this issue, Xu et al. (2017) proposed an
end-to-end model that improves visual relation-
ship prediction by iteratively propagating contex-
tual information across the scene graph’s topology.
Furthermore, most scene graph generation mod-
els struggle with data distribution issues, such as
long-tail distributions. This poses challenges in ac-
curately predicting frequent relationships that lack
informative details (e.g., on, at), limiting the appli-
cability of scene graph models in practical tasks.
To address this, Zhang et al. (2022) propose In-
ternal and External Data Transfer. This approach
automatically generates an enhanced dataset, mit-
igating data distribution problems and providing
more coherent annotations for all predictions.

3 Methodology

In this section, we present the SGEPG frame-
work, which aims to automatically generate region-
query pairs from given images and train models
to tackle ReC task using these pseudo labels. As
depicted in Figure 2, the SGEPG framework con-
sists of four key components: Core Scene Graph
Generation, which is responsible for obtaining
an informative core graph to capture object rela-
tions; Non-Ambiguous Query Generation, which
focuses on generating unambiguous queries; Diver-
sity Driven Query Rewriter, which is designed to
rewrite some of the generated queries, aiming to
increase the diversity and alleviate the differences
between pseudo-queries and human expressions;
Visual-Language Module, which aims to capture
the contextual relationship between the image re-
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gions and corresponding pseudo queries. Note that
in this work, we mainly focus on the first three mod-
ules, with the objective of generating pseudo-labels
of good quality for training visual-language mod-
els designed for the ReC task. To accommodate
space limitations, certain methodological details
may have been omitted. For a more comprehensive
understanding, please refer to Appendix A for de-
tailed information regarding the methods employed
in this study.

3.1 Core Scene Graph Generation

The objective of this module is to obtain an in-
formative core graph that accurately describes the
objects in the image and their relationships. The
scene graph, denoted as G = (V,E), is a directed
graph consisting of vertices V representing ob-
ject instances characterized by bounding boxes
with object category labels, and edges E repre-
senting relationships between objects. Each edge
ei = (vs, vo, ri) indicates a relation type ri be-
tween subject vs and object vo.

Firstly, we utilize scene graph generation tech-
niques to construct a preliminary scene graph for
a given image. Specifically, we employ the model
proposed by Zhang et al. (2022), as discussed in
Section 2.2. However, the generated preliminary
scene graph may not be complete due to the limi-
tations of current scene graph approaches. These
approaches often provide coarse and insufficient ob-
ject categories in the generated graph, represented
by generic labels such as "flower" instead of spe-
cific labels like "rose".1 Furthermore, the generated
scene graph only contains the relationship informa-
tion between objects and fails to capture attribute
details of each object, such as the color of a rose.
Thus, the preliminary scene graph lacks specific
information about object attributes.

To address the aforementioned limitations, we
expand the preliminary graph by introducing ad-
ditional nodes and edges to construct a complete
scene graph. Following the insights from (Jiang
et al., 2022), the referring expressions typically
involve three crucial aspects: category, attributes
and spatial information. Additionally, humans nat-
urally combine these visual semantic cues when
referring to specific target objects, particularly in
complex scenes with multiple objects of similar
classes, reducing ambiguity in the referring expres-

1Note that the model proposed by Zhang et al. (2022) only
supports 150 classes.

sions. Therefore, we next extract these three key
aspects from the image:

1. Category. Inspired by two stage ReC methods
(Yu et al., 2018), we employ an object detector to
obtain object proposals (e.g., "skier" in Figure 2).

2. Attribute. To extract attributes like material
(e.g., wooden), color (e.g., red), and status (e.g.,
standing), we utilize an attribute classifier (Ander-
son et al., 2018). However, existing models have
a constraint in extracting only the most confident
attribute for each object, even though an object can
have multiple attributes.

3. Spatial Information. Humans often use spa-
tial information to refer to an object, such as "right
apple", "top guy". We obtain spatial information by
comparing the center coordinates of object bound-
ing boxes. Specifically, we derive horizontal spatial
information (e.g., left, right) and vertical spatial
information (e.g., top, bottom) by comparing the
object center coordinates along these dimensions.

After extracting the above three information, we
first update the categories of the vertices in the pre-
liminary scene graph with the obtained category in-
formation. Next, we introduce attribute nodes and
spatial nodes into the scene graph, representing the
attribute information and spatial relationships with
the corresponding object nodes, that are denoted
as [Attr], [Spatial], respectively. As a result, we
generate an informative core scene graph that en-
compasses the three crucial pieces of information,
as illustrated in the lower left corner of Figure 2.

3.2 Non-Ambiguous Query Generation
The core scene graph captures the rich semantic in-
formation of the entire image, which can be utilized
to generate queries by populating its information
into designed templates.2 However, using the en-
tire scene graph may result in queries that are too
complex and contain excessive specific informa-
tion for referring the objects. In ReC tasks, queries
are typically concise and only describe partial in-
formation relevant to the objects being referred to,
rather than providing an overall description of the
scene. To address this, we focus on subgraphs that
contain the nodes corresponding to the objects of
interest. These subgraphs capture partial informa-
tion about the objects, which can be leveraged to
obtain concise pseudo queries.

However, the ambiguity issue may arise if there
are similar subgraphs present in the scene graph.

2Please refer to Appendix B for the designed templates.
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Figure 2: The framework of SGEPG, which consists of four modules: Core Scene Graph Generation, Non-
Ambiguous Query Generation, Diversity Driven Query Rewriter, and Visual-Language. The diagram also illustrates
how SGEPG generates queries related to Person A.

An ambiguous query can refer to multiple objects
in the image, which might lead to incorrect super-
vision signals detrimental for effective learning of
visual-language module. Existing pseudo query-
based models, such as Pseudo-Q, struggle with this
issue and may generate ambiguous queries that
refer to different objects, as depicted in Figure 1.
To address this issue, we propose a simple yet ef-
fective Ambiguity Resolver Strategy based on
the characteristics of the scene graph. The main
idea is that a query referring to an object is non-
ambiguous if its corresponding subgraph is not a
subgraph of any other subgraphs representing dif-
ferent objects in the scene graph. Specifically, let
GA and GB denote the graphs of objects A and
B, respectively, and SA represent the selected sub-
graph from GA for generating the query about A.
To resolve ambiguity, SA should satisfy the condi-
tion SA ⊈ GB . For instance, in the left corner of
the Non-Ambiguous Query Generation module on
the right side of Figure 2, the subgraph represent-
ing "skier-pants-dark" of "Person A" is removed as
it is identical to a subgraph of "Person B".

3.3 Diversity Driven Query Rewriter

To address the limited diversity and fluency issues
of pseudo queries generated by directly filling sub-
graphs into predefined templates, we introduce a

rewriter component. It aims to to enhance the di-
versity and bridge the gap with human expressions,
while preserving semantic consistency. To achieve
this, GPT-3.5, a poweful large pre-trained language
model is utilized to rewrite the queries. GPT-3.5
also has the capability to incorporate additional
prior knowledge into queries. For example, it may
rewrite "giraffe" as "long-necked animal" associat-
ing the abstract concept of a "long-necked" with the
entity of "giraffe". This integration of prior knowl-
edge helps the SGEPG generate more accurate and
meaningful queries. Furthermore, we introduce an
important hyperparameter α, which determines the
proportion of generated pseudo queries that will
undergo the rewriting process.

3.4 Visual-Language Module

In this module, our objective is to train a visual-
language model that learns the mapping between
image regions and textual descriptions, using
pseudo-labels obtained from the previous modules.
To achieve this, we adopt a similar architecture
to VLTVG (Yang et al., 2022), a visual-language
model designed for the ReC task through super-
vised learning. The VLTVG model consists of four
components: a visual encoder, a language encoder,
a fusion module, and a multi-stage cross-modal
decoder. To extract visual features from the given
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image, we employ DETR (Carion et al., 2020) as
the visual encoder within our model. For the tex-
tual modality, we utilize BERT (Devlin et al., 2018)
as the language encoder to obtain feature represen-
tations of the corresponding expressions. These
visual and textual representations are then fused
using a fusion module. Finally, the fused features
are passed through a multi-stage cross-modal de-
coder, which generates the coordinates for the final
predicted bounding box for the referred object in
the image. Note that while we have specifically uti-
lized this visual language model architecture, it can
be replaced by any other supervised ReC models.

4 Experiment

4.1 Datasets and setups

We evaluate SGEPG on three datasets: RefCOCO,
RefCOCO+ and RefCOCOg. The images in these
datasets are from the MSCOCO (Vinyals et al.,
2016) and we follow the same train/val/test splits
from (Subramanian et al., 2022). The number of
training images for these three datasets is 16994,
16992, and 24698, respectively. Compared to Ref-
COCO, the queries in RefCOCO+ do not include
spatial words (e.g. "left", "top") to describe objects,
and RefCOCOg queries are typically longer and
involve more interactions between objects. The re-
ferred objects in testA split are all human, the testB
split comprises only non-human objects, while val
split does not have such restriction.

For each image in the RefCOCO, RefCOCO+,
and RefCOCOg datasets, we select the top 3 ob-
jects based on their confidence scores and generate
3 queries for each selected object. The hyperpa-
rameter α for the Rewriter is set to 50%. The
visual-language component of our proposed model
is trained independently for 30 epochs using the
generated pseudo-labels of the images from each
dataset, with the remaining hyperparameter settings
consistent with those reported in the VLTVG paper.
The evaluation of the trained model is conducted
on the respective test set of each dataset. Thus, dur-
ing the training stage of our approach, we do not
utilize any manually annotated datasets, i.e., the
human annotated image region-query pairs, which
are solely used for evaluation purposes.

4.2 Baselines

We compare the performance of our SGEPG ap-
proach with several existing methods, including
unsupervised methods such as ReCLIP, GradCAM

(Subramanian et al., 2022), CPT (Yao et al., 2021),
and Pseudo-Q(Jiang et al., 2022) as well as weakly-
supervised methods like VC (Zhang et al., 2018),
ARN (Liu et al., 2019a), KPRN (Liu et al., 2019b),
and DTWREG (Sun et al., 2021). We also include
the random guess results and the state-of-the-art
results achieved by MDETR (Kamath et al., 2021).
It is worth noting that Pseudo-Q, like our SGEPG
approach, also relies on generating pseudo queries,
as mentioned earlier. However, Pseudo-Q employs
a different visual-language model than VLTVG
(Yang et al., 2022), which we have chosen as our
visual language model. To ensure a fair compari-
son, we train a VLTVG model using the region-text
pairs generated by Pseudo-Q, and refer to it as
Pseudo-Q-adaptive in our evaluation.
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Figure 3: Experiments of reducing the manual labeling
cost. Figure (a): results of our method on three splits of
RefCOCO; Figure (b): comparision results between our
method and Pseudo-Q on val split of RefCOCO.

4.3 Main Results
The results on RefCOCO, RefCOCO+, and Ref-
COCOg are presented in Table 1. We begin by
comparing our proposed SGEPG model with the
unsupervised methods: ReCLIP, and Pseudo-Q. We
observe that our proposed SGEPG model demon-
strates superior performance. In comparison to
ReCLIP, the state-of-the-art unsupervised method
which relies on pre-trained visual-language models,
SGEPG surpasses ReCLIP by a remarkable 15% on
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method Sup
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test
Random - 15.73 13.51 19.20 16.29 13.57 19.60 18.12 19.10
Supervised SOTA Full 87.51 90.40 82.67 81.13 85.52 72.96 83.35 81.64
VC(Zhang et al., 2018)

Weak

- 33.29 30.13 - 34.60 31.58 - -
ARN(Liu et al., 2019a) 34.26 36.43 33.07 34.53 36.01 33.75 - -
KPRN(Liu et al., 2019b) 35.04 34.74 36.98 35.96 35.24 36.96 - -
DTWREG(Sun et al., 2021) 39.21 41.14 37.72 39.18 40.10 38.08 - -
CPT(Yao et al., 2021)

NoCPT-Blk w/ VinVL 26.9 27.5 27.4 25.4 25.0 27.0 32.1 32.3
CPT-Seg w/ VinVL 32.2 36.1 30.3 31.9 35.2 28.8 36.7 36.5
CLIP

NoGradCAM 44.65 53.49 36.19 49.41 59.66 38.62 52.29 51.28
ReCLIP 54.04 58.60 49.54 55.07 60.47 47.41 60.85 61.05
Pseudo-labeling

No
Pseudo-Q(Jiang et al., 2022) 56.02 58.25 54.13 38.88 45.06 32.13 46.25 47.44
Pseudo-Q-adapted 59.44 61.87 56.47 42.76 48.27 36.90 50.35 49.68
SGEPG (Ours) 69.61 72.34 65.67 55.21 60.67 46.76 61.33 60.61

Table 1: Comparison with ReC methods on RefCOCO/+/g in terms of top-1 accuracy (%). Bold indicates the best
performance of the column except for the supervised method. Sup column indicates the method category: Full,
Weak, No represent fully supervised, weakly supervised and unsupervised, respectively.

Figure 4: Visualization examples of detection results. The first row of images displays the visualized detection
results of both SGEPG and Pseudo-Q. The second row showcases four instances where SGEPG encountered
detection failures, with the corresponding results from Pseudo-Q included for comparison. The green bounding
boxes and queries are ground truth and the red bounding boxes and yellow bounding boxes are the detection results
of SGEPG and Pseudo-Q, respectively.

Corner left top bowl
with blueberry above
table

On the right side,
there's a white bowl
with green broccoli
inside

The upper sitting man
is dressed in khaki
pants

A black racket
is being held by
the man

In the 6 o'clock
position, there's a man
seated on green chairs

Man in red jacket
A person with a black
helmet is standing on the
white snow

A skier wearing a blue jacket is
walking on the white snow

In the eastward
direction, a sitting
man is observing a
giraffe

Figure 5: The visualization results of pseudo-labels generated by SGEPG. Different colored queries corresponding
to different objects.
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RefCOCO RefCOCO+
val testA testB val testA testB

w/o SG 63.45 63.9 63.47 43.8 45.81 44.14
w/o ARS 65.24 63.81 64.65 48.5 50.47 46.02

w/o DDRQ 68.82 72.46 64.99 53.78 58.26 46.14
SGEPG 69.61 72.34 65.67 55.21 60.67 46.76

Table 2: Main ablation test results on the RefCOCO/+.

replace rate (α) 0% 25% 37.5% 50% 75%
val 53.78 54.29 54.94 55.21 55.33

testA 58.26 60.15 58.99 60.67 60.9
testB 46.14 46.41 46.7 46.76 46.8

Table 3: Rewriting ratio test results of DDQR on Ref-
COCO+.

the RefCOCO dataset, while achieving comparable
performance on RefCOCO+ and RefCOCOg. Re-
garding Pseudo-Q, which is also based on pseudo-
labeling, our SGEPG model outperforms it by an
average margin of 10% to 12.5%. This demon-
strates that the queries generated by SGEPG for
referring to objects can better ensure accurate map-
ping between the two modalities.

4.4 Efficiency Improvement of Manual
Annotation

We then conduct experiments to assess the capabil-
ity of SGEPG in reducing manual labeling costs.
Following Pseudo-Q, we replace the manually an-
notated region-text pairs whose queries contain
spatial relationships in RefCOCO with the pseudo-
labels generated by SGEPG. The results, depicted
in Figure 3(a), demonstrate the significant reduc-
tion in manual labeling costs achieved by SGEPG.
When about 40% of the manually annotated region-
text pairs are replaced with our generated pseudo-
labels, there is only minimal impact on the model’s
performance. In addition, we compared SGEPG
with Pseudo-Q in Figure 3(b), which indicates that
our SGEPG model has the ability to generate supe-
rior quality pseudo-labels compared to Pseudo-Q.

4.5 Ablation Study
In this section, we perform extensive ablation stud-
ies on the RefCOCO and RefCOCO+ datasets to
evaluate the effectiveness of the key aspects of
SGEPG, including scene graph (SG), ambiguity re-
solver strategy (ARS), and Diversity Driven Query
Rewriter (DDQR). To evaluate the impact of the
SG component, we compare the performance of the
model without SG. In this scenario, the category,
attribute, and spatial information of the detected

objects are directly used to fill the templates and
generate pseudo queries. Moreover, as the ARS
relies on the scene graph, the model without SG
cannot utilize this strategy to address ambiguity.
For the models without ARS or DDQR, we either
exclude the strategy or remove the DDQR compo-
nent directly from the SGEPG model. The results
of this ablation study are presented in Table 2.

Firstly, when comparing the performance of the
model without SG to the complete SGEPG, we
observe that the complete SGEPG achieves ab-
solute performance improvements of 6.16% and
11.41% on the validation sets of RefCOCO and
RefCOCO+, respectively. This also indicates that
the SG can effectively improve the model’s ability
to align visual and textual information, especially
on challenging datasets like RefCOCO+. Secondly,
the complete SGEPG also outperforms the model
without the ARS, with absolute improvements of
8.53% and 10.2% on the RefCOCO/+ testA, respec-
tively. Finally, we observe that when the DDQR
module is removed, the model’s performance de-
crease across both datasets. The above findings
demonstrate that the modules proposed by us can
provide more accurate supervision signals to the
ReC model and improve its performance.

4.6 Effect of Different Replacing Ratios in
Rewriter

In this section, we conduct experiments to exam-
ine the impact of rewriting ratios α in the DDRQ.
We perform rewriting on pseudo queries with α
values of 25%, 37.5%, 50%, and 75%. The final re-
sults are presented in Table 3. The results indicate
that as the rewriting ratio increases, the model’s
performance improves. This finding suggests that
incorporating more diverse expressions can allevi-
ate the discrepancy between pseudo queries gener-
ated by artificial templates and human expression.
However, there is a noticeable diminishing return
effect: the more sentences are rewritten, the train-
ing cost increases linearly while the performance
gain becomes limited. Therefore, we strike a bal-
ance between training cost and model performance,
and find that a rewriting ratio of 50% is appropriate.

4.7 Qualitative Analysis
Qualitative examples. To validate that our ap-
proach can provide queries with rich relational
information and enhance the model’s perception
of relationships, we conducted visualizations of
some generated examples in Figure 5. Further-
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more, we performed visual comparisons with the
results from Pseudo-Q on selected cases, directly
comparing them (first row of Figure 4). We ob-
serve that SGEPG effectively captures the complex
relational information among objects in the scene,
while Pseudo-Q tends to randomly select an object
from the query’s nouns as the detection object. For
instance, in the third example in first row, Pseudo-
Q generates detection results solely based on the
word "Person" in the sentence, completely disre-
garding the "holding" relationship and the "paper"
object. This also suggests that SGEPG is capable of
better capturing the relationships between objects.

Failure case. Additionally, while second row of
Figure 4 presents cases where SGEPG encountered
prediction errors that can primarily be attributed
to the two limitations of the scene graph. Firstly,
the scene graph may lack the ability to recognize
text present in images. Secondly, the scene graph
generation model may struggle in complex scenes,
resulting in inaccurate scene graph generation.

5 Conclusion

In this paper, we propose SGEPG, a novel pseudo-
labeling ReC method that leverages scene graphs
to improve the generation of pseudo queries. By
utilizing the scene graph, SGEPG captures object
relationships and generates pseudo queries that are
rich in relation information, thereby improving the
training of ReC models. Additionally, we propose a
simple yet effective strategy to filter out ambiguous
generated queries. Our method outperforms pre-
vious pseudo-labeling approaches on three bench-
mark datasets and achieves comparable or superior
performance compared to other unsupervised ReC
methods. Furthermore, SGEPG offers the advan-
tage of significantly reducing manual labeling costs
while maintaining the model’s performance.

Limitations

While our method has demonstrated excellent per-
formance on three datasets, there are still some lim-
itations. Firstly, the quality of the generated results
relies on the accuracy of the scene graph genera-
tion. In complex scenes, there is no guarantee that
all objects and their relationships can be correctly
identified, which may impact the effectiveness of
our approach. Secondly, the capabilities of the
scene graph are limited in terms of object detection.
It can only detect a specific set of objects and may
fail to identify certain objects such as the sky or

sea. Consequently, the generated pseudo queries
may not adequately cover these object classes, po-
tentially affecting the comprehensiveness of the
generated queries.
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A More Details of the Scene Graph
Generation

A.1 Spatial

In this section, we will elaborate on some addi-
tional details regarding the extraction of spatial
information. In addition to the four cardinal direc-
tions (up, down, left, and right) that we are familiar
with, we have incorporated some extra spatial de-
scriptions to help the model better learn the concept
of "spatial".

Firstly, we introduce the concept of "corner".
Sometimes, humans use the term "corner" to re-
fer to objects that are located in the corners of an
image. Therefore, when extracting the spatial in-
formation of objects, we also determine whether
the object is positioned at the edges or corners of
the image. In this work, we consider an object to
have the "corner" attribute if it satisfies the follow-
ing conditions: Firstly, the object’s bounding box
should not be located in the center of the image.
Secondly, the object’s bounding box should have
at least two edges that are positioned at the image’s
edges. Objects that meet these criteria are assigned
the additional "corner" attribute.

Secondly, we have observed that people often
use the term "alone" to refer to an object that ap-
pears to be "solitary". Therefore, when there are
multiple instances of a certain object category in an
image (typically three or more), we employ clus-
tering algorithms(Ball and Hall, 1965) based on
coordinates and object bounding box sizes to at-
tempt to divide them into two groups. If one of the
groups contains exactly one object, we consider
that object to be "alone" and assign it the additional
"alone" attribute.

A.2 Scene Graph Cleaning

While we can utilize scene graph generation models
to extract scene graphs from images, the obtained
scene graphs may contain errors due to limitations
in model performance. Although most incorrectly
predicted relations can be filtered out based on
confidence scores, some contradictory results may
still remain. For example, a scene graph may con-
tain two conflicting triples such as "boy-sitting at-
chair" and "boy-standing on-floor," which contra-
dicts common sense as a person cannot be both
"sitting" and "standing." In such cases, we only
retain the triple with the highest confidence level.
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B Designed Template

Due to the fact that scene graphs are graph struc-
tures while natural language is a sequential text, it
is necessary to find an appropriate method to con-
vert graph structures into text sequences. In this
paper, we employ a method that involves populat-
ing a manually designed template with information
extracted from the scene graph. The scene graph
encompasses four main types of information: 1.
Object categories, 2. Object attributes, 3. Rela-
tionships between objects and 4.spatial. Therefore,
the elements to be filled in the manually designed
template primarily consist of these three types of
information. Here are the main templates used in
this paper:

• [attr] [sub]

• [sub] [rel] [obj]

• [sub] in/on [spatial] {corner | alone}

• [attr] [sub] in/on [spatial] {corner | alone}

• [attr] [sub] [rel] [obj] in/on [spatial]

• [attr] [sub] [rel] [obj] and [rel] [obj]

• [attr] [sub] [rel] [attr] [obj] and [rel]
[attr] [obj]

• [attr] [sub] [rel] [attr] [obj] and [rel] [attr]
[obj] in [spatial] {corner | alone}

In this context, "attr" refers to the attribute of an
object, "sub" represents the subject, "obj" repre-
sents the object, "spatial" indicates the spatial, and
"rel" represents the relationship between subject
and object. Additionally, "corner" and "alone" are
optional and indicate whether the object is located
in the corner of the image and whether it is "alone,"
respectively. By filling in the scene graph infor-
mation into the templates, we can obtain pseudo
queries generated based on the scene graph. Please
note that the word order may vary, and "spatial"
could be placed at the beginning of the sentence.

C Prompt of Rewriter

We use GPT3.5 (ChatGPT) to rewrite the pseudo
queries we have constructed. We employ a prompt
to communicate to GPT3.5 that our task objec-
tive is to rewrite sentences, with each sentence
being rewritten three times. The following is the
specific prompt we use, along with an example:

Prompt:"Your goal is to act as human-being to gen-
erate diversified, accurate and semantically rich
referring expressions according to a description of
the referred object. The requirement of generated
expression: The category, color, position, texture,
relationship with other objects or others segments
(entities) may be reorganized with some alternative
expressions. I will give you some descriptions,and
then you generate 3 referring expressions for per
description. You should return a dict in which the
key is the description and the values are the 3 ex-
pression involed in a list, the format looks like {"De-
scription": "xxxxx", "Values": {"1": "xxxxx", "2":
"xxxxx", "3": "xxxxx"} }. Don’t leave out any sen-
tences. Now, begining your generation following
the goal, requirement and format:"

Input: center tallest man in glasses
Output: { "Description":"Center tallest man

in glasses": {"1":"At the center, the tallest man
wearing glasses is present.", "2":"Glasses-wearing
man who is the tallest is in the center.", "3":"The
center position is occupied by a man, who is the
tallest and wears glasses."}}

Input: corner left top bowl with blueberry above
table

Output: { "Description": "corner left top bowl
with blueberry above table", "Values": { "1": "The
blueberry-filled bowl is positioned in the top left
corner, above the table.", "2": "Above the table,
there’s a bowl in the top left corner, and it contains
blueberries.", "3": "In the top left corner, there’s a
bowl placed above the table, and it has blueberries
inside." } }

It is important to note that not every rewriting
attempt is successful. There are instances where
GPT-3.5 may fail to rewrite or generate unexpected
statements, such as outputs that do not meet the
expected format or provide insufficient information.
For such cases where rewriting is not possible, we
simply skip them and proceed without making any
changes.

D Additional Experiments

D.1 Effect of Expressions Number per Object
and Object Number per Image

In this section, we investigate the impact of the
number of generated pseudo queries for each ob-
ject, as well as the number of pseudo-labeled ob-
jects generated per image, as shown in Table 4.
Please note that in this experiment, by default, 4
objects are selected per image to generate pseudo-
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Expression number per object Object number per image
1 2 3 4 1 2 3 4 5

SGEPG 66.17 68.21 68.6 68.81 62.3 67.61 68.82 68.6 68.02

Table 4: Results of different expressions numbers per object and different object numbers per image on RefCOCO.

RefCOCO RefCOCO+
val testA testB val testA testB

preliminary scene graph 36.23 45.31 25.32 37.21 46.11 26.55
Core scene graph (SGEPG) 69.61 72.34 65.67 55.21 60.67 46.76

Table 5: preliminary scene graph generation results on RefCOCO and RefCOCO+.

labels, and 3 statements are generated for each
object.

Intuitively, generating a larger number of pseudo
queries for each object allows for a broader cov-
erage of the semantic space. The experimental
results demonstrate that increasing the number of
expressions generated per object leads to improved
performance, while insufficiently generated expres-
sions result in limited coverage of the semantic
space, leading to a decline in model performance.
However, excessively generating expressions for
each object can significantly increase training time
and increase costs. Hence, to strike a balance be-
tween performance and training efficiency, we have
set this value to 3 in our other experiments. Fur-
thermore, as the number of objects increases, the
number of generated pseudo queries also rises, lead-
ing to an improvement in our model’s performance.
However, it is important to note that our approach
utilizes the confidence score from the object de-
tector to select salient objects. Objects with low
confidence are more prone to providing incorrect in-
formation regarding object categories and visual re-
gions. Thus, when the number of objects is higher,
the likelihood of introducing such erroneous in-
formation and negatively impacting the model’s
performance increases.

D.2 Effect of Core Scene Graph

In order to assess the impact of scene graph gen-
eration quality and key information on the results
of pseudo-label generation, we also attempted to
generate pseudo-labels directly using a preliminary
scene graph rather than a core scene graph. We
performed the experiments on both the RefCOCO
and RefCOCO+ datasets. In these experiments, we
generated pseudo-labels directly using the prelim-
inary scene graph without any further processing.

Experimental results are shown in Table 5. No-
tably, we observed that training the model solely
with preliminary scene graphs, which are noisy
and unprocessed, led to poor performance. This
finding underscores the importance of accurate and
refined core scene graphs in our approach. These
core scene graphs, complemented with additional
information from off-the-shelf object detectors and
attribute classifiers, play a crucial role in enhanc-
ing the quality of generated pseudo-labels and ul-
timately improving the performance of the visual-
language model.
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