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Abstract

Instance attribution (IA) aims to identify the
training instances leading to the prediction of
a test example, helping researchers understand
the dataset better and optimize data processing.
While many IA methods have been proposed
recently, how to evaluate them still remains
open. Previous evaluations of IA only focus
on one or two dimensions and are not compre-
hensive. In this work, we introduce IAEval for
IA methods, a systematic and comprehensive
evaluation scheme covering four significant re-
quirements: sufficiency, completeness, stability
and plausibility. We elaborately design novel
metrics to measure these requirements for the
first time. Three representative IA methods
are evaluated under IAEval on four natural lan-
guage understanding datasets. Extensive exper-
iments confirmed the effectiveness of IAEval
and exhibited its ability to provide comprehen-
sive comparison among IA methods. With IAE-
val, researchers can choose the most suitable IA
methods for applications like model debugging.

1 Introduction

Along with the fast development and wide applica-
tion of deep neural networks, a lot of interpretabil-
ity methods have been proposed to explain the
models’ predictions, which help people understand
the reason behind the models’ success and limi-
tations (Ribeiro et al., 2016; Lundberg and Lee,
2017; Linardatos et al., 2020; Hanawa et al., 2021).
Such interpretability or attribution methods can be
primarily divided into two categories: Feature At-
tribution (FA) and Instance Attribution (IA). While
FA highlights important input features or tokens
that support the prediction of the input, IA identi-
fies the training instances leading to the predictions
of test examples. The evidences obtained by attribu-
tion methods can not only help people understand
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the model’s predictions, but also help researchers
debug or optimize models, such as finding problem-
atic training data and improving the data quality.

Plenty of IA methods have been proposed re-
cently (Koh and Liang, 2017; Yeh et al., 2018;
Barshan et al., 2020; Pruthi et al., 2020). For a test
example, these methods calculate a influence score
for each training data, reflecting its influence on the
prediction of the test example as shown in the left
part of Figure 1. The top ranked training instances
are extracted as evidences. While all these meth-
ods are potentially chosen to identify evidences,
how to evaluate them still remains open. Hanawa
et al. (2021) proposed a randomized-test and two
heuristics to test whether IA methods satisfy mini-
mal requirements for evidences. Karthikeyan and
Søgaard (2021) proposed to evaluate by detecting
poisoned training examples. Besides, Pezeshkpour
et al. (2021) evaluated IA methods by comparing
the prediction difference after removing evidences
and a randomized-test. However, all these existing
methods consider solely one or two perspectives
of evidences such as faithfulness, and they ignored
other significant requirements that ideal evidences
were expected to meet. It still lacks a holistic eval-
uation for IA methods.

In order to address the above problems, we pro-
pose IAEval, the first systematic and comprehen-
sive evaluation scheme for IA methods. IAEval
consists of our elaborately designed metrics quanti-
fying and measuring four important requirements
for IA, including sufficiency, completeness, stabil-
ity and plausibility. Although these requirements
have been deeply discussed for FA (DeYoung et al.,
2020; Wang et al., 2022), we apply them to IA for
the first time by refining their definition and de-
signing metrics for measurement thoroughly. We
demonstrate the overall framework of IAEval in
the middle part of Figure 1. With IAEval, the
evaluation of the IA methods can be conducted
in a methodical and holistic manner. Furthermore,
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Figure 1: The overall pipeline of our evaluation of IA methods. The left part shows the basic structure of IA methods.
They extract evidences according to the influence scores of each training data on a test example. The middle part is
our proposed systematic evaluation scheme IAEval. IAEval evaluates IA methods with four sets of metrics covering
four significant requirements for IA. The right part is the comparison of the evaluated methods under our IAEval.
The comparison is comprehensively conducted on four distinct dimensions.

owing to IAEval’s diverse evaluation dimensions,
in-depth analyses can be conducted on each IA
method. Through such analyses, it is possible to
unveil potential drawbacks of a method that may
not be detected solely through evaluation from a
single perspective (Seeing Section 7.1).

We evaluate IA methods with IAEval on four
natural language understanding datasets in two
languages: SST-2 (Socher et al., 2013), MNLI
(Williams et al., 2018) in English and LCQMC
(Liu et al., 2018), Chnsenticorp (Tan and Zhang,
2008) in Chinese. We evaluate three representative
IA methods: Feature Similarity (FS), Gradient Sim-
ilarity (GS) (Charpiat et al., 2019) and Representer
Point Selection (RPS) (Yeh et al., 2018). The sys-
tematic nature of IAEval enables us make a thor-
ough comparison from four perspectives among
these IA methods as in the right part of Figure 1.
With IAEval, researchers can refer to its evaluation
results and choose better IA methods to acquire
higher-quality evidences, helping with specific ap-
plications.

Our key contributions are summarized as fol-
lows:

• We propose IAEval, the first systematic and
comprehensive evaluation scheme for IA
methods. IAEval covers four significant re-
quirements including sufficiency, complete-
ness, stability and plausibility. We design
novel metrics to measure these four signifi-
cant requirements for the first time.

• Experiments on four natural language under-
standing datasets in two languages validate the
effectiveness of IAEval. Compared to evalua-
tions solely with a single perspective, IAEval

can provide a comprehensive evaluation and
help with unveiling potential drawbacks of a
method through multi-perspective analysis.

• With IAEval, researchers can choose the most
suitable IA methods for specific applications
such as annotation checking or training data
reduction.

2 Related Work

Instance attribution. Recent attribution meth-
ods can be primarily divided into two categories:
Feature Attribution (FA) and Instance Attribution
(IA). In this work, we focus on IA methods which
calculate influence scores of each training data for
test examples. Influence functions (IF) (Koh and
Liang, 2017) approximate the importance of each
training data via the products of gradients and the
inverse Hessian matrix. Barshan et al. (2020) pro-
poses Relative Influence to mitigate the overlap-
ping problem of IF. Pruthi et al. (2020) measures
the importance by tracing the loss change of test
example caused by each training data. Similarity-
based methods directly measure the training data’s
importance by calculating the similarity of features
(Caruana et al., 1999) or gradients (Charpiat et al.,
2019) between training data and test example. Rep-
resenter Point Selection (RPS) (Yeh et al., 2018)
propose to measuring influence score by linearly
decomposing the pre-activation prediction of test
example with regard to each training instance. With
the influences scores, the training data are ranked
accordingly and the top ranked instances are iden-
tified as evidences.

Evaluation of attribution methods. With the
advancement of attribution methods, evaluation
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of these methods gradually becomes increasingly
significant. For FA methods, many datasets with
human-annotated evidences have been published
for evaluation (DeYoung et al., 2020; Mathew et al.,
2021; Camburu et al., 2018; Rajani et al., 2019;
Wang et al., 2022). Meanwhile, many studies
give their views on the properties that an evidence
should satisfy, such as compactness and sufficiency
(Lei et al., 2016; DeYoung et al., 2020), comprehen-
siveness (Kass et al., 1988; Yu et al., 2019), plau-
sibility and faithfulness(Ding and Koehn, 2021;
Jacovi and Goldberg, 2020). But for IA methods,
there is no manually annotated evaluate datasets,
and there are few evaluation metrics. Hanawa et al.
(2021) proposes a randomized-test and two heuris-
tics to evaluate the IA methods. Karthikeyan and
Søgaard (2021) points out the illness of previous
metrics and propose to evaluate by detecting poi-
soned training examples. Pezeshkpour et al. (2021)
analyzes the correlation of different IA methods
and makes comparison according to the prediction
difference by removing the identified evidences
and a randomization test. The above evaluations
of IA methods consider solely one or two perspec-
tives. A comprehensive evaluation covering multi-
ple perspectives is an indispensable necessity for
IA methods.

3 Preliminaries

Firstly, we introduce background knowledge that is
used in the later sections. Since most of the exist-
ing IA methods are conducted on the classification
tasks, we mainly focus on text classification tasks.
Given a training dataset D = {xi, yi}i=1,2,...,n for
a task, where xi is the input sentence or sentence
pair and yi is the label, we train a classification
model Θ. We denote the learned representation of
xi as fi and the classifier linear layer as θ. Given
test examples {xt}t=1,2,...,m, IA methods quantify
the influence score of each training data xi on the
prediction of each testing example xt, denoted as
score I(xi, xt). For each test example xt, the topk
training instances with the greatest influence scores
are selected as the evidences {x̂t,j}j=1,2,...,k.

4 IAEval

IAEval covers four significant requirements for IA
methods including sufficiency, completeness, sta-
bility and plausibility. While these requirements
have been discussed for FA (DeYoung et al., 2020;
Wang et al., 2022), we conduct the optimization

to tailor them for IA for the first time. We refine
their definition and design novel metrics for mea-
surement. We describe in detail each requirement
as well as the corresponding metrics as follows.

4.1 Sufficiency

Definition. The selected evidence are sufficient
if they contain enough information for model to
make the correct prediction. In other words, the
model can make the same prediction only based on
evidences as based on all training instances.

Metrics. Given m test examples, we use the con-
sistency between the prediction ŷt supported by
the selected evidences and the prediction ỹt sup-
ported by the full training dataset to measure the
sufficiency of the selected evidences. Specially, we
train two models, one is based on evidences, and
the other is trained on full data. The sufficiency
score (denoted as S%) is shown in Equation 1:

S% =
1

m

m∑

t=1

I(ŷt = ỹt)× 100%, (1)

where I equals to 1 only if ŷt = ỹt. The higher the
S% is, the more sufficient the evidences are.

We also calculate the consistency between two
prediction probabilities obtained by two models:
p̂tj and p̃tj . We compute the Euclidean distance
and cosine distance between two probabilities as
shown in Equation 2 and 3; Meanwhile, we use
pdiff to measure the difference between them in
Equation 4. Lower distance and difference scores
imply higher sufficiency.

diseuc =
1

m

m∑

t=1

∥p̂t − p̃t∥2 (2)

discos =
1

m

m∑

t=1

(1− cos(p̂t, p̃t)) (3)

pdiff =
1

m

m∑

t=1

p̃t,ỹt − p̂t,ỹt (4)

4.2 Completeness

Definition. The selected evidences are complete
if all the instances that can support test example’s
prediction are selected, i.e., the remaining train-
ing data can not support the prediction of the test
example.
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Metrics. We sort the training instances accord-
ing to their influence scores, and then divide the
training data evenly into N pieces. We then sample
the last nsub examples of a data piece as the sub-
set as well as the top nsub examples of the whole
training data. As a result, we get N+1 subsets of
data representing different influence score rankings.
The influences scores in i-th subset are higher than
those in the (i+ 1)-th subset. Then for each subset,
we train a model and get prediction for test example
with the model. We calculate the sufficiency score
S% of each sampling point and report the curve of
the S% with regard to the influence score rankings.
To be more concise, we quantify the completeness,
denoted as C%, by calculating the maximum dif-
ference between the average S% on both sides of a
certain division point in Equation 5:

C% = max
1≤n≤N

{ 1
n

n∑

u=1

Su%−

1

N + 1− n

N+1∑

v=n+1

Sv%}, (5)

where Su% refers to the S% of the u-th subset.
Higher C% implies better completeness.

4.3 Stability

Definition. An attribution method is stable if it
provides similar evidences for similar inputs.

Metrics. We use the similarity of evidences for
similar test examples as the metric for stability. We
calculate the instance-level overlap rate, denoted as
O%, between the evidences {x̂t,j} of topN most
similar test example pairs in Equation 6:

O% =
1

N

∑

(t1,t2)∈topN

|{x̂t1,j} ∩ {x̂t2,j}|
|{x̂t1,j}|

×100%.

(6)
Following Pezeshkpour et al. (2021), for the

topN most similar test example pairs, we also re-
port the Spearman correlation between the influ-
ence rankings over a fixed subset of training set
induced from each pair. Higher overlap rate and
Spearman correlation imply higher stability.

4.4 Plausibility

Definition. Plausibility requires that the identi-
fied evidences are in line with human cognition and
can be understood and accepted by humans.

Metrics. The plausibility measures how much
the rationales provided by the model align with
human-annotated rationales. The golden instance-
level evidences are difficult for annotating, as it is
unrealistic to annotate an influence score for each
training data for each test example, especially with
a large training set. To simplify the measure of
this evaluation, we propose two metrics for plau-
sibility: semantic similarity and pattern similarity
between the selected evidence and the test example.
We use the cosine similarity of hidden represen-
tations to measure semantic similarity (Reimers
and Gurevych, 2019). Meanwhile, we use Leven-
shtein distance (Levenshtein, 1966) between the
dependency trees of the evidence and the test ex-
ample to measure the pattern similarity (McCoy
et al., 2019). Higher cosine similarity and lower
Levenshtein distance imply higher plausibility.

5 Preparations

5.1 Evaluated Methods

In this work, we evaluate three representative IA
methods: Feature Similarity, Gradient Similarity
(Charpiat et al., 2019) and Representer Point Selec-
tion (Yeh et al., 2018). We briefly describe their
main ideas and the calculation of influence scores.

Feature Similarity (FS) A simple assumption
is that higher feature similarity between exam-
ples reflects higher influence. We consider the
cosine similarity between the learned representa-
tion fi and ft and the influence score is defined as:
I(xi, xt) = cos(fi, ft).

Gradient Similarity (GS) Charpiat et al. (2019)
pointed out that the similarity of gradients between
two examples reflected how much the change in
one would affect the other. We consider the cosine
similarity of the gradients ∇θL(xi, yi) of the clas-
sifier linear layer θ. The influence score is defined
as: I(xi, xt) = cos(∇θL(xi, yi),∇θL(xt, yt)).

Representer Point Selection (RPS) Yeh et al.
(2018) proved that the pre-activation predictions
of test example Φ(xt,Θ) can be decomposed
with regard to each training data: Φ(xt,Θ) =
Σn
i=1αik(xi, xt). Such decomposition is deemed

as the influence of each training data on the
test example. The influence score is defined as:
I(xi, xt) =

−1
2λn

∂L(xi,yi)
∂Φ(xt,Θ)f

T
i ft.

11969



5.2 Setup

Datasets. We conduct experiments on sentiment
analysis dataset SST-2 (Socher et al., 2013) and
natural language inference dataset MNLI (Williams
et al., 2018). We also experiment on two Chinese
datasets: sentiment analysis dataset Chnsenticorp
(Tan and Zhang, 2008) and similarity alignment
dataset LCQMC (Liu et al., 2018). The statistics of
these datasets are listed in Appendix A.

Models. We fine-tune the classification models
based on RoBERTa-base (Liu et al., 2019) for two
English datasets and Chinese RoBERTa-wwm-ext
(Cui et al., 2020) for two Chinese datasets. All our
experiments are conducted with 5 different seeds
and the average results are reported.

Test Examples. Pretrained models like
RoBERTa (Liu et al., 2019) possess a certain
degree of zero/few-shot capability. They are able
to predict some examples correctly without or
with very few training examples. As a result,
the prediction of such simple examples may
not depend on any training example and the
corresponding evidences are probably meaningless.
We avoid to evaluate on these simple data. To
filter out them, we randomly sample 100 training
examples, fine-tune models accordingly, and
make predictions on the dev set. We repeat the
procedure for 5 rounds, getting 5 different models
and predictions. The examples with 4 and more
correct predictions in the 5 rounds are considered
simple and neglected. We then randomly sample
100 examples from the remaining data in dev set as
our test examples.

6 Experiments

With our evaluation scheme IAEval, we make a
comprehensive comparison among the aforemen-
tioned IA methods from four distinct perspectives.
We report the performance of these methods with
regard to each important requirements in Table 1.

6.1 Main results

Sufficiency. We train models with top 100 ranked
evidences identified by each method as well as 100
randomly sampled training data and make predic-
tions. We compute our metrics for each models
with the model that is trained with the full training
data. We report results in Table 1a. All three meth-
ods perform remarkably better than random sam-
pling, which indicates our metrics for sufficiency

are effective and can better distinguish IA methods
from random test. FS and GS perform fairly close
across four datasets, while RPS performs slightly
inferior to them on three datasets. For LCQMC,
RPS performs much worse on all four metircs.

Completeness. For each test example, we extract
10 examples for each subset and train models. We
then calculate S% of every rank point as in Section
4.2. We show the curve of S% with regard to the
rankings in Figure 2. A complete IA method should
perfectly separate the whole dataset into two parts.
One of them contains all of the evidences while
the other one contains few or zero evidences. The
perfect completeness curve should look like a ’z’
shape, which reaches 100% at the beginning, drops
dramatically to 0% at a demarcation point and re-
mains 0% to the end. Figure 2 clearly shows that
the curve of FS is more close to perfect. GS has a
good curve overall, but there remains flaws at the
bottom part. RPS performs worse but still normal
on English datasets, and it looks like out of shape
on Chinese datasets. The above observations can
also be validated through C% in Table 1a. While
FS achieves higher C% than GS, the score of RPS
is significantly lower than the other two methods
except on MNLI where all three methods achieve
relatively close scores.

Stability. We select the top 100 most similar
pairs from our test examples according to the co-
sine similarity of the hidden representations. The
cosine similarity is calculated with sentence-BERT
(Reimers and Gurevych, 2019) on English datasets
and Text2vec1 on Chinese datasets. We report the
overlap rate of their top 1000 ranked evidences in
Table 1b. A fixed data subset of size 1000 are sam-
pled from the training set. For each test pair, the
Spearman correlation between the influence rank-
ings is calculated on this subset and the average
results are reported. We observe that under the
Spearman correlation metric, FS and RPS exhibit
relatively close performance, while GS performs
the worst, indicating its inferior stability compared
to the other two methods. Besides, FS and GS have
similar overlap rate for all the datasets while RPS
achieves an abnormally high score.

Plausibility. For each text example, we select
top 1000 evidences, and report the average cosine
similarity of their representations and Levenshtein

1https://github.com/shibing624/text2vec
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SST-2 MNLI
Method S% diseuc ↓ discos ↓ pdiff ↓ C% S% diseuc ↓ discos ↓ pdiff ↓ C%

FS 98.6 0.426 0.091 0.301 91.7 98.4 0.597 0.202 0.484 90.6
GS 99.8 0.432 0.094 0.302 87.7 98.2 0.593 0.206 0.481 87.6

RPS 99 0.470 0.116 0.327 69.5 98.4 0.616 0.222 0.498 92.6
random 28 0.701 0.312 0.495 N/A 32.6 0.760 0.395 0.616 N/A

Chnsenticorp LCQMC
Method S% diseuc ↓ discos ↓ pdiff ↓ C% S% diseuc ↓ discos ↓ pdiff ↓ C%

FS 100 0.094 0.004 0.053 90.6 97.8 0.110 0.007 0.045 75.0
GS 100 0.104 0.005 0.052 88.6 98 0.110 0.008 0.047 64.1

RPS 93 0.213 0.035 0.146 58.5 65 0.478 0.206 0.323 30.4
random 55.8 0.495 0.250 0.438 N/A 47.4 0.620 0.280 0.427 N/A

(a) Sufficiency and Completeness

SST-2 MNLI Chnsenticorp LCQMC
Method Spearman O% Spearman O% Spearman O% Spearman O%

FS 0.0478 10.33 0.0292 0.31 0.0278 30.53 0.0399 1.20
GS 0.0299 10.34 0.0265 0.04 0.0253 30.68 0.0378 1.20

RPS 0.0400 65.95 0.0314 31.78 0.0330 57.40 0.0322 44.03

(b) Stability

SST-2 MNLI Chnsenti. LCQMC
Method Cosine. Leven. ↓ Cosine. Leven. ↓ Cosine. Leven. ↓ Cosine. Leven. ↓

FS 0.3045 19.15 0.1556 35.71 0.6110 85.61 0.4060 12.53
GS 0.3036 19.14 0.1528 35.80 0.6108 85.60 0.4059 12.54

RPS 0.1454 17.65 0.1291 37.19 0.5750 91.24 0.3654 12.66

(c) Plausibility

Table 1: The overall performance of the evaluated IA methods under IAEval. ↓ means the smaller the better.
The best results in the corresponding regime are shown in bold. a) Sufficiency performance and completeness
performance. C% quantifies the completeness performance in addition to the completeness curves in Figure 2. All
the reported results are averaged over 5 different runs. b) Stability performance. c) Plausibility performance.
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Figure 2: Completeness performance of evaluated IA methods. We report the S% of each rank point on the four
evaluated datasets. All the reported results are averaged over 5 different runs.
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(b) Feature Dot-product

Figure 3: The distribution of a) the scale of the gradients
of the loss function with respect to the pre-activation
logits of each training data. and b) the averaged scale of
feature dot-products on LCQMC.

distance of their dependency trees in Table 1c. The
cosine similarity is calculated in the same way as
in the stability part. The dependency parsing is
done with CoreNLP (Manning et al., 2014) on En-
glish datasets and DDParser (Zhang et al., 2020)
on Chinese datasets. As shown in Table 1c the
performance of FS and GS is relatively close un-
der both metrics, while RPS performs worse than
the other two methods except for the Levenshtein
distance in SST-2. Such anomaly may be due to
the incompleteness of sentences in SST-2 and the
dependency is relatively broken compare to other
datasets.

6.2 Comparison of methods
After the evaluation with IAEval, we claim that FS
performs relatively better among the evaluated IA
methods. GS is inferior to FS in completeness and
stability. RPS performs significantly worse than
expectation. The poor performance and abnormal
pattern exhibited by RPS on our metrics prompt us
to undertake an in-depth analysis, which leads us
to a reasonable explanation in Section 7.1 that can
account for its underperformance and anomaly.

7 Analysis

In this section, we first provide an explanation
for the poor performance and anomaly of RPS on
LCQMC. To illustrate the robustness of IAEval, we
conduct ablation studies with regard to evidence
size. Furthermore, we validate the effectiveness of
IAEval with an empirical analysis.

7.1 Why RPS has a poor performance?
We investigate the reason for the poor perfor-
mance and abnormally high overlap rate. First
let’s recall the influence score of RPS: I(xi, xt) =
−1
2λn

∂L(xi,yi)
∂Φ(xt,Θ)f

T
i ft. Apart from constants, it consists

of two components. One is the gradient of the loss
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Figure 4: The S% of the evaluated methods based on
different evidence sizes on LCQMC.

function with respect to the pre-activation logits
of each training data. The other is the feature dot-
product of training instances and test example. We
discover that the gradient part plays a dominant role
in the influence score as shown in Figure 3. The
majority of feature dot-products have the largest
scale: 102, and they are correlated with the test
example. However, only a few amount of gradients
have the largest scale: 10−6, and it is noteworthy
that the gradients are independent of the test ex-
amples. As a result, when we multiply these two
factors, those small amount of training data with
high gradients will constantly get a high influence
score regardless of the test example. This explains
why the identified evidences by RPS have a sig-
nificant high overlap rate, as shown in Section 6.1.
We examined the top 1000 evidences of RPS and
discovered that data with gradient of scale 10−6

dominant the evidences with a proportion of 98%.
Such observation verifies our explanation.

Furthermore, we posit high gradient may be at-
tributed to annotation issues. We randomly sam-
pled 100 training data with gradient of scale 10−6

and examined the annotation. We find that 26% of
the sampled data are labeled incorrectly, leading
to the poor performance of RPS. We also exam-
ined the annotation of 100 training data randomly
sampled from whole training data. The annotation
error rate is 5%. Such observation inspires us that
RPS can be used to extract illness data, helping
with annotation checking.

The overall explanation is derived from a com-
prehensive assessment of performance across four
perspectives. Without such a multitude of evalu-
ation angles, explanations for the issue would be
partial and the limitations would not be unveiled.

7.2 The influence of the size of evidence set

We analyze whether the size of evidence set affects
IAEval. The conclusions are consistent on all the
datasets and we report the results on LCQMC.
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Figure 5: Completeness curves of the evaluated methods with different evidence sizes on LCQMC.

O% Cosine Similarity

Method 10 50 100 500 1000 10 50 100 500 1000
FS 0.00 0.04 0.04 0.54 1.20 0.4104 0.4063 0.4057 0.4060 0.4060
GS 0.00 0.02 0.04 0.54 1.20 0.4094 0.4058 0.4053 0.4058 0.4059

RPS 29.60 31.92 35.04 41.10 44.03 0.3710 0.3718 0.3701 0.3657 0.3654

Table 2: The results of stability and plausibility of the evaluated methods with different evidence size on LCQMC.

For sufficiency, we report the S% of the evalu-
ated methods based on different evidence sizes in
Figure 4. The results of FS and GS are relatively
constant across different evidence sizes while the
RPS meets a performance drop as the evidence size
grows. Such drop could be attributed to the grow-
ing quantity of the training data with high gradient
as in Section 7.1 and the predictions will be bi-
ased towards them. As to completeness reported in
Figure 5, the completeness curves of the evaluated
methods are similar across different evidence sizes.
We also report the overlap rate for stability and
cosine similarity for plausibility with different evi-
dence sizes in Table 2 and the results are consistent
across different evidence sizes.

To summarize, the above observations illustrate
that IAEval is consistent and robust with regard to
the evidence size.

7.3 Validation of effectiveness

To validate the effectiveness of IAEval, we con-
duct an empirical analysis by simulating training
data reduction. We assess the quality of the ex-
tracted evidences of each IA method for training
data reduction and determine if it is consistent with
the conclusion from IAEval. We build a target set
by randomly sampling 500 dev examples for each
dataset and build a source set by combining the
top10 evidences of each target example for each
method2. The quality of the evidences from each
method is measured by the accuracy on the target
set, with a model fine-tuned on the corresponding

2We do not eliminated duplicates and the size of every
source set is constantly 5000.

SST-2 MNLI Chnsenti. LCQMC Avg.
Full 95.0 86.4 93.4 86.0 90.2
FS 91.6 80.8 92.8 84.8 87.5
GS 92.6 79.2 92.2 84.6 87.1

RPS 45.0 31.8 38.0 50.4 41.3

Table 3: The accuracy on the target set. Full represents
the fully-trained model. The best results of the evaluated
methods are shown in bold.

source set. We report the results of the evaluated
methods in Table 3, as well as the accuracy of the
fully-trained model.

As Table 3 shows, the evidences selected by FS
and GS are high-quality and have a competitive
performance with the full training data, while RPS
performs much worse. Such observation is consis-
tent with the conclusion of IAEval, verifying its
effectiveness. The bad performance of RPS may be
due to the duplication and relatively bad quality of
its extracted evidences as in Section 7.1. Since the
high-quality of evidences obtained by FS and GS,
we can choose more representative and effective
training instances for the given test set, to reduce
annotation costs and training time.

8 Conclusion

We propose IAEval, the first systematic and com-
prehensive evaluation scheme for IA methods. We
design novel metrics to quantify and measure four
important requirements for the first time, including
sufficiency, completeness, stability and plausibility.
Extensive experiments validate the effctiveness of
IAEval. With IAEval, researchers can make com-
prehensive comparison among IA methods, gain
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a thorough understanding of their strengths and
weaknesses and choose the most suitable methods
for specific applications.

Limitations

We conduct all the experiments on text/text pair
classification tasks while the performance of IA
methods on other NLU tasks such as Question An-
swering are still unstudied. We evaluate three rep-
resentative IA methods and leave the others for
future work because of the high computational cost
(influence functions (Koh and Liang, 2017)) or the
similarity of methods (dot-product v.s. cosine sim-
ilarity). Moreover, our experiments are based on
the base-size models while the sizes of models are
extremely large nowadays. The performance of
IA with LLMs may be a possible future research
directions.
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The statistics of the datasets we evaluate on.
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We also conduct experiments to show the robust-
ness of IAEval across models in the same language.
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Dataset #Train #Dev #Test
SST-2 (Socher et al., 2013) 67,349 872 1,821
MNLI (Williams et al., 2018) 392,702 9,815 9,796
Chnsenticorp (Tan and Zhang, 2008) 9,600 1,200 1,200
LCQMC (Liu et al., 2018) 238,766 8,802 12,500

Table 4: Statistics of the evaluated datasets. We rank the influence scores over the whole training set.

et al., 2018) and RoBERTa-base(Liu et al., 2019) on
English; Ernie-3.0(Sun et al., 2021) and RoBERTa-
wwm-ext(Cui et al., 2020) on Chinese in Table 5.
The consistent results across models indicate the
robustness of IAEval across models in the same
language.
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SST-2 LCQMC
BERT Ernie

Method S% diseuc ↓ discos ↓ diff ↓ C% S% diseuc ↓ discos ↓ diff ↓ C%
feature 98.4 0.291 0.042 0.206 84.8 99.6 0.219 0.022 0.146 79.8

gradient 99.8 0.288 0.04 0.2 57.5 98.8 0.223 0.024 0.15 65.5
RPS 80.4 0.515 0.178 0.36 46.3 90.1 0.403 0.09 0.283 31.7

RoBERTa RoBERTa
Method S% diseuc ↓ discos ↓ diff ↓ C% S% diseuc ↓ discos ↓ diff ↓ C%
feature 98.6 0.426 0.091 0.301 91.7 97.8 0.11 0.007 0.045 75.0

gradient 99.8 0.432 0.094 0.302 87.7 98 0.11 0.008 0.047 64.1
RPS 99.0 0.47 0.116 0.327 69.5 65 0.478 0.206 0.323 30.4

Table 5: Sufficiency and completeness performance of different models in the same language.
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