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Abstract

Data Synthesis is a promising way to train a
small model with very little labeled data. One
approach for data synthesis is to leverage the
rich knowledge from large language models to
synthesize pseudo training examples for small
models, making it possible to achieve both data
and compute efficiency at the same time. How-
ever, a key challenge in data synthesis is that
the synthesized dataset often suffers from a
large distributional discrepancy from the real
task data distribution. Thus, in this paper, we
propose Synthesis Step by Step (S3), a data syn-
thesis framework that shrinks this distribution
gap by iteratively extrapolating the errors made
by a small model trained on the synthesized
dataset on a small real-world validation dataset
using a large language model. Extensive ex-
periments on multiple NLP tasks show that our
approach improves the performance of a small
model by reducing the gap between the syn-
thetic dataset and the real data, resulting in
significant improvement compared to several
baselines: 9.48% improvement compared to
ZeroGen, 2.73% compared to GoldGen, and
15.17% improvement compared to the small
model trained on human-annotated data.1

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al., 2023;
OpenAI, 2023) have shown promising zero-shot
performance on a wide range of tasks, demonstrat-
ing their potential of serving as generalist models.
However, LLMs suffer from efficiency issues due
to large model sizes and high inference latency,
making them hard to deploy in real-world appli-
cations. Therefore, small models trained on task-
specific data are still favored in many resource-
constrained scenarios because they have much

∗ Work done while at exchange at ETH Zürich
1The code and generated data can be found at

https://github.com/RickySkywalker/Synthesis_Step-by-
Step_Official

fewer parameters, are easy to deploy, and perform
well in specific downstream tasks (Xu et al., 2021).

Figure 1: Training and testing accuracy of DistilBert
with ZeroGen (Ye et al., 2022b) on the IMDb dataset
with 200k training datapoints. Also shown are the train-
ing and testing accuracy of the model trained on Gold-
Data. We can see here that ZeroGen’s training accuracy
quickly reaches nearly 100%, but testing accuracy re-
mains low.

However, fitting a small model for a specific
task may require large amounts of human-labeled
data, which is not available in many downstream
tasks and is expensive to annotate. This data ineffi-
ciency problem makes it challenging to fine-tune
a small model. Therefore, a number of distinct re-
search approaches attempt to reduce the amount of
data required for fine-tuning small models on spe-
cific tasks, including knowledge distillation (Hin-
ton et al., 2015; Beyer et al., 2022; Hsieh et al.,
2023; Xu et al., 2020; Zhou et al., 2020; Shrid-
har et al., 2023), data augmentation (DeVries and
Taylor, 2017; Shorten and Khoshgoftaar, 2019; Li
et al., 2022), module replacing (Xu et al., 2020;
Zhou et al., 2023), semi-supervised learning (Chen
et al., 2020; Wang et al., 2021; Smith et al., 2022),
and data synthesis (Anaby-Tavor et al., 2020; Puri
et al., 2020).

In this work, we focus on data synthesis, which
generates data and corresponding labels from
scratch. Unlike semi-supervised learning, which
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Figure 2: Both (a) traditional zero-shot dataset synthesis methods and (b) training small models directly on gold
data do not leverage feedback from the small model trained on the synthesized dataset. In contrast, (c) our approach,
S3, first synthesizes a seed dataset in a zero-shot fashion with rationales (left-hand side). Then, we iteratively reduce
the gap between the synthesized data distribution and the gold data distribution by extrapolating the errors of a small
model trained on the currently synthesized data on a small gold validation set. The additional synthesized data can,
therefore, be considered to be sampled from the difference between the currently synthesized data distribution and
gold data distribution. By mixing it with the currently synthesized data, we can recover the gold data distribution
and therefore improve the performance of a small model trained on the data mixture.

relies on unlabeled data, this approach is simpler
and more efficient, especially when unlabeled data
is scarce. Most existing methods in data synthe-
sis for NLP utilize LLMs to generate an unlimited
amount of training data for training a small model.

Existing dataset synthesis methods typically re-
quire a massive amount of synthesized data to
achieve relatively good performance with a small
model, like in ZeroGen (Ye et al., 2022b), which
sometimes needs as much as 1M records of synthe-
sized data. However, this often results in additional
data synthesis cost and computation costs when
training the small task-specific model.

Intuitively, the quality of the synthesized data, or
the extent to which the synthesized data resembles
the gold task data, is crucial for the small model’s
performance. However, due to the complexity of
specific tasks in the real world, the synthesized data
often suffers from a distribution gap from the real-
world data distribution. This can be clearly seen
in Fig.1. The small model’s training accuracy on
synthesized data is close to 100% but the testing
accuracy on real-world data is still low. In contrast,
the gap between training and testing accuracy is
much smaller when trained on human-annotated
data.

To reduce the distribution gap and improve data

efficiency in dataset synthesis, we propose Syn-
thesis Step by Step (S3), a novel dataset synthesis
framework that reduces the distribution gap in a
data-efficient way by dynamically optimizing the
synthesized dataset. As illustrated in Fig. 2, S3 first
synthesizes a seed dataset with an explain-then-
generate method that first prompts LLMs to gen-
erate rationales for each label and then combines
the generated rationale and task-specific prompts
to generate data points. S3 then refines the seed
dataset by iteratively synthesizing more data by
extrapolating the errors of a model trained on the
seed dataset made on a small validation set, which
we assume is sampled from the real task data dis-
tribution.

We summarize our contribution as follows: (1)
We propose a novel point of view for dynamic
dataset synthesis, which allows for the creation of
training data for smaller models and can be opti-
mized by adding more data; based on this point of
view, we propose the S3 framework that can syn-
thesize and optimize a pseudo dataset using LLM
that can efficiently shrink the distribution gap in
dataset synthesis. (2) We perform a theoretical
analysis for the effectiveness of S3 on reducing
the distribution gap. (3) We perform extensive ex-
periments on three major NLP tasks and obtain
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an average 9.48% improvement compared to Ze-
roGen (Ye et al., 2022b), a representative baseline
for dataset synthesis, using only 30.43% of data on
average.

2 Methodology

We describe the proposed S3 framework in detail in
this section. The key idea of S3 is to first synthesize
a seed dataset by prompting LLMs and then to iter-
atively reduce the distribution gap by extrapolating
errors the small model makes on a small validation
set from the gold data distribution. S3 comprises
the following steps:

1. Seed data generation: We utilize an LLM
to analyze the task we are working on, then
synthesize a list of possible rationales for such
a task. If the task is hard to analyze, we can
skip this step. Then, we combine the synthe-
sized rationales, possible context sentences,
and labels in one prompt to guide the LLM to
synthesize the dataset.

2. Small model training: Train the small model
with the synthesized dataset, then validate the
small model on real-world validation data, and
attain misclassified data of the small model,
use them as errors.

3. Error extrapolation: Use the LLM to extrap-
olate the errors of the small model and synthe-
size additional data using the information in
errors.

4. Combine and Repeat: Combine the addi-
tional dataset and original dataset as a new
synthesized train dataset for the small model,
then repeat steps 2 and 3 for multiple rounds
until the performance of the small model con-
verges.

We first introduce some background and key
notations in Section 2.1. We then describe the al-
gorithms for seed data synthesis and iterative error
extrapolation-based synthesis in Section 2.2 (point
1. above) and Section 2.3 (points 2, 3, 4 above),
respectively. Finally, we give a theoretical interpre-
tation of the proposed method in Section 2.6.

2.1 Background
Following Sharp et al. (2017), we denote the dis-
tribution of human language for the LLM under
prompt input T as PLLM (·|T ). The small model

is a computationally efficient model that will be
trained on our synthesized dataset. In general, the
small model contains much fewer parameters and
is easy to train and deploy in real-world applica-
tions. We denote a small model trained by dataset
Dtrain as f(·|Dtrain).

2.2 Seed Data Synthesis with Rationales

Seed Data is defined as the basic zero-shot synthe-
sized dataset for our S3 framework.

Algorithm 1: Seed data synthesis with ra-
tionales

Input: Y, Tration, T (1)
query,PLLM ,K, k,Nseed

Output: Dseed

1 for each yi ∈ Y do
2 ri ← topK(PLLM (·|Tration(yi))
3 Dseed ← ∅
4 for i in range(Nseed) do
5 ycurr ∼ U1(Y)
6 rcurr ∼ Uk(ri)

7 xcurr ∼ PLLM (·|T (1)
query(rcurr, ycurr))

8 Dseed ← Dseed ∪ {(xcurr, ycurr}

We present the algorithm for seed data synthe-
sis with rationales in Alg. 1. Here, Y denotes the
set of all possible labels in the task we are work-
ing on; Tration(y) denotes label and task descrip-
tive prompt for rationales synthesis; T (1)

query(r, y)
is the data synthesis prompt that wraps the ratio-
nales in r and the label y together to query LLM
for a data point; topK means top-K sampling from
the LLM outputs to obtain the rationale list for
a specific label; Ui(S) means uniformly sample i
non-repeating elements in set S. The resulting seed
dataset is denoted as Dseed = {Xseed,Yseed}.

For instance, for the IMDb (Maas et al.,
2011) dataset, a sentiment analysis dataset on
movie reviews, Tration(yi = positive/negative)
is: "What is the reason that may lead to
a positive/negative movie review." and the
Tquery(rcurr, positive) is: "Now imagine that you
just watched a movie that has great acting, intrigu-
ing plot, and beautiful cinematography. Now you
should write a positive review about this movie."
We use the prompt as an input to the LLM and
obtain the target output as the synthesized pseudo
example. This “explain-then-generate” approach
enables us to generate more diverse, informative,
and realistic examples.
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2.3 Dataset Refinement with Error
Extrapolation

We then describe the Error Extrapolation-based
Synthesis (EES) framework that attempts to itera-
tively reduce the distribution gap by extrapolating
the errors of a small model trained on the currently
synthesized dataset on a small validation set. This
is different from conventional data synthesis meth-
ods, where the synthesized dataset is fixed after
finishing the synthesis process and is used for train-
ing the small model. Specifically, the EES process
extrapolates errors made by small models on the
real-world validation datasets to synthesize some
additional data to fix the error.

We use two different data sources in the EES pro-
cess: the seed dataset (Dseed), and a small human-
labeled, real-world dataset referred to as gold data,
denoted as Dgold. In EES, we first divide the gold
data into a validation dataset D(val)

gold and a testing

dataset D(test)
gold . We use D(val)

gold to find and fix the

distribution gap and use D(test)
gold to judge the perfor-

mance of the small model.

Algorithm 2: Algorithm for Error Extrapo-
lation

Input: Dseed,D(eval)
gold ,D(test)

gold , f,PLLM , R, T (1)
mis

Output: Dtrain

1 D(0)
add ← ∅

2 for q in range(R) do
3 init(f); // reinitialize f (clear

last round’s train)

4 D(q)
train ← Dseed ∪ (∪qi=1D

(i)
add)

5 train(f,D(q)
train)

6 D(q)
mis ← misclass{f(D(eval)

gold |D
(q)
train)}

7 D(q+1)
add ← ∅

8 for each (xmis, ymis) ∈ D(q)
mis do

9 xadd ∼ PLLM (·|T (1)
mis(xmis, ymis))

10 D(q+1)
add ← D(q+1)

add ∪ {(xadd, ymis)}

11 Dtrain ← Dseed ∪ (∪Ni=1D
(i)
add)

We present the whole process of EES in Alg.
2. One round in the for-loop beginning at line 2
denotes one round of EES. R denotes the number
of rounds of EES we want to perform; in our imple-
mentation, we typically do 2 rounds of experiments.
f denotes the small model; D(q)

mis denotes the set of
examples mis-classified by the small model on the

gold validation dataset in the q-th round of EES.
T (1)
mis(xmis, ymis) denotes the prompt used for error

extrapolation. The prompt asks the LLM to syn-
thesize a data point similar to xmis with label ymis.
In our implementation, we use the prompt: "Write
a positive movie review like The movie is great."
D(q+1)

add denotes the q + 1-th additional dataset we
synthesized on LLM based on extrapolating D(q)

mis.
The key steps of the EES algorithm are to

train the small model with the current synthesized
dataset (line 6) and utilize the LLM to extrapolate
the misclassified data to generate more training
data (lines 8-10). This creates a dataset that better
reflects the underlying truth.

In sum, the EES process reduces the distribution
gap by using the misclassified data to model the
distribution gap and using the LLM to sample ad-
ditional data points from it. This idea is similar to
doing optimization on the residuals in the gradient
boosting literature (Friedman, 2002).

2.4 Special process for multi-sentence task

For clarity, we focus on single-sentence tasks in
our algorithm discussed before. When transition-
ing to multi-sentence tasks, small modifications are
necessary. Specifically, for complex tasks such as
question answering, the context sentence can be
excessively long, preventing our prompt from fit-
ting LLM’s input limit. Even when the prompt fits,
generating rationales for each context sentence can
be prohibitively costly. Hence, for these situations,
we resort to a more traditional seed data synthesis
approach.

Specifically, we perform dataset synthesis given
a set of conditional contexts C = c1, · · · , cm (e.g.,
premise in NLI and context & answer in QA task).
We perform dataset synthesis as follows:

1. Uniformly sample the current context ccurr
sentence from C, and current target label
ycurr from all possible labels Y . Com-
bine them into a seed data synthesis prompt
T (2)
query(ccurr, ycurr).

2. Synthesize the target sentence (e.g., hypothe-
sis in NLI and question in QA) from LLM by
T (2)
query(ccurr, ycurr). The synthesized data is

denoted as (ccurr, xsyn, ycurr).

3. Repeat the above steps until we have enough
seed data Dseed = (Cseed,Xseed,Yseed)
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Dataset Prompt
Type

Prompt Label
word (Y)

IMDb
Tration Imagine you are watching a movie; consider <X> reasons that may lead to <Y>

impression of the movie.
positive/
negative

T (1)
query Now imagine that you just watched a movie that has <X>. Now you should

write a <Y> review about this movie.
positive/
negative

T (1)
mis Write a <Y> movie similar to: \n <X> positive/

negative

QNLI
T (2)
query Given an information paragraph: <X> \n Please ask a question that has answers

<Y> the information paragraph
in/ not in

T (2)
mis Given a premise: <X["premise"]> \n And here is a question: <X["question"]>

that the answer of question is <Y> the premise.\nPlease write another question
similar to the given question and have answers <Y> the premise.

in/ not in

RTE
T (2)
query <X> \nBased on the above description, the following sentence is definitely <Y>: correct/

wrong
T (2)
mis <X["premise"]> \nBased on the above description, the following sentence:

<X["Hypothesis"]> is definitely <Y>. Now write a sentence similar to the given
sentence and is definitely <Y> based on the given description.

correct/
wrong

AdQA
T (2)
query Given a context: <X["context"]> \nX<["answer"] is the answer to the following

question:
NA

T (2)
mis Given a context: <X["context"]> \nX<["answer"] is the answer to:

<X["question"]>.\nA question that has the same answer in the context is:
NA

Table 1: Designed prompts for the four datasets. Tration denotes the prompt for the LLM to generate rationales.
T (1/2)
query denotes the prompt for seed data synthesis, and <X> denotes the rationale list or context sentences for the

current seed data example. T (1/2)
mis denotes the prompt for EES, where <X> is the full misclassified example.

For the EES process, in multi-sentence tasks,
we only need to modify the for-loop beginning at
line 8 in Alg. 2 to fit the multi-sentence task. The
changed version of line 8 is shown in Alg. 3.

Algorithm 3: Multi-sentence EES, inner
for-loop

1 for each (cmis, xmis, ymis) ∈ D(q)
mis do

2 xadd ∼ PLLM (·|T (2)
mis(cmis, xmis, ymis))

3 D(q+1)
add ← D(q+1)

add ∪ {(cmis, xadd, ymis)}

2.5 Prompt engineering

The design of prompts can have a huge impact on
the quality of the synthesized dataset. We present
the prompt templates used for generating rationales,
data points, and error extrapolation in Table 1.

2.6 Theoretical Analysis

In this section, we give a detailed analysis of why
our S3 framework can shrink the distribution gap
between zero-shot synthesis and real-world distri-
bution by first clarifying the analysis setup and then

giving an analysis of the distribution gap problem
and the effectiveness of our S3 framework.

We denote the probability space of the data ex-
ample as P = (S,Σ); here, for simplicity, we wrap
all possible elements in a data example into one
variable s ∈ S, and the components in s can be
varied depending on the specific task, for example,
in the text classification task, i.e., s = (x, y) where
x is a piece of text and y is the corresponding label.

We assume that the gold dataset (denoted as
{S(gold)

i }ngold

i=1 ) is obtained by i.i.d. sampling ngold

times from a real-world distribution PD ∈ P . Then,
we also assume the process of obtaining a syn-
thesized data example as an i.i.d sampling from
PLLM ∈ P . In the analysis section, for simplic-
ity, we define PLLM as a distribution over the data
example set S instead of the space of human lan-
guage. This distinction is important because while
text data is in natural language, for many tasks,
labels may not be.

Similarly, we assume that the process of attain-
ing the seed dataset (denoted as {Si}n1

i=1), where
n1 is the number of seed data points, is to draw
n1 i.i.d. samples from our seed data distribution
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P(0)
LLM .
Let us first recall the origin of the distribution

gap problem in dataset synthesis methods: conven-
tional data synthesis methods, as well as the seed
dataset synthesis stage in our approach, sample
data points from a fixed distribution P(0)

LLM . Since
the distribution is fixed and different from the task
data distribution PD, the synthesized dataset suf-
fers from a fixed distribution gap no matter how
much data we synthesize. Therefore, the testing
performance of the small model trained on the syn-
thesized dataset on real task data is bounded by
this gap. Our approach, S3, aims to resolve this
limitation.

Let us assume that the small model perfectly
learns the synthesized dataset distribution. In this
case, the error that the small model makes on the
small gold validation dataset can represent the dis-
tribution gap between PD and P(0)

LLM .
Finally, we argue that a good LLM can perfectly

extrapolate from the errors. This means that the
LLM can synthesize samples from the difference
between two distributions PD − P(0)

LLM . Formally,
the additional data synthesized in each round of the
EES process follows:

Padd := PLLM (·|PD − P(0)
LLM ) (1)

Therefore, by sampling the same number of data
points from Padd and combining them with the
original seed data distribution P

(0)
LLM , the mixed

dataset shall follow the distribution:

P(1)
LLM := p · Padd + (1− p)P(0)

LLM ≈ PD (2)

where p ∈ [0, 1] is the ratio of combination, it
can be intuitively understood as the portion of the
additional dataset and seed dataset. This suggests
that, theoretically, we can recover the gold data
distribution by simply combining the original seed
data and the additional data synthesized via EES.

However, please note that we cannot guarantee
the LLM and the training of the small model are
perfect in real-world scenarios. Therefore, S3 re-
peats this process iteratively to gradually reduce
the distribution gap and optimize the mixed dataset
until convergence.

3 Experiments

We conduct experiments to test the effectiveness
of our approach across three major NLP tasks over
four datasets. We also do a thorough ablation study

(Section 3.4), a transferability study (Section 3.5)
for the S3 framework, and a study on additional
data quality (Section 3.6).

3.1 Setup
3.1.1 Datasets
In this study, we evaluate our S3 on three major
NLP tasks: text classification, Natural Language
Inference (NLI), and Question Answering (QA).
For text classification, we use the IMDb (Maas
et al., 2011) dataset; for the NLI task, we use the
QNLI (Rajpurkar et al., 2016; Wang et al., 2018)
and the RTE (Bentivogli et al., 2009; Giampiccolo
et al., 2007; Haim et al., 2006) dataset; for the QA
task, we use the Adversarial QA (Bartolo et al.,
2020) dataset.

3.2 Baselines
We compare our S3 framework with the following
baselines:

1. ZeroGen: ZeroGen is the basic data synthe-
sis method proposed by Ye et al. (2022b). It
neither uses rationales for data synthesis nor
attempts to reduce the distribution gap. Note
that ZeroGen also uses the same small valida-
tion set for tuning hyperparameters.

2. GoldGen: This baseline extrapolates the en-
tire gold validation data instead of the errors
made by the small model. We further use
this baseline to test the effectiveness of the
error extrapolation idea in the S3 framework.
We keep the scale of synthesized datasets the
same in order to make a fair comparison with
S3.

3. ProGen: This baseline was proposed by Ye
et al. (2022a), like the EES, it also considers
training feedback. However, this framework
is only available for text classification tasks,
and it does not use LLM rationales for data
synthesis.

4. Gold Data: We also include a baseline that
trains the small model on the original gold
data for reference.

3.2.1 Implementation details
This section gives full implementation details of S3
in our experiments. We apply GPT3.5 derived from
(Brown et al., 2020) as the LLM for all the synthe-
sis work, and we use nucleus sampling (Holtzman
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Method Data Size / Results IMDb QNLI RTE Adversarial QA (EM/F1) Average

Gold Data
Data Size 25k 105k 2.5k 30k 40.63k
Results 87.93 88.05 58.12 18.6/29.85 56.51

ProGen
Data Size 100k - - - -
Results 84.12 - - - -

ZeroGen
Data Size 200k 200k 200k 200k 200k
Results 84.28 71.19 59.93 6.33/9.96 46.34

GoldGen
Data Size 25k 150k 30k 80k 61.25k
Results 87.93 78.31 64.25 11.63/23.33 53.09

S3
Data Size 21.2k 168k 33.6k 81.5k 76.08k
Results 89.00 79.92 73.29 12.50/24.38 55.73

Table 2: Main experimental results. All compared methods are evaluated by fine-tuning DistilBERT. The perfor-
mance of fine-tuning the small model on gold data is in gray because it is not directly comparable with other results.

et al., 2019) with a temperature of 0.9 for decod-
ing. We use DistilBERT-base-uncased (Sanh et al.,
2020) provided by the Hugging Face Transform-
ers library (Wolf et al., 2019) as the small model.
We perform hyperparameter tuning on the batch
size, learning rate, weight decay, and the number
of epochs for fine-tuning the small model.

3.2.2 Evaluation Method
For text classification and NLI tasks, we use the
accuracy rate as the evaluation method. For QA
tasks, we use Exact Match (EM) and F1 score as
evaluation methods. To implement the experiment
of S3 method, we utilize the training data from the
original dataset as the gold evaluation data dataset
in EES (i.e., D(eval)

gold ). And we use testing data
from the original dataset to test our model’s perfor-
mance.

3.3 Experimental Results

We present our main experimental results in Table 2.
We can observe that our S3 framework has a huge
improvement (an average improvement of 9.48%)
compared to ZeroGen. The performance gap is
especially large in NLI and QA tasks. Moreover,
we only use an average of 30.43% amount of data
compared to ZeroGen, which can be considered as
a significant improvement. Such an improvement
proves the effectiveness of the initial seed data syn-
thesis method and the idea to keep on optimizing
the data in our S3.

We then compare S3 with the GoldGen base-
line to test the effectiveness of extrapolating the
errors of the small model on the validation set in-

stead of the entire validation set. We find that S3
outperforms GoldGen with an average absolute per-
formance improvement of 2.73%. This confirms
the advantage of error extrapolation over directly
extrapolating gold data.

It is also noteworthy that S3 yields competitive
results compared to directly fine-tuning the small
model on the full gold training data. Specifically,
S3 even outperforms gold data performance on
IMDB and RTE. This confirms the potential of
applying S3 in real-world applications.

3.4 Ablation Study

3.4.1 Ablation of EES
We first ablate the error extrapolation-based syn-
thesis (EES) framework of S3, using only the seed
data synthesized based on Section 2.2. We make
sure that the scale of the training dataset is approx-
imately the same for a fair comparison. The result
can be seen in Table 3. This result proves the ef-
fectiveness of our view of the dynamic dataset and
EES. We find that for more complex tasks like QA
and NLI, our EES framework can give a larger
improvement, which proves the distribution gap
problem and our EES framework’s ability to shrink
this gap.

3.4.2 Ablation of Seed Data Synthesis with
Rationales

We then ablate the use of rationale for dataset syn-
thesis in the S3 framework on the IMDb dataset.
The results are shown in Table 4. We find that us-
ing rationale for dataset synthesis enables the LLM
to generate datasets of higher quality that leads to
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Method IMDb QNLI RTE Adversarial QA

S3 89.00 79.92 73.29 12.50/24.38

w/o EES 86.86 73.70 65.71 8.70/20.03

Table 3: Ablation test results (%) on iterative error ex-
trapolation. The baseline w/o error extrapolation is
fine-tuned on the same amount of data compared to S3.

better performance of the small model with a lower
budget, i.e., fewer synthesized examples.

with Rationale w/o Rationale

Dataset Size 15k 40k

Results (%) 86.86 85.34

Table 4: Experiment result of ablation of rationales anal-
ysis in seed data synthesis. The section with Rationale
means we synthesize seed data guided by a set of LLM
synthesized rationales, and w/o Rationale means the
seed data is synthesized by the task-descriptive prompt
without rationale.

3.5 Transferability of EES Data
We then test the transferability of the EES-
synthesized data. The results are shown in Table 5.
In this test, we replace the seed dataset of our frame-
work with the data synthesized by Ye et al. (2022b).
We do two sets of testing. We compare the variants
where we directly add the EES data synthesized in
S3 (+ourAdd) and that with the small model trained
on the data synthesized by Ye et al. (2022b). We
can see that the two variants both lead to similar
performance improvements. This shows that the
EES synthesized data can effectively transfer to
other zero-shot synthesized datasets. We believe
this is because the distributional gap for different
zero-shot data synthesis methods is similar. There-
fore, the data synthesized by the EES method can
be universally helpful, which further demonstrates
the potential of S3.

Method IMDb QNLI AdQA
ZeroGen 84.28 68.60 4.60/9.62
+ourAdd 87.50 73.51 9.70/20.10
+synAdd 87.41 72.21 10.27/19.92

Table 5: Transferability test result (%): where +ourAdd
is ZeroGen dataset as seed data and S3 synthesized
data as additional data, and +synAdd is using EES on
ZeroGen trained small model’s misclassified data

3.6 Additional data quality study
We perform this experiment to check the quality
of the additional dataset synthesized by EES. Note
that for earlier LLMs like GPT2 (Radford et al.,
2019) or T5 (Raffel et al., 2020), there used to
be a tendency to repeat the prompt. If the LLM
just repeats the misclassified data, then there is no
extrapolation. Thus, we composed experiments as
follows to test the quality of the additional dataset:

Sentence Encoding: For both misclassified
data Dmis and additional data Dadd, we use Distil-
BERT to encode each xmis and xadd. This results
in encoded sentences represented as zmis and zadd
respectively, and each encoded sentence is in Rd

(with d = 768 in DistilBERT)
Cosine Similarity: Then, by comparing the

cosine similarity between zmis and zadd, we gauge
their semantic similarity. High cosine similarity
indicates substantial semantic overlap.

Edit Distance: Further, to understand textual
distinctiveness, we compute the edit distance be-
tween sentences xmis and xadd. If the edit distance
approaches the sentence length, we infer that the
texts differ significantly in their composition. The
results are shown in Table 6.

Label IMDb QNLI RTE AdQA
Data Num 6,173 51,100 1,522 51,532

Avg. Cos Sim 0.9497 0.9537 0.9380 0.9468
Avg. Edit Dist. 273.92 14.64 16.38 13.99
Avg. xmis len 288.04 14.17 13.91 13.73
AVG. xadd len 218.72 19.97 24.61 18.70

Table 6: Quality study of Additional Data

The average misclassified data length (avg xmis

len) and average generated data length (avg xadd
len) provide context to interpret edit distances. This
result shows that while there is high semantic sim-
ilarity among the misclassified data and the ad-
ditional generated data (evidenced by the cosine
similarity scores), the generated sentences are not
mere copies of the misclassified samples (as their
edit distance is almost the length of the whole sen-
tence). This result provides extra evidence in favor
of the quality of the newly generated data.

4 Related work

4.1 Dataset Synthesis
The vast quantity of data required by the majority
of Machine Learning methodologies has prompted
numerous researchers to explore the concept of
Dataset Synthesis. This aims to generate a dataset
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from large pre-trained models, such as LLMs, in
order to transfer rich knowledge from large mod-
els to small models. Initial attempts to achieve
this used fine-tuned generative models to gener-
ate data (Anaby-Tavor et al., 2020; Kumar et al.,
2020). These efforts involved first fine-tuning the
LLMs with a small amount of human-annotated
data (gold data), then combining the generated data
with gold data to train small models. Other re-
searchers sought to synthesize copious amounts
of data for semi-supervised learning (Chen et al.,
2020; Wang et al., 2021). Nonetheless, these meth-
ods are only suitable for straightforward text classi-
fication tasks, proving data inefficient and ineffec-
tive for more complex tasks like NLI or QA.

The potential of zero-shot performance offered
by LLMs has led some researchers to consider
zero-shot dataset synthesis based on non-finetuned
LLMs (Meng et al., 2022; Ye et al., 2022b). How-
ever, as indicated by Fig1, direct querying of non-
fine-tuned LLMs often results in data that suffers
from a large distribution gap and is typically in-
efficient. Thus, some studies have attempted data
selection (Gao et al., 2023) or data augmentation
(Ye et al., 2022a). However, their capacity to rectify
the distribution gap leaves room for improvement.

4.2 In-context Learning

Brown et al. (2020) suggests LLMs can better learn
the task they are working on by conditioning on a
few examples in the prompt. This paradigm, known
as In-context learning, is particularly appealing as
it negates the necessity of updating the parame-
ters of LLM. Subsequent research has focused on
optimizing the choice of prompt templates and in-
context examples (Liu et al., 2021; Wang et al.,
2023; Lu et al., 2021), and learning with in-context
objective descriptions (Chen et al., 2021). The key
idea for in-context learning is to learn from analogy
(Dong et al., 2022), which aligns with our idea of
extrapolating error to synthesize additional data to
fill the distribution gap. However, most in-context
learning methods are designed for a few-shot set-
ting, whereas in our research, the LLM does not
need to be trained. We explore the LLM’s ability to
directly extrapolate from errors, providing a crucial
example for creating a more effective dataset.

5 Conclusion

This paper proposes the Synthesis Step by Step (S3)
approach based on a dynamic dataset viewpoint

for dataset synthesis. S3 is a novel dataset syn-
thesis framework that shrinks the distribution gap
between purely LLMs synthesized datasets and the
real underlying data distribution. S3 achieves this
by first using seed data synthesis with rationales to
have a low distribution gap in seed data. It shrinks
this distribution gap by iteratively extrapolating
errors of the small model on a small amount of real-
world data. Extensive experiments on three major
NLP tasks over four commonly used datasets show
that compared with a representative baseline, S3
significantly improves the performance of a small
model with averagely only one-third of synthesized
data. S3 has high practical potential in many real-
world applications because it can effectively (i.e,
with better performance) and efficiently (i.e., with
improved data efficiency) transfer knowledge in an
extremely large model (e.g., GPT 3.5) to a small
model (e.g., DistilBert), achieving data efficiency
and computation efficiency at the same time.
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Limitations

Although S3 achieved promising results, there are
still several limitations of our work. The first lim-
itation is that in the experiments, we spotted that
a tiny change in the synthesis prompts can lead
to a significant performance drop, which means
our framework is not prompt-stable. A possible
future direction is to develop a systematic way to
compose prompts that can perform stably well by
fine-tuning an LLM using good prompts. The sec-
ond limitation is that S3 assumes that the LLM has
a rich knowledge of the specific task. But in the
actual application of the approach in the real-world,
there is no such guarantee. A possible solution to
mitigate this limitation is to ask the LLM to divide
the previously unseen task into multiple simple
tasks that the LLM has a good understanding of,
but it also requires the LLM to have a good ability
to understand the subtasks. The third limitation
is that S3 is task-specific. Future work may try to
extend the method to cross-task settings to further
improve the computational and data efficiency of
the method.
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A Intuitive understanding to EES

Since the pseudo-code of EES may be somewhat
non-intuitive to understand, this part aims to pro-
vide an intuitive understanding of the EES method
on single-sentence tasks.
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A.1 Attain Error
The first step for EES is to attain the error made
by the small model on the gold validation dataset,
which is, to a certain extent, the representation of
the distribution gap between LLM’s seed data syn-
thesis distribution and the real-world distribution.
To attain the error, we must first train the small
model with currently synthesized data. This in-
cludes the seed data Dseed, and additional datasets
D(0)

add, · · · ,D
(q)
add, where q is the current round of

iteration. Then we have D(0)
add = ∅. Thus, the

training dataset for q-th iteration is:

D(q)
train = Dseed ∪ (∪qj=0D

(j)
add) (3)

Then, we train the small model with D(q)
train. We

denote the fitted small model as f(·|D(q)
train). Then,

we evaluate the fitted small model on the gold val-
idation dataset and obtain the data samples with
high error in the validation dataset:

D(q)
mis = misclass{f(D(eval)

gold |Dtrain)} (4)

where the misclass function denotes the function
that attains the data samples that have been misclas-
sified. For instance, for the QA task, this can mean
data samples that do not have an exact match with
the answer or data samples with low F1 scores. We
represent the distribution gap between the underly-
ing truth and the D(q)

train by the misclassified gold
evaluation dataset D(q)

mis, which is the distribution
gap in q-th round of EES.

A.2 Synthesis on extrapolating error

After having D(q)
mis, for all the misclassified data

(xmis, ymis) ∈ D(q)
mis, we query the LLM again

using a prompt that wraps information of the mis-
classified data. The prompt T (1)

mis(xmis, ymis) intu-
itively asks the LLM to extrapolate the misclassi-
fied data and synthesize a new data example. For
example, in the movie classification problem, if
the current misclassified data is: (The move is
great, positive); our original f(·|D(q)

train) labeled
such a review as a negative one. In this case,
T (1)
mis(xmis, ymis) can be something like Generate

a positive movie review like The move is great.
We query the LLM with T (1)

mis(xmis, ymis), to
obtain another data example similar to the error.
This process is repeated for every misclassified
data point. Thus, we obtain the q + 1-th additional

dataset D(q+1)
add . We repeat the Attain Error and

Synthesis on extrapolating error steps for multi-
ple rounds until the error converges. With such a
method, we can optimize our synthesized dataset
step by step to attain a dataset with a lower distri-
bution gap by utilizing the information provided by
extrapolating errors that represent the distribution
gap.

B Computation complexity comparison
between S3 and ZeroGen

This section studies the total computation cost of
the S3 framework. We compare the number of
floating-point operations (FLOPs) involved in fine-
tuning the model with S3 and ZeroGen synthesized
dataset. For the BERT family of models, accord-
ing to Brown et al. (2020), they cost 6 FLOPs per
token per parameter (i.e., Ftoken,para = 6) in train-
ing. The DistilBERT model (Sanh et al., 2020)
has npara = 66 × 106 parameters and the typical
input length for one record is num(token)

rec = 512.
Therefore, the training FLOPs per record of data
per epoch is:

Frec =Ftoken,para ∗ num(token)
rec ∗ npara

=2.03× 1011

The ZeroGen method typically uses 200k
records of data and trains for an average of 10
epochs to achieve the best results based on our ex-
periments. Thus, the total fine-tuning cost in terms
of FLOPs for ZeroGen is:

FZeroGen = Frec ∗ 200k ∗ 10 = 4.06 ∗ 1017

In S3, in the first round of fine-tuning (using only
the seed data), the dataset size is 51.2k records on
average (i.e., seed dataset is about 2/3th size of
final dataset). After one round of EES, the total
dataset size becomes 64.0k (i.e., 5/6th size of the
final dataset). The final round of fine-tuning with
two EES additional datasets and the seed dataset
that have a total size of 76.8k records of data. On
average, our method needs 8 epochs to achieve its
best result. Therefore, the total number of FLOPs
of fine-tuning DistilBERT for the 3 iterations (2 for
getting misclassified data, 1 for final fine-tuning)
in our S3 is:

FS3 =Frec ∗ (51.2k + 64.0k + 76.8k) ∗ 8
=3.11 ∗ 1017
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label Generated Movie Review
Negative If you’re looking for a film that will make you cringe in disbelief, look no further than

"Zombie Cheerleader Apocalypse." This movie is the epitome of a low-budget, poorly-made
production. The acting is atrocious, and the jokes are so bad that they will make you want
to gouge your eyes out. The story revolves around a group of cheerleaders who are turned
into zombies after a failed science experiment. They then proceed to wreak havoc on their
school and town, killing anyone in their path. The supposed "hero" of the film is a nerdy guy
who has a crush on the head cheerleader and tries to save her from the zombie apocalypse.
The special effects are laughable, and the makeup for the zombies is so poorly done that it’s
hard to tell if they’re supposed to be scary or comical. The dialogue is cringeworthy, and
the attempts at humor fall completely flat. The film tries to be a parody of horror movies,
but instead comes off as a cheap knockoff. Overall, "Zombie Cheerleader Apocalypse" is a
complete waste of time. It’s not even bad in a fun way, it’s just plain bad. The only reason to
watch this movie is if you want to torture yourself for 90 minutes, otherwise, avoid it at all
costs.

Positive "The Family Man" is a thrilling and heartwarming movie that will keep you at the edge of
your seat. The movie revolves around Srikant Tiwari (Manoj Bajpayee), a senior analyst in
the National Intelligence Agency, who is trying to balance his demanding job and his personal
life with his wife Suchitra (Priyamani), and their two children. The movie showcases the
struggles of maintaining normalcy in Srikant’s life, while also juggling intense missions. The
action sequences are brilliantly choreographed, with twists and turns that keep you guessing
till the very end. Bajpayee’s performance is outstanding, as he brings a depth and complexity
to his character. The chemistry between him and Priyamani is natural and heartwarming,
adding a layer of emotion to the story. The supporting cast is equally impressive, with Sharib
Hashmi and Shreya Dhanwanthary delivering memorable performances. The movie also
explores important themes such as the impact of terrorism, family values, and duty towards
one’s country. The director, Raj Nidimoru and Krishna D.K., have done a remarkable job of
balancing the action with the human story, making it a compelling watch for all audiences.
Overall, "The Family Man" is a must-watch for anyone looking for a thrilling and entertaining
ride, with a strong message of family and patriotism."

Positive If you’re a rom-com fan, then you’ll love this movie! It’s a fun, light-hearted take on the
classic boy-meets-girl trope, with plenty of laughs and heartwarming moments to keep you
entertained. The chemistry between the two leads is great, and the supporting cast is equally
charming. While some may criticize the predictable plot and lack of originality, I found it to
be a comforting and enjoyable watch. The soundtrack is also a standout, with catchy songs
that perfectly capture the mood of each scene. I highly recommend this movie for anyone
looking for a feel-good, easy watch. 8/10.

Negative This movie is a complete waste of time. The story is nonexistent and feels like the director
just slapped together random scenes. The characters are forgettable and lack any depth or
development. The pacing is so fast that it’s hard to keep up with what’s going on. It’s like
watching a poorly made music video on repeat.The only redeeming quality of this film is
the cinematography, but even that can’t save it from being a complete mess. It’s clear that
the director has some talent behind the camera, but they need to work on their storytelling
skills.Overall, I wouldn’t recommend this film to anyone. Save your money and go watch
something else. Let’s hope the director can learn from their mistakes and create something
better in the future.

Table 7: Examples of generated IMDb data
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Figure 3: t-SNE result for QNLI (left), RTE (center), AdQA (right) for dataset diversity analysis. ZeroGen data’s
points are plotted in Yellow, S3’s in Green, and Gold data in Purple.

Dataset S3 Coverage ZeroGen Coverage
QNLI 76.35 63.03
RTE 73.59 14.90

AdQA 51.02 46.00

Table 8: Coverage rate (%) of S3 and ZeroGen

Method IMDb QNLI RTE AdQA
Gold Data 92.30 91.00 71.50 22.97/36.59
ZeroGen 83.66 70.11 72.2 5.07/10.74

S3 89.55 85.20 76.17 20.50/34.40

Table 9: Apply S3 framework on MiniLM

To conclude, due to fewer rounds of fine-tuning
epochs and the lower need for data, S3 uses only
3/4th the number of FLOPs compared to the Zero-
Gen baseline, even though we fine-tuned the model
multiple times.

C Dataset Diversity analysis for S3

This section analyzes the diversity of the synthe-
sized sentences. Such an analysis is necessary as
the LLMs may generate sentences with similar
meanings, rendering the dataset lacking in diver-
sity. As there is no universally approved method
for analyzing dataset diversity, we use both quan-
titative and qualitative methods to analyze dataset
diversity:

C.1 Quantitative Analysis:

For short synthesized sentences, such as the QNLI,
RTE, and AdQA datasets, we approach the dataset
analysis quantitatively. Given the high hidden di-
mension of the sentence encoding (e.g., 768 for Dis-
tilBERT), direct analysis can be inefficient. Hence,
we used t-SNE for dimension reduction (Van der

Maaten and Hinton, 2008). The final steps of our
analysis are as follows:

1. Uniformly sample a similar amount of data
from gold data, S3 synthesized data, Zero-
Gen synthesized data. We have D′

gold =

{x(i)gold, y
(i)
gold}n1

i=1, D′
S3 = {x(j)S3 , y

(j)
S3 }n2

j=1,

and D′
ZeroGen = {x(k)ZeroGen, y

(k)
ZeroGen}n3

k=1

where n1, n2, n3 should be similar.

2. Encode the sentences using DistilBERT.
Then, we have the sentence encodings:
{z(i)gold}n1

i=1, {z
(j)
S3 }n2

j=1, {z
(k)
ZeroGen}n3

k=1 ⊆ Rd,
where d is the hidden state’s dimension (in
our case, it is 768).

3. Perform t-SNE on the encoded data z :=
{z(i)gold}n1

i=1 ∪ {z
(j)
S3 }n2

j=1 ∪ {z
(k)
ZeroGen}n3

k=1 to
reduce the dimension from d to 2. We have:
t−SNE(z) = p = {p(i)gold}n1

i=1∪{p
(j)
S3 }n2

j=1∪
{p(k)ZeroGen}n3

k=1 ⊆ R2

4. Draw the reduced dimension points on a scat-
ter plot to directly see the overlap of our syn-
thesized dataset and the Gold data. We show
the results in Fig. 3. We can see that the green
region significantly aligns with the purple re-
gion, which indicates that S3 results in similar
data diversity as the gold data.

Data diversity can also be quantified by count-
ing how many points of p

(k)
gold are in the area

of AS3 := ∪n2
j=1Bγ(p

(j)
S3 ) and AZeroGen :=

∪n3
k=1Bγ(p

(k)
ZeroGen), where Bγ(p) represents a

solid circle with center p and radius γ. The results
for QNLI, RTE, and AdQA are shown in Table 8.

11830



The results further demonstrate the superior cover-
age and diversity of our S3 framework compared
to ZeroGen.

C.2 Qualitative Analysis:
For tasks that require the generation of longer texts,
the text encoding approach is not amenable to t-
SNE dimension reduction and interpretation. Thus,
in such settings, we conduct qualitative analysis.
We show examples of the generated data for the
case of sentiment classification of IMDB reviews
in Table 7. We can observe that these examples
exhibit rich contexts and diverse patterns, which
supports the superiority of our S3 framework. For
more qualitative results, please refer to the dataset
in our project repository.

D Additional Results for S3 with MiniLM

In addition to DistilBERT, we also evaluated the
performance of the Synthesis Step by Step (S3)
framework using MiniLM (Wang et al., 2020) as
the small model. The results of this experiment are
presented in Table 9. Notably, there is a substantial
enhancement in performance when compared to
the ZeroGen baseline in all the tasks. Moreover, in
tasks like RTE which lack data, our method even
surpasses the performance of the model trained on
gold data. These results provide robust evidence
that the effectiveness of S3 is not limited to a spe-
cific model. Instead, it offers consistent improve-
ments across different small models, underscoring
its broad applicability and efficacy.
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