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Abstract

Current abstractive summarization models of-
ten generate inconsistent content, i.e. texts that
are not directly inferable from the source docu-
ment, are not consistent with respect to world
knowledge, or are self-contradictory. These
inconsistencies motivate a new consistency tax-
onomy that we define as faithfulness, factual-
ity, and self-supportiveness. However, most
recent work on reducing inconsistency in docu-
ment summarization only focuses on faithful-
ness detection and correction while ignoring
other inconsistency phenomena, which limits
the model’s scalability. To improve the general
consistency we introduce EnergySum, where
we apply the Residual Energy-based Model by
designing energy scorers that reflect each type
of consistency. These energy scores are utilized
in candidate re-ranking during the sampling
process. Experiments on XSUM and CNN/DM
datasets show that EnergySum mitigates the
trade-off between accuracy and consistency.

1 Introduction

While performing well in terms of overlap-
based metrics like ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2020), current abstrac-
tive summarization methods often generate incon-
sistent content due to the inherently noisy dataset
and the discrepancy between maximum likelihood
estimation based training objectives and consis-
tency measurements. Inconsistency content in ab-
stractive summarization has different interpreta-
tions, including text that is not directly inferable
from the source document, is not factual with re-
spect to world knowledge and commonsense, or is
self-contradictory. We formalize the categorization
of consistency into faithfulness, factuality, and
self-supportiveness. Table 1 illustrates different
types of consistency errors.

Most previous methods improve consistency in
document summarization by filtering out noisy

training samples (Kang and Hashimoto, 2020), ap-
plying contrastive learning (Cao and Wang, 2021),
post-editing (Cao et al., 2020), etc., with a lim-
ited scope of consistency to faithfulness. How-
ever, addressing inconsistency solely in terms of
faithfulness is inadequate. Unlike extractive meth-
ods, abstractive summarization introduces new con-
tent into the summary that is not directly copied
from the source document and is not necessarily
irrelevant. Hence, detecting and alleviating in-
consistency calls for the introduction of a larger
reference corpus alongside the source document.
Factuality compares the generated content against
world knowledge, while self-supportiveness veri-
fies whether the generated sentence is consistent
with its preceding one.

In addition, consistency is measured on the en-
tire prediction sequence while existing summa-
rization objectives evaluate conditional distribu-
tions for individual tokens and lack global con-
trol over predictions. These motivate us to apply
the Residual Energy-based Model (REBM) (Deng
et al., 2020) framework to document summariza-
tion, which jointly trains a summarizer and a dis-
criminator that learns to assign high scores to con-
sistent summaries and low scores to inconsistent
ones. The advantage of the energy-based meth-
ods (He et al., 2021) is that they score the entire
input simultaneously and avoid local normalization
traps, offering a natural solution to address this
issue.

Therefore, we introduce EnergySum that adapts
the REBM framework for improving consistency.
We design the energy functions that reflect each
type of consistency and are agnostic to summa-
rization model instances. We propose joint infer-
ence where energy scorers cooperate with decod-
ing searching strategies in the candidate re-ranking
step. In summary, our contributions include:

• We formalize the categorization of consis-
tency in document summarization into faith-
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Source document

Oscar-winning actress Angelina Jolie is visiting Iraq to boost what she sees as lagging efforts to deal with the problems of 2
million "very very vulnerable" internally displaced people in the wartorn country... More than 4.2 million Iraqis have fled
their homes, around 2 million to neighboring states, mostly Syria and Jordan...

Consistency type Example summary

Faithfulness: The text is directly inferable from the source
document.

... More than 5 million Iraqis have fled homes, 2 million to
neighboring states ...

Factuality: The text contains hallucinated but true content
referring to world knowledge.

American actress Angelina Jolie visits Iraq to boost efforts to
help internally displaced refugees...

Self-supportiveness: The text does not contain self-
contradictory errors.

... 2 million Iraqis have fled to neighboring states. Another 2
million are displaced domestically inside Syria and Jordan...

Table 1: Example summaries with different types of inconsistency. The errors in the sample summaries are in red.

fulness, factuality, and self-supportiveness.
• We propose the EnergySum framework,

which includes consistency-constrained en-
ergy scorers and joint inference. We are the
first to introduce energy-based methods to con-
sistent document summarization.

• We conduct experiments on XSUM and
CNN/DM datasets to validate the effective-
ness of EnergySum.

2 Related Work

Recent work in consistent abstractive summariza-
tion has been looking into reducing entity-based
hallucinations. Nie et al. (2019) reduce hallucina-
tions by integrating a language understanding mod-
ule for data refinement with self-training iterations.
Zhao et al. (2020) reduce quantity hallucination by
verifying quantity entities and promoting less hal-
lucinated summaries. Kang and Hashimoto (2020)
propose a loss truncation training algorithm that
filters out noisy training samples which may lead
to hallucination. Cao et al. (2022) detect factual
hallucinations by utilizing the entity’s prior and pos-
terior probabilities according to the pretrained and
fine-tuned masked language models and use it as a
reward signal in reinforcement learning. Dixit et al.
(2023) propose a candidate summary re-ranking
technique for contrastive summarization training
to improve both faithfulness and summary quality.
Zhang et al. (2023) use Information Extraction (IE)
in a multi-task training manner to improve factual
consistency of multi-document summarization.

The most related work to ours is CLIFF (Cao and
Wang, 2021), which applies contrastive learning
to abstractive summarization by designing nega-
tive sample generation strategies to resemble errors
made commonly by state-of-the-art summarization
models. Though both are training discriminators

on top of decoders with NCE loss, our work differs
in the structure of discriminators, the training loss,
and the inference process.

Correction-based methods are proposed for miti-
gating the trade-off between consistency improve-
ment and ROUGE-based accuracy measurement de-
crease. Cao et al. (2020) propose a post-editing cor-
rector module trained on synthetic examples, where
heuristic transformations are inspired by an error
analysis on reference summaries. Span-Fact (Dong
et al., 2020) is a factual correction model that lever-
ages knowledge learned from Question Answering
models to make corrections in system-generated
summaries via span selection. Zhu et al. (2021)
propose a fact-aware summarization model to inte-
grate factual relations into the summary generation
process and a factual corrector model in the form
of a finetuned denoising auto-encoder.

Automatic consistency evaluation models can be
roughly classified into entailment-based and QA-
based methods. Entailment-based metrics (Kryscin-
ski et al., 2020; Laban et al., 2022; Ribeiro et al.,
2022) train classification models to predict if
the summary is entailed by the source document.
Meanwhile, QA-based metrics (Fabbri et al., 2022;
Scialom et al., 2021; Durmus et al., 2020) gen-
erate questions based on the input summary and
document, then apply QA models to answer the
questions and compare the answers to calculate a
faithfulness score. Chan et al. (2023) propose a
multi-label classification model grounded on se-
mantic role labeling to predict the types of faithful-
ness error in a summary. Ladhak et al. (2022) evalu-
ate effective faithfulness of summarization systems
with a faithfulness-abstractiveness trade-off curve.
Cheang et al. (2023) evaluate and analyze the faith-
fulness of pre-trained summarization models on
dynamically evolving data.
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Figure 1: Overview of EnergySum framework. The
energy scorer is a discriminator consisting of three
consistency-constrained energy functions. During infer-
ence, we re-rank the decoded beam of summaries by
energy scores.

3 Method

In the proposed EnergySum framework, we design
energy scorers that correlate each type of consis-
tency and integrate energy scores in candidate re-
ranking during sampling.

3.1 Background: Energy-Based Models

Energy-Based Model (EBM) (LeCun et al., 2006)
is a general learning framework that assigns an un-
normalized energy score to any given input. EBM
has been applied in machine translation to solve the
discrepancy between the training objective (Maxi-
mum Likelihood Estimation) and the task measure
(BLEU) (Bhattacharyya et al., 2021), and in im-
proving calibration in natural language understand-
ing (He et al., 2021).

Residual Energy-Based Models (R-
EBMs) (Deng et al., 2020) are introduced
to text generation, which use EBM to learn from
the residual errors of an auto-regressive generator
to reduce the gap between the model and data
distributions: Pθ ∝ PLM (x) exp(−Eθ(x)) ,
where PLM is a locally normalized language
model and Eθ is the energy function. Li et al.
(2021) further applies R-EMBs to end-to-end
speech recognition.

Energy functions have also been used as con-
straints in text generation. The COLD decoding
framework (Qin et al., 2022) unifies constrained
generation by specifying constraints through an
energy function, then performing efficient differ-
entiable reasoning over the constraints through
gradient-based sampling.

3.2 Energy Functions for Consistency

Energy functions solve the discrepancy between
MLE-based training objectives and consistency
measurements. General-purpose energy function
designs are usually as simple as the mean pool-
ing over the last encoder/decoder layer logits. To
improve consistency, we propose three energy func-
tions and use their weighted sum as the final energy
function in the Noise Contrastive Estimation loss.

E(x, y, ŷ) = λ1Ei(y, ŷ) + λ2Ei(x, ŷ) + λ3Ei(ŷ)

where x is the input document, y is the reference
summary, and ŷ is the generated summary.

Faithfulness. Following Qin et al. (2022) we
use EISL (Edit-Invariant Sequence Loss) (Liu et al.,
2022) as a similarity measure. This n-gram match-
ing function can be seen as a differentiable approx-
imation to the BLEU-n metric. Its computation is
essentially a convolution operation on the candidate
sequences using target n-grams as kernels.

E1(y, ŷ) = EISL(y, ŷ)

During training, we use the reference summary
to measure faithfulness for stable and efficient train-
ing. However, it cannot avoid dataset noise from
annotation as it is based on the assumption that
the reference summary is correct. Also, the gold
summary is not available during inference.

Factuality. Cao et al. (2022) propose to detect
factual hallucinations by utilizing the entity’s prior
and posterior probabilities according to the pre-
trained and fine-tuned masked language models as
classifier inputs. It is still under exploration how
these two distributions work together for factual
hallucinations. To apply this measure, we first initi-
ate and freeze the pretrained BARTlarge model as
the prior model. A classifier γ takes the concatena-
tion of outputs from the prior and posterior models
as its input.

E2(x, ŷ) = γ(pprior(ŷ|x), pposterior(ŷ|x))

Self-supportiveness. A non-linear layer ϕ
on top of the decoder outputs detects self-
supportiveness in the generated summary.

E3(ŷ) = ϕ(p(ŷ))
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Dataset Model ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE FEQA ENTFA DAESS

XSUM

Human - - - - 18.95 72.27 -
BARTlarge 43.64 20.04 34.34 91.56 29.13 68.38 -
FASUM 30.61 10.06 23.97 88.53 18.38 55.83 -
FASUM+FC 30.53 10.00 23.89 88.58 19.77 54.91 -
Losstrunc 41.73 17.88 32.68 91.24 28.94 66.31 -
CLIFF 42.07 18.50 32.82 91.29 25.28 83.87 -
EnergySum 41.69 18.12 32.98 91.44 30.26 68.45 -

CNN/DM

Human - - - - 30.94 91.46 99.95
BARTlarge 43.86 21.07 40.74 88.70 18.06 63.50 99.92
FASUM 40.83 17.94 37.78 88.08 18.75 61.23 99.89
FASUM+FC 40.68 17.77 37.63 88.24 18.74 60.53 99.89
Losstrunc 36.37 17.35 34.21 87.72 11.58 65.90 99.65
CLIFF 42.15 19.82 38.91 87.95 21.33 64.90 99.86
EnergySum 43.38 20.45 40.27 88.27 41.92 66.43 99.89

Table 2: Results(%) on XSUM and CNN/DM datasets. ROUGE and BERTSCORE indicate accuracy. FEQA,
ENTFA, and DAESS evaluate faithfulness, factuality, and self-supportiveness, respectively. For all scores, the higher
the better.

3.3 Training Loss
The pretrained language model is fine-tuned using
the cross entropy loss LCE :

LCE = −
∑

yi log ŷi

For stable and effective training of the discrim-
inator, we combine the two squared hinge loss
LE (Liu et al., 2020) and the similarity-based NCE
loss Lsim (Cao and Wang, 2021).

LE = Ex+(max(0, Êθ(x+))−m1))
2

+ Ex−(max(0,m2 − Êθ(x+)))2 (1)

m1 and m2 are margin hyper-parameters with
which the loss function penalizes samples with en-
ergy Ê ∈ [m1,m2].

Lsim = −E log
exp(sim(hi, hj))∑
exp(sim(hi, hk))

In the above loss, P and N are the positive sample
set and the negative sample set, yi, yj ∈ P, yj ̸=
yi, yk ∈ P ∪ N, yk ̸= yi. hi, hj , hk are repre-
sentations for summaries yi, yj , yk, and sim(·, ·)
calculates the cosine similarity between summary
representation.

The final training loss is a combination of the
above losses:

L = LCE + λELE + λsimLsim

3.4 Joint Inference
Previous work (Deng et al., 2020) suggests that
a sample-resample procedure is similar to exact

sampling from the joint distribution. Therefore,
we modify the sampling process by inserting the
energy scores into the candidate re-ranking step.

In decoding, a batch of sentence candidates is
generated and scored for each input. We replace the
generation probability scores with energy scores
for the candidates and re-rank the batch. Since
beam search is more likely to generate similar re-
sults, where re-ranking takes less effect, we select
diverse beam search (Vijayakumar et al., 2016) as
the default searching strategy.

4 Experiments

4.1 Setup

Datasets and Baselines. We compare our
method with BARTlarge (Lewis et al., 2020),
LOSSTRUNC (Kang and Hashimoto, 2020), FA-
SUM and its variant FASUM+FC (Zhu et al.,
2021) and CLIFF (Cao and Wang, 2021) on
XSUM (Narayan et al., 2018) and CNN/DM (Nal-
lapati et al., 2016) datasets. Human baseline refers
to the human-written reference summaries.

Evaluation Metrics. We evaluate accu-
racy with ROUGE (Lin and Hovy, 2003) and
BERTScore (Zhang et al., 2020). For faithfulness
and factuality, we measure with FEQA (Durmus
et al., 2020) and ENTFA (Cao et al., 2022), re-
spectively. Since there is no existing metric for
self-supportiveness, we propose DAESS, which
splits the multi-sentence summary and adapts
DAE (Goyal and Durrett, 2021) to compare every
pair of sentences in one summary. The summaries
in the XSUM dataset are usually one sentence, so
we only evaluate DAESS on the CNN/DM dataset.
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Implementation Details. We instantiate En-
ergySum and Losstrunc both with the pretrained
BARTlarge model1. The margin hyperparameters
m1 = −10,m2 = −5 in LE are selected by perfor-
mance on the development set.

For FASUM, we evaluate the provided predic-
tion files as the code is not publicly available. Note
that their provided test set file is slightly different
than the standard test set split. For all other experi-
ments, each model is trained for 15000 steps, the
learning rate is set to 1e− 3, the max token in one
batch is set to 4096, the update frequency is 16,
and the optimizer is Adam with 500 warm up steps.
The hyperparameter c in Losstrunc is set to 0.3.

For numerical consistency, all experiment re-
sults are averaged across three random runs. On
average it takes approximately ten hours to train
a model with one Tesla A100 GPU with 40GB
DRAM. Since evaluating FEQA over the whole
test set is time costly, we randomly sample 500
document-summary pairs to calculate the scores.

4.2 Results and Discussion

Table 2 shows that EnergySum improves faithful-
ness with comparable accuracy performance on
both XSUM and CNN/DM compared to BART-
large. All consistency improvement baselines have
lower overlapped-based accuracy than BARTlarge,
showing the trade-off between MLE-based training
and consistency training. Nevertheless, our method
hurts less from such a trade-off and still has com-
parable accuracy performance.

Human-written gold summaries usually repre-
sent the upper bound of the performance. However,
the human baseline has lower FEQA (faithfulness)
performance, indicating the existence of noise in
the dataset. Self-supportiveness scores are all close
to 100%, implying that self-supportiveness is not
a challenging problem for current summarization
systems and also calling for a more fine-grained
evaluation metric.

There is also a trade-off between the sampling
method selection and the overall performance.
Joint inference can only be applied to searching
strategies where the searched candidates are di-
verse, which in general performs worse than regular
beam search.

1https://github.com/facebookresearch/fairseq/
tree/main/examples/bart

5 Conclusion

We propose to apply the Residual EBM framework
with energy scorers and joint inference to improve
consistency in document summarization. Exper-
iments on XSUM and CNN/DM datasets show
that EnergySum mitigates the trade-off between
accuracy and consistency. Direct extensions of this
work include proposing more fine-grained data aug-
mentation strategies and investigating the relation
between prediction certainty and energy scores.

Limitations

This work on consistent document summarization
has limitations in terms of data scope and task con-
figuration. First, EnergySum learns from common
errors simulated by data augmentation strategies,
which could limit its application in more diverse
contexts. Second, EnergySum predicts sentence-
level scores and thus cannot detect span-level errors
or predict error types.

Ethics Statement

The summaries generated by our model may still
contain hallucinations, which may lead to mis-
understandings of the original documents. The
XSUM and CNN/DM datasets used in this study
mainly focus on the news domain, which might in-
troduce biases when applied to documents in other
domains.
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