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Abstract

In recent years, Chinese Spelling Check (CSC)
has been greatly improved by designing task-
specific pre-training methods or introducing
auxiliary tasks, which mostly solve this task
in an end-to-end fashion. In this paper, we
propose to decompose the CSC workflow into
detection, reasoning, and searching subtasks
so that the rich external knowledge about the
Chinese language can be leveraged more di-
rectly and efficiently. Specifically, we design
a plug-and-play detection-and-reasoning mod-
ule that is compatible with existing SOTA non-
autoregressive CSC models to further boost
their performance. We find that the detection-
and-reasoning module trained for one model
can also benefit other models. We also study
the primary interpretability provided by the task
decomposition. Extensive experiments ' and
detailed analyses demonstrate the effectiveness
and competitiveness of the proposed module.

1 Introduction

Spelling Check aims to detect and correct spelling
errors contained in the text (Wu et al., 2013a). It
benefits various applications, such as search en-
gine (Gao et al., 2010; Martins and Silva, 2004),
and educational scenarios (Afli et al., 2016; Dong
and Zhang, 2016; Huang et al., 2016, 2018; Zhang
et al., 2022b). Particularly, in this paper, we con-
sider spelling check for the Chinese language, i.e.,
Chinese Spelling Check (CSC), because of the chal-
lenge brought by the peculiarities of Chinese to the
task (Li et al., 2021b). Suffering from many confus-
ing characters, Chinese spelling errors are mainly
caused by phonologically and visually similar char-
acters (Liu et al., 2010). As shown in Figure 1,
“fF(shi)” is the visual error character of “f3(dai)”
because they have almost the same strokes.

* indicates equal contribution.
f Corresponding authors: Hai-Tao Zheng, Qingyu Zhou.
IThe source codes are available at https://github.com/
THUKElab/DR-CSC.
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Figure 1: Examples of the CSC task. The first example
is a phonological error, and the second is a morphologi-
cal error. We mark the wrong character in red, the right
character in blue, and also the error type of the character
in green.

Recently, with the rapid development of Pre-
trained Language Models (PLMs) (Dong et al.,
2023; Li et al., 2023c; Ma et al., 2023), methods
based on PLMs have gradually become the main-
stream of CSC research (Li and Shi, 2021; Ji et al.,
2021; Wang et al., 2021; Li et al., 2022f; Cheng
et al., 2023a), most of which are non-autoregressive
models making predictions for each input Chinese
character. Previous works can be roughly divided
into two categories: (1) Design tailored pre-training
objectives to guide the model to learn the deep se-
mantic information (Liu et al., 2021; Zhang et al.,
2021b; Li, 2022; Li et al., 2023a); (2) Perform dif-
ferent fine-tuning processes like adding auxiliary
tasks to fine-tune the models (Zhu et al., 2022; Liu
et al., 2022b).

Despite the remarkable success achieved by
previous works, existing models seem to have
some shortcomings in incorporating external ex-
pert knowledge, such as the confusion set, which
contains a set of similar character pairs (Liu et al.,
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2010; Wang et al., 2019). Cheng et al. (2020)
makes an attempt that replaces the classifier’s
weight according to the confusion set using graph
neural networks. Li et al. (2022e) further proposes
a neural model that learns knowledge from dictio-
nary definitions. However, these approaches im-
plicitly learn external knowledge, thus lacking the
desired level of interpretability and efficiency. We
argue that the CSC task can be decomposed into
three subtasks, including Detection, Reasoning,
and Searching, aiming to incorporate the external
knowledge more naturally and provide more inter-
pretability. These subtasks answer the following
questions respectively, "Which character is mis-
spelled?", "Why did this error occur?" and "How
to correct it?". By addressing these questions, the
model gains access to error position, misspelling
type, and external knowledge from three subtasks,
respectively. As a result, a deeper understanding
of the underlying processes involved in correcting
misspelled characters can be achieved.

To this end, we propose a frustratingly easy
plug-and-play Detection-and-Reasoning module
for Chinese Spelling Check (DR-CSC) to incor-
porate external expert knowledge naturally and ef-
fectively into existing non-autoregressive (Cheng
etal., 2023d) CSC models. The proposed method is
designed to be compatible with a wide range of non-
autoregressive CSC models, such as Soft-Masked
BERT (Zhang et al., 2020), MacBERT (Cui et al.,
2020), and SCOPE (L. et al., 2022b). We decom-
pose the CSC task into three subtasks from easy
to hard: (1) Detection: We model the process of
detecting misspellings from a sentence through the
sequence labeling task, that is, predicting for each
character in the sentence whether it is correct or
wrong. (2) Reasoning: For the wrong characters
predicted in the detection step, we use the repre-
sentations of CSC models to further enable the
model to consider the attribution of spelling er-
rors by classifying them to know whether they are
errors caused by phonetics or vision. (3) Search-
ing: After determining the spelling error type, we
search within its corresponding phonological or vi-
sual confusion set to determine the correct charac-
ter as the correction result. The proposed DR-CSC
module performs multi-task learning on these three
subtasks. By doing so, it naturally incorporates
the confusion set information, and effectively nar-
rows the search space of candidate characters. As
a result, this module greatly helps to improve the

performance of CSC models.
In summary, the contributions of this work are
in three folds:

* We design the DR-CSC module, which guides
the model to correct Chinese spelling errors
by incorporating the confusion set informa-
tion. And it is also compatible with non-
autoregressive CSC models.

* We enhance the interpretability of CSC mod-
els by explicitly incorporating external knowl-
edge through the decomposition of the CSC
task into three subtasks.

* We conduct extensive experiments on widely
used public datasets and achieve state-of-the-
art performance. Detailed analyses show the
effectiveness of the proposed method.

2 Related Work

CSC is a fundamental language processing task,
and it is also an important subtask of Chinese Text
Correction (Ma et al., 2022; Li et al., 2023b; Ye
et al., 2023, 2022; Zhang et al., 2023). Around the
pre-training and fine-tuning of PLMs (Liu et al.,
2022a; Li et al., 2022d,c; Cheng et al., 2023b;
Zhang et al., 2022a; Cheng et al., 2023c), re-
searchers have done many efforts to improve the
performance of CSC models:

CSC-targeted Pre-training Tasks Researchers
design different pre-training strategies to obtain
PLMs that are more suitable for CSC. PLOME (Liu
et al.,, 2021) proposes to pre-train models with
their designed particular character masking strategy
guided by the confusion set and apply task-specific
pre-training to enhance the CSC models. Spell-
BERT (Ji et al., 2021), DCN (Wang et al., 2021),
and MLM-phonetics (Zhang et al., 2021a) leverage
the phonetic information to improve the adaptation
of the pre-training process to the CSC task. For
more recent research, WSpeller (Li et al., 2022a)
trains a word-masked language model to utilize the
segment-level information which provides appro-
priate word boundaries.

CSC-targeted Fine-Tuning Processes Many
studies focus on the fine-tuning stage of PLMs
to obtain various additional knowledge to improve
model performance. REALISE (Xu et al., 2021)
and PHMOSpell (Huang et al., 2021) focus on
the positive impact of multimodal knowledge on
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Figure 2: Overview of the proposed DR-CSC. The Detection task is to detect the error character. The Reasoning
task is to determine the error type of the typo. The Searching task is to correct the sentence in the search matrix.
The right part shows how to plug and play DR-CSC module from models to enhance another model.

the CSC models. ECOPO (Li et al., 2022f) and
EGCM (Sun et al., 2022) propose error-driven
methods to guide models to avoid over-correction
and make predictions that are most suitable for the
CSC scenario. Besides, LEAD (Li et al., 2022¢) is
a heterogeneous fine-tuning framework, which for
the first time introduces definition knowledge to
enhance the CSC model. SCOPE (Li et al., 2022b)
proposes the auxiliary task of Chinese pronuncia-
tion prediction to achieve better CSC performance.
MDCSpell (Zhu et al., 2022) proposes to fuse the
detection network output into the correction net-
work to reduce the impact of typos.

Although PLMs have achieved great success in
the CSC task, previous studies still lack a degree
of interpretability. We argue that the CSC task can
be decomposed into three subtasks to introduce ex-
ternal knowledge naturally and provide more pos-
sibility of interpretability. The proposed module is
compatible with existing non-autoregressive CSC
models to get enhancement.

3 Methodology

As shown in Figure 2, DR-CSC consists of an en-
coder (i.e., E) and three progressive subtasks. DR-
CSC is a module that can be combined with various
existing non-autoregressive CSC models or proper
PLMs.

3.1 Detection

Given the input sentence X = {1, za,...,x7} of
length T', we utilize the PLMs or CSC models as
encoder E to get the representations:

H = E(X) = {h1, ho, ..., h1}, €))

where h; € RhMdden pidden is the hidden state
size of E. The detection task is to detect the wrong
characters from the sentence, that is, to predict
whether each character in the sentence is correct
or wrong. Therefore, we compute the binary clas-
sification probability of the i-th character in the
sentence X as:

p¢ = softmax(Wph; + bp), p? € R%,  (2)

where Wp € R2xhidden anq ) € R? are learnable
parameters. Note that pl‘.l is a probability vector
with 2-dimension, based on which we obtain the
detection predicted result:

y¢ = arg max(p?), 3)

where y¢ belongs to {0, 1}, y¢ = 0 means that the
character is correct, and y¢ = 1 means that the
character is wrong.

For the training of the detection task, we use the
cross-entropy as its learning objective:

T
Li=—)_ gllogpf, )
=1

11516



where gf is the training label of the i—th charac-
ter in the detection task. It is worth mentioning
that during the training process, gzd can be obtained
by comparing the original character with its corre-
sponding golden character.

3.2 Reasoning

After the detection task, we know which characters
in the sentence are misspellings, then the reasoning
task is to predict whether the wrong character is
caused by phonetics or vision. It is not difficult
to know that this is also actually a binary classifi-
cation process for characters. Therefore, similar
to the detection task, we calculate the reasoning
prediction probability of the i—th character and get
the reasoning predicted result as follows:

pr = softmax(Wgrh; + br),p} € R?,  (5)

y; = argmax(p;), (6)

where Wg € R2xMdden and b € R? are learnable
parameters. When y;° = 1, it means this wrong
character is a phonological error. And y; = 0
represents the morphological error. We also utilize
the cross-entropy loss to train the reasoning task:

T
L, ==Y ylglogp;. (7)
=1

Note that we use yzd of Equation (3) to ensure that
only the wrong characters detected by the detec-
tion task participate in the calculation of £,.. The
reasoning label g; of a character is obtained by
considering its golden character. If the golden char-
acter is in the phonological confusion set of the
original character, its label is “phonological error”.
If the case is visual confusion set, the label is “mor-
phological error”. Specifically, we construct the
phonological/visual confusion set of a character
by comparing the Pinyin/strokes > between charac-
ters. The phonological confusion set of a character
contains all characters similar to its pinyin, and
the visual confusion set is all characters similar to
its strokes. We also utilize the confusion set pro-
vided in SIGHAN133. It contains Similar Pronun-
ciation confusion set and Similar Shape confusion
set. Previous research (Liu et al., 2010) indicates
that 83% of errors are phonological errors and 48%

2We utilize the cnchar toolkit
(https://github.com/theajack/cnchar) to get Pinyin/strokes
information of Chinese characters.

3http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html

are morphological errors. This is because a large
number of characters exhibit errors in both phono-
logical and morphological aspects simultaneously,
so it is reasonable for us to prioritize this kind of
wrong character as “phonological error”. During
the construction of the confusion set, we ensured
that the corresponding characters were included.
This approach helps alleviate errors caused by the
misidentification of non-erroneous characters as er-
rors. Furthermore, the sets of phonetically similar
characters and visually similar characters are not
mutually exclusive; they exhibit a certain degree of
intersection. This characteristic further mitigates
the impact of error accumulation.

3.3 Searching

The searching task is to find the correct answers to
the spelling errors. Specifically, for each character
in X, we predict the probability that it should be a
character in the vocabulary of the PLMs:

p; = softmax(Wgsh; + bg),p; € RV (8)

Ps = {Pf,p% ...,p%}, Ps c RTXvocab’ (9)

where Wg € Rvocabxhidden 44, 4 bg € Rvocab gre
trainable parameters, vocab is size of PLMs’ vo-
cabulary.

The main innovation of our designed searching
task is that we utilize the phonological/visual con-
fusion set to enhance the prediction of error cor-
rection results. Thanks to the error position and
error type information obtained in the detection and
reasoning tasks, we can construct a more refined
search matrix based on the phonological/visual con-
fusion sets to reduce the search space:

= vefz], y=1& y =0, (10)
Toocap, Otherwise
C ={c1,c9,...,c1},
{ei,e2,.5er} (11

¢ € Rvocab, Cc RTXvocab’

where pe and v are vectors whose dimensions are
vocab and whose elements are 0 or 1. And pc|z;]
means that the elements at the corresponding posi-
tion of x;’s phonetically similar characters in the
vector are set to 1, and the others are 0. The ele-
ments of ve[z;] are also set based on the visually
similar characters of x;.
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We augment the correction probabilities based
on C:

PZPS@C:{pl)an“'7pT}7 (12)

where © means the multiplication of elements in
the corresponding positions of the two matrices.
Through this operation, for a character that has
been determined to be a phonological error, the
probability that it is predicted to be a character that
is not similar to its phonetic will be set to 0. The
same is true for the visually similar case. Therefore,
we enhance the probability representation of more
suitable candidate characters through the search
matrix in the searching task and also narrow the
search space of candidate characters. We also use
the cross-entropy loss in the searching task:

T
Li==> gilogp:. (13)
=1

Note that the label g; is equivalent to the overall
golden label, i.e., the correct character correspond-
ing to the wrong character.

Finally, benefiting from multi-task learning, we
tackle the three progressive tasks at once in our
DR-CSC framework:

L=a Lo+ -Lr+7-Ls, (14)

where «, (3, and -y are hyper-parameters.

3.4 Plug-and-Play Process

As depicted in Figure 2, the plug-and-play integra-
tion of the trained encoder E and detection-and-
reasoning module (D-R Module) with a new CSC
model or PLM E’ can be achieved without retrain-
ing of the D-R Module. This is accomplished by
feeding the text to both encoders, E and E’:

H=E(X), H =E(X). (15)
H can then be utilized as input for the D-R Module,
yielding the results of detection and reasoning sub-
tasks for constructing a search matrix C according
to Equations (2)(3)(5)(6)(10). H’ can be fed into
the output layer to obtain the correction probabili-
ties P’ of the new CSC model or PLM:

C = D-R Module(H), (16)

P’ = Output Layer(H’). (17)

Subsequently, we can augment the correction prob-
abilities P’, by referring to Equation (12).

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

To ensure fairness, we use the same training data as
our baselines, i.e., SIGHAN13 (Wu et al., 2013b),
SIGHAN14 (Yu et al., 2014), SIGHAN15 (Tseng
et al., 2015) and Wang271K (Wang et al., 2018).
The test data is also widely used in previous CSC
task (Wang et al., 2019; Cheng et al., 2020; Li et al.,
2022a), i.e, SIGHAN13/14/15 test datasets.

4.1.2 Baselines Methods

To evaluate the performance of DR-CSC, we se-
lect some advanced and strong CSC models as our
baselines: SoftMasked-BERT (Zhang et al., 2020)
is consist of Detection Network and Correction
Network. MacBERT (Cui et al., 2020) is an en-
hanced BERT with novel MLM as the correction
pre-training task. Two-Ways (Li et al., 2021a)
utilizes the weak spots of the model to generate
pseudo-training data. MLM-phonetics (Zhang
et al., 2021a) is an enhanced ERNIE (Sun et al.,
2020) which contains additional phonetic infor-
mation. REALISE (Xu et al., 2021) is a multi-
modal CSC model which leverages semantic, pho-
netic, and graphic knowledge. LEAD (Li et al.,
2022¢) learns heterogeneous knowledge from the
dictionary, especially the knowledge of definition.
SCOPE (Li et al., 2022b) improve the CSC per-
formance with the help of an auxiliary Chinese
pronunciation prediction task. It is the previous
state-of-the-art method for the SIGHAN datasets.

4.1.3 Evaluation Metrics

Because CSC aims to detect and correct spelling
errors, the CSC studies all report the detection and
correction performance. For the correction level,
the model must not only detect but also correct all
wrong characters. More specifically, we report the
sentence-level metrics, including Precision, Recall,
and F1 score, which are commonly used in previous
works (Xu et al., 2021; Li et al., 2022b). Note that
sentence-level is more challenging than character-
level because some sentences may contain multiple
wrong characters.

4.1.4 Implementation Details

In the experiments, we use Pytorch to imple-
ment the proposed DR-CSC. The implementations
of SoftMasked-BERT + DR-CSC, MacBERT +
DR-CSC and SCOPE + DR-CSC are following
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Dataset Model Detection Correction
P R F P R F

MLM-phonetics (Zhang et al., 2021a) 820 783 80.1 | 795 770 782

REALISE (Xu et al., 2021) 886 825 854 | 872 812 841

Two-Ways (Li et al., 2021a) - - 84.9 - - 84.4

LEAD (Li et al., 2022¢) 883 834 858 | 872 824 847

SIGHANI13 | SoftMasked-BERT (Zhang et al., 2020)" | 81.1 757 783 | 751 701 725
SoftMasked-BERT + DR-CSC 80.2 77.3" 787" | 779t 751 7657

MacBERT (Cui et al., 2020) 846 799 82 | 810 765 787

MacBERT + DR-CSC 87.8" 81.6" 84.6" | 86.77 80.5" 83.5

SCOPE (Li et al., 2022b) 874 834 854 | 863 824 843

SCOPE + DR-CSC 88.5" 837" 86.0" | 87.7" 83.07 853"

REALISE (Xu et al., 2021) 678 715 696 | 663 700  68.1

Two-Ways (Li et al., 2021a) - - 70.4 - - 68.6
MLM-phonetics(Zhang et al., 2021a) 66.2 73.8 69.8 64.2 73.8 68.7

LEAD (Li et al., 2022¢) 707 710 708 | 693 69.6  69.5

SIGHAN14 | SoftMasked-BERT (Zhang et al., 2020)1 | 614 675 643 59.8 658 626
SoftMasked-BERT + DR-CSC 614 679" 6457 | 60.37 66.77 634"

MacBERT (Cui et al., 2020) 639 656 647 | 61.0 627 619

MacBERT + DR-CSC 65.67 68.87 672" | 64.87 68.17 66.47

SCOPE (Li et al., 2022b) 701 731 716 | 686 715  70.1

SCOPE + DR-CSC 70.2" 733" 717" | 69.37 7237 707
MLM-phonetics(Zhang et al., 2021a) 71.5 83.1 80.2 74.9 80.2 71.5

REALISE (Xu et al., 2021) 773 813 793 | 759 799 778

Two-Ways (Li et al., 2021a) - - 80.0 - - 78.2

LEAD (Li et al., 2022¢) 792 828 809 | 776 812 793
SoftMasked-BERT (Zhang et al., 2020) 73.7 73.2 73.5 66.7 66.2 66.4

SIGHANI1S | SoftMasked-BERT + DR-CSC 740" 788" 764" | 71.6T 7627 739"
MacBERT (Cui et al., 2020) 719 779 748 | 680 736 707

MacBERT + DR-CSC 75.8" 783" 717.0" | 73.67 7617 748"

SCOPE (Li et al., 2022b) 81.1 843 827 | 792 83 807

SCOPE + DR-CSC 829" 84.8" 838" | 80.37 823 813"

—withd gt 89.8 941 919 | 857 898 877

— with d/r gt 90.2 952 926 | 87.0 919 894

Table 1: The performance of DR-CSC and all baselines. X + DR-CSC means that we combine DR-CSC with model
X. "-with d gt" means with detection ground truth during the inference stage and "with d/r gt" means with detection
and reasoning ground truth during the inference stage. 1 means an improvement compared to the baseline model.
Results marked with "§" are obtained by running released codes from corresponding papers.

these three github repositories*>-°. In our exper-
iments, we initialize the weights of SoftMasked-
BERT + DR-CSC using the weights of Chinese
BERT-wwm (Cui et al., 2021) and we initialize
the weights of MacBERT + DR-CSC using the
weights of MacBERT (Cui et al., 2020). And the
initial weights of SCOPE + DR-CSC are from the
Further Pretrained Model proposed by SCOPE (Li
et al., 2022b). We set the maximum length of
the sentence to 192 which can contain all train-
ing samples’ length. We train the model with

*https://github.com/gitabtion/SoftMaskedBert-PyTorch
Shttps://github.com/shibing624/pycorrector
Shttps://github.com/jiahaozhenbang/SCOPE

AdamW optimizer and set the learning rate to
5 x 1075. We set the «, 3, all to 1. The opti-
mal models on SIGHAN13/14/15 are obtained by
training with batch sizes of 96/96/64 for 20/30/30
epochs, respectively. The best-performing mod-
els on SIGHAN13/14/15 were trained using batch
sizes of 96/96/64, respectively, for 20/30/30 epochs
each. All experiments are conducted on one
GeForce RTX 3090.

4.2 Experimental Results

From Table 1, we can observe that through the
optimization of the module DR-CSC, SoftMasked-
BERT, MacBERT, and SCOPE all obtain further
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Detection Correction
Model P R F | P R F
SoftMasked-BERT 737 732 735 | 66.7 662 664
SoftMasked-BERT + DR-CSC 740 787 763 | 71.6 762 739
— with d/r results from MacBERT + DR-CSC 744 788 76,5 | 72.1 764 742
— with d/r results from SCOPE + DR-CSC 733 785 758 | 71.6 76.6 74.0
MacBERT 719 779 748 | 68.0 73.6 70.7
MacBERT + DR-CSC 758 783 77.0 | 73.6 76.1 74.8
— with d/r results from SoftMasked-BERT + DR-CSC | 752 794 772 | 752 176.8 74.7
— with d/r results from SCOPE + DR-CSC 747 79.0 76.8 | 72.8 77.0 74.8
SCOPE 81.1 843 827 | 79.2 823 80.7
SCOPE + DR-CSC 829 84.8 838 | 80.3 823 81.3
— with d/r results from SoftMasked-BERT + DR-CSC | 82.2 839 83.1 | 80.1 81.7 809
— with d/r results from MacBERT + DR-CSC 822 837 830 | 80.2 81.7 81.0

Table 2: The plug-and-play performance analysis on the SIGHAN1S test set. The "d/r results from X" means the
detection and reasoning tasks’ results come from the X model.

improvements on all test sets and most evalua-
tion metrics, which verifies the effectiveness of
the proposed method. Specifically, at correction-
level, SCOPE + DR-CSC exceeds SCOPE by 1.0%
F1 on SIGHAN13, 0.6% F1 on SIGHAN14, and
0.6% on SIGHANI15. SoftMasked-BERT + DR-
CSC exceeds SoftMasked-BERT by 4.0% F1 on
SIGHAN13, 0.8% F1 on SIGHAN14, and 7.5%
on SIGHANI15. MacBERT + DR-CSC exceeds
MacBERT by 4.8% F1 on SIGHAN13, 4.5% F1
on SIGHAN14, and 4.1% on SIGHAN15.

Particularly, SCOPE + DR-CSC achieves new
state-of-the-art performance on the three SIGHAN
datasets, which reflects the competitiveness of the
proposed module.

4.3 Analysis and Discussion

4.3.1 Effect of Decomposing the CSC Models

The motivation of our work is to decompose the
CSC task into three subtasks to introduce exter-
nal knowledge and enhance the correction abil-
ity of CSC models. Specifically, we divide the
CSC task into Detection, Reasoning, and Search-
ing three subtasks, and we believe that the infor-
mation obtained by detection and reasoning tasks
is helpful for learning searching task. To verify
our motivation, we feed the detection ground truth
into SCOPE + DR-CSC to observe performance
changes.

From the results of “SCOPE + DR-CSC withd gt”
and “SCOPE + DR-CSC with d/r gt” in Table 1, we
know that the wrong character position information
in the detection task and the misspelling type infor-
mation in the reasoning task are both very helpful
to improve the final correction performance. In par-

ticular, when feeding the detection and reasoning
tasks’ ground truth simultaneously, the correction
F-1 of our model reaches 89.4, which shows that
the decomposing method is indeed intuitive and
natural. Besides, this phenomenon shows the great
potential of the DR-CSC module, because the meth-
ods we design for detection and reasoning tasks are
relatively simple (i.e., naive binary classification).

SC Osl;'l];) T%(l{)- fCS C Precision Recall Fl1
Detection 82.0 85.5 83.7
Reasoning 80.5 82.8 81.6
Searching 80.3 82.3 81.3

Table 3: The performance of each level of subtasks on
the SIGHANIS test set.

4.3.2 Analysis of Each Subtask

The three subtasks in the CSC models address spe-
cific questions: "Which?", "Why?", and "How?".
These subtasks are designed to gradually increase
in difficulty, progressing from easy to hard. In order
to validate the progressive difficulty of our subtasks,
we also investigate the individual contributions of
each subtask. From Table 3, we reveal a decreas-
ing trend in the performance of the three subtasks:
detection, reasoning, and searching. This finding
aligns with our initial design intuition and motiva-
tion, which suggests that these subtasks follow a
progressive difficulty pattern, with each subsequent
task becoming more challenging than the previous
one.

4.3.3 Plug-and-Play Performance Analysis

We conduct an experiment to assess the compatibil-
ity of the proposed DR-CSC module with existing
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non-autoregressive CSC models for potential en-
hancements. This experiment involves utilizing the
results of detection and reasoning tasks from vari-
ous base models. We construct a new search matrix
using these results and feed it into the searching
task. This approach not only reduces computation
costs but also directly enhances the original model.
The objective is to determine if the DR-CSC mod-
ule can effectively integrate with existing models
and yield improvements in performance. From Ta-
ble 2, we observe that each setting performs better
than the baseline models on the SIGHANT1S5 test set.
For the Soft-Masked BERT model, utilizing detec-
tion and reasoning outputs from MacBERT leads to
improved performance compared to training the de-
tection and reasoning tasks on Soft-Masked BERT.
For the MacBERT model and SCOPE model, uti-
lizing detection and reasoning output trained on
themselves yields the best performance. Overall,
the best performance is achieved by utilizing the
detection and reasoning task results from SCOPE,
possibly due to its different encoders. SCOPE
selects ChineseBERT (Sun et al., 2021) as their
encoder, which incorporates both the glyph and
pinyin information of Chinese characters into lan-
guage model pretraining. With the assistance of
glyph and pinyin information, SCOPE achieves
better performance. This approach significantly re-
duces the time required for retraining a DR module.
It allows for the direct utilization of a trained DR
module, resulting in substantial resource savings.

Item Number
Predicted phonological error 300
Predicted morphological error 469
Not in phonological confusion set 0
Not in morphological confusion set 4
Correct character is filtered out

in phonological 4
Correct character is filtered out

in morphological 7

Table 4: We count the outputs of detection and reasoning
tasks on the SIGHANIS test set.

4.3.4 Interpretability Analysis

In the searching task of the proposed module, we
construct a search matrix that effectively narrows
the search space of candidate characters. This op-
timization greatly enhances the performance of
CSC models. Additionally, the CSC models con-
sist of three subtasks that address the questions
"Which?Why?How?". This approach enhances in-
terpretability and offers greater potential for un-

Case 1:

Input Wrong AT AT (shou) A5 (lido) X B -
Sentence: I can’t accept and agitate it at first either.
SCOPE: RIFFIEF AL (show) A T (lido)iXF: -
I can’t accept it at first either.
SCOPE + NIFF i (5 (zu0) AN T (lidoiX B »
DR-CSC(w/o I can’t do it at first either.
Searching):
SCOPE + M 4Bt 3 (show) AN T (lito)iX H -
DR-CSC: I can’t stand it at first either.
Case 2:
Input Wrong EAEEI B E BB B (zhao) T K T -
Sentence: I didn’t expect to dance and dance light the
midnight.
SCOPE: BAE R & BhE i (zhao)id 2T -
I didn’t expect to dance and dance light the
midnight.
SCOPE + REEIBE BOE B T (a2 T -
DR-CSC(w/o I didn’t expect to dance and dance again the
Searching): midnight.
SCOPE + BB A BE i (chao)id H AT -
DR-CSC: I didn’t expect to dance and dance through the

midnight.

Table 5: Cases from the SIGHANIS test set show the
searching subtask can narrow the search space to en-
hance the correction ability of the CSC model. We mark
the wrong/correct characters.

derstanding. According to the data presented in
Table 4, phonological errors account for 39% of
the predicted error characters, while morphological
errors make up the remaining 61%. Among the
morphological error characters, only four are not
found in the morphological confusion set, prompt-
ing us to assign a search matrix value of one to
these characters. Furthermore, out of a total of 769
predicted error characters, only 11 (1.4%) fail to
find the correct character within their search matrix.
The majority of error characters identified by our
module were found to have their correct counter-
parts within their respective confusion sets. This
finding provides a compelling explanation for the
performance gains observed in our study.

4.3.5 Case Study

From Table 5, we know that SCOPE cannot detect
“Ifr”, while SCOPE + DR-CSC (w/o Searching)
succeeds (even if its correct answer is wrong). This
phenomenon indicates the effectiveness of the de-
tection task in DR-CSC, which guides the model to
focus on finding the wrong characters at the begin-
ning. In addition, the character (i.e., “Yi(shou)”)
that SCOPE + DR-CSC (w/o Searching) cannot
correct is accurately solved by SCOPE + DR-CSC.
This is benefited from our searching task, which
uses the information provided by detection and
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reasoning tasks to construct a fine-grained search
matrix so that the model search in the phonolog-
ical confusion set of “I(shou)”, while avoiding
predicting “fi(zud)” whose phonetic is not similar
to “Yi{(shou)”. In Case 2, we know that SCOPE
cannot detect “H8”, while SCOPE + DR-CSC (w/o
Searching) succeeds (even if its correct answer is
wrong). However, SCOPE + DR-CSC can correct
it accurately, which benefited from the search ma-
trix provided in the searching task.

5 Conclusion

In this paper, we present an enhanced approach
for the CSC model by decomposing it into three
subtasks. The main objective is to integrate exter-
nal knowledge and offer improved interpretability.
We introduce DR-CSC, a frustratingly easy plug-
and-play detection-and-reasoning module that con-
sists of three subtasks with progressive difficulty.
By conducting thorough experiments and detailed
analyses, we have empirically demonstrated the
effectiveness of our decomposition approach, as
well as the valuable information provided by each
subtask. Furthermore, we believe that DR-CSC
holds untapped potential for further exploration.

6 Limitations

Our proposed module has three potential limita-
tions that should be acknowledged. Firstly, the
detection and reasoning subtasks within our mod-
ule are relatively straightforward and offer room for
improvement. Future research could focus on en-
hancing the complexity and sophistication of these
subtasks to further enhance their performance.

Secondly, our module only considers two types
of misspellings: phonological errors and morpho-
logical errors. While these two types cover a signif-
icant portion of common misspellings, other types
of errors may exist that are not addressed in our
current framework. Exploring and incorporating
additional error types could contribute to a more
comprehensive and robust module.

Thirdly, the construction of the search matrix
in the searching subtask introduces an additional
computational cost during both the training and
inference stages. This demands careful considera-
tion in terms of resource allocation and efficiency.
Future work should focus on optimizing the search
matrix construction process to mitigate the compu-
tational overhead while maintaining performance.

Acknowledging these limitations, further ad-
vancements can be made to enhance the detection
and reasoning subtasks, expand the scope of error
types considered, and optimize the computational
demands associated with the search matrix con-
struction in the searching subtask.
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