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Abstract

Complex Query Answering (CQA) is a chal-
lenge task of Knowledge Graph (KG). Due
to the incompleteness of KGs, query embed-
ding (QE) methods have been proposed to en-
code queries and entities into the same embed-
ding space, and treat logical operators as neu-
ral set operators to obtain answers. However,
these methods train KG embeddings and neu-
ral set operators concurrently on both simple
(one-hop) and complex (multi-hop and logical)
queries, which causes performance degrada-
tion on simple queries and low training effi-
ciency. In this paper, we propose Query to
Triple (Q2T), a novel approach that decouples
the training for simple and complex queries.
Q2T divides the training into two stages: (1)
Pre-training a neural link predictor on simple
queries to predict tail entities based on the head
entity and relation. (2) Training a query en-
coder on complex queries to encode diverse
complex queries into a unified triple form that
can be efficiently solved by the pretrained neu-
ral link predictor. Our proposed Q2T is not only
efficient to train, but also modular, thus easily
adaptable to various neural link predictors that
have been studied well. Extensive experiments
demonstrate that, even without explicit model-
ing for neural set operators, Q2T still achieves
state-of-the-art performance on diverse com-
plex queries over three public benchmarks.

1 Introduction

Knowledge Graphs (KGs) organize world knowl-
edge as inter-linked triples which describe entities
and their relationships in symbolic form (Ji et al.,
2020). Complex query answering (CQA), a knowl-
edge reasoning task over KGs, has been proposed
in recent years (Wang et al., 2021). Compared with
simple link prediction, which involves predicting a
missing entity in a factual triple (Rossi et al., 2021),
CQA is more challenging as it requires first-order
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Logical query

Interpretation Where did the people who won the
Turing Award in AI graduate from?

Query graph
AI

field-1

Turning Award

winner

graduate

Figure 1: An example, along with its corresponding
interpretation and query graph, in CQA.

logic (FOL) operators such as existential quantifi-
cation (∃), conjunction (∧), disjunction (∨), and
negation (¬) to be performed on entities, relations
and triples, as shown in Figure 1. As KGs usu-
ally suffer from incompleteness (West et al., 2014),
traditional query methods such as SPARQL (Prud-
hommeaux et al., 2013) cannot handle CQA well
on real-world KGs such as Freebase (Bollacker
et al., 2008) and NELL (Carlson et al., 2010).

Recently, an alternative method called Query
Embedding (QE) (Hamilton et al., 2018; Ren et al.,
2020) has been proposed to complete the missing
edges and answer the complex query simultane-
ously (Wang et al., 2023b). The idea of these meth-
ods is to encode queries and entities into the same
embedding space, and treats logical operators as
neural set operators (e.g. relation projection as
set projection, queries conjunction as sets intersec-
tion, query negation and set complement) to answer
queries. QE methods embed a query by iteratively
performing neural set operators according to the
topological order of nodes in the query graph, and
then obtain answers based on the similarity scores
between the query embedding and all entity embed-
dings. This process is shown in Figure 3 (B).

Despite QE-based methods achieving good per-
formance on CQA, they still exhibit the following
drawbacks: (1) Cannot perform well on both sim-

11369



ple and complex queries simultaneously (simple
queries refer to one-hop queries, complex queries
encompass multi-hop and logical queries). One
potential reason from the model perspective is that,
QE-based models model the projection operator
with complex neural networks to perform well on
complex queries, however, these complex neural
networks are incapable of effectively managing in-
herent relational properties (Wang et al., 2023b),
such as symmetry, asymmetry, inversion, composi-
tion, which are sufficiently studied in KG comple-
tion tasks and addressed by Knowledge Graph Em-
bedding (KGE) (Wang et al., 2017), so KGE mod-
els can easily outperform QE-based methods on
simple queries. Another potential reason from the
training perspective is that, the training for simple
queries and complex queries are coupled in these
methods, as demonstrated in Figure 2 (A). There-
fore, the entity and relation embeddings inevitably
incorporate neural set operators information that
is irrelevant for answering simple queries, leading
to a decrease in performance. (2) Low training
efficiency and not modular. From the model per-
spective, as the KGE is coupled with the neural
set operators in QE-based methods, as shown in
Figure 2 (A), these methods usually train KGE and
neural set operators from scratch in each round of
training, which is inefficient. Furthermore, due to
this coupling, these methods cannot directly ex-
ploit other high-performance KGE models such as
ComplEx (Trouillon et al., 2016). (3) Suffer from
error cascading. These methods have to calculate
all intermediate node representations step-by-step,
as demonstrated in Figure 3 (B), so errors will be
cascaded along the path (Guu et al., 2015), which
affects the quality of answers.

Aiming to handle the above drawbacks, in this
paper, we propose Query to Triple (Q2T), a novel
approach that not only decouples the training of
complex queries and simple queries from the train-
ing perspective, but also decouples KGE and the
query encoder from the model perspective. Q2T di-
vides the training into two stage: pre-training KGE
for simple queries and training a unified query en-
coder for diverse complex queries, as shown in
Figure 2 (B). In the first pre-training stage, we only
train a KGE model as a neural link predictor on
simple queries, such as DistMult (Yang et al., 2015)
and ComplEx (Trouillon et al., 2016). Motivated
by the prompt (Sun et al., 2022b; Liu et al., 2023)
technology in Natural Languages Process (NLP),

KGE Training on
simple queries

Complex
Query

Encoder

Training on
complex queries

Reasoning on
complex queries

(B) Q2T

Pretrained
Link

Predictor

Reasoning on
simple queries

Stage1

Stage2

Training on
simple and

complex queries

(A) QE based methods

KGE Neural Set
Operators

Reasoning on
simple and

complex queries

Figure 2: The different training strategies used in QE-
based methods and Q2T. KGE denotes entity and rela-
tion embeddings. (A) QE-based methods train KGE and
neural set operators on both simple and complex queries.
(B) Q2T train KGE and Query Encoder on simple and
complex queries respectively.

which aims to fully reuse the pretrained model, in
the second stage, Q2T utilizes a trainable encoder
to transform any complex query graph g into a
unified triple form (gh, gr, t?), where gh, gr are
representations of the whole query graph generated
by the encoder, t? are tail entities to be predicted.
Then, we can obtain probability list of all entities
by feeding these two representations and all pre-
trained entity embeddings to the pretrained neural
link predictor. That is, we transformer any complex
query to a unified triple form which can be handled
well by neural link predictors. In other words, as
shown in Figure 3 (A), Q2T treats CQA as a spe-
cial link prediction task where it learns how to
generate appropriate inputs for the pretrained
neural link predictor instead of reasoning in the
embedding space step-by-step.

The advantages of Q2T are as follows: (1) Good
performance on both simple and complex queries,
because Q2T can not only make full use of the
well-studies KGE models but also decouple the
the training of simple queries and complex queries
from the training perspective. (2) High training
efficiency and modular, because from the model
perspective, Q2T decouples the KGE and the query
encoder, so it only trains the encoder in each round
of training (pretrained KGE is frozen) and can also
fully utilize various advanced KGE models. (3)
Simple and accurate, as Q2T utilizes an end-to-
end reasoning mode, which not only eliminates the
need to model complex neural set operators, but
also avoids error cascading.

We conducted experiments on widely-used
benchmark such as FB15k (Bordes et al., 2013),
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FB15k-237 (Toutanova and Chen, 2015), and
NELL995 (Xiong et al., 2017). The experimental
results demonstrate that, even without explicit mod-
eling for neural set operators, Q2T still achieves
state-of-the-art performance on diverse complex
queries. The source codes and data can be found at
https://github.com/YaooXu/Q2T.

2 Related work

Knowledge Graph Embedding (KGE). KGE em-
beds components of a KG including entities and
relations into continuous vector spaces, so as to
predict unseen relational triples while preserving
the inherent structure of the KG (Wang et al., 2017).
According to the different scoring functions, KGE
can be roughly categorized into two types: transla-
tional distance models (Bordes et al., 2013; Wang
et al., 2014) and semantic matching models (Yang
et al., 2015; Trouillon et al., 2016). All these mod-
els can be used in Q2T as neural link predictors.
Prompt-based Learning. In recent years, a new
training paradigm called "pre-train, prompt, and
predict" has achieved success in both NLP (Liu
et al., 2023) and graphs (Sun et al., 2022a). Aim-
ing to effectively reuse the pretrained model, this
paradigm targets reformulating the downstream
task looks similar to pre-training task (Liu et al.,
2023). Based on the same idea, in Q2T, we treat
simple and complex queries as the pre-training and
downstream tasks respectively. The difference is
that we use a trainable encoder to encode complex
queries to the same triple form as simple queries.
Neural complex query answering. Neural com-
plex query answering can be divided into two cate-
gories: with/without pretrained KGE. Query Em-
bedding (QE) based models, without pretrained
KGE, encode queries and entities into the same
embedding space, then obtain answers by step-by-
step reasoning, as shown in Figure 3 (B). In QE-
based models, many methods have been proposed
to represent entity sets, such as geometric shapes
(Ren et al., 2020; Bai et al., 2022), probability dis-
tribution (Ren and Leskovec, 2020) and bounded
histogram on uniform grids (Wang et al., 2023a).
Neural networks like multi-layer perceptron and
transformers (Vaswani et al., 2017) are used to
model set operations. They are trained for simple
and complex queries concurrently, so they suffer
drawbacks mentioned before.

Models with pretrained KGE are as follows: (1)
CQD (Arakelyan et al., 2021) uses the pretrained

neural link predictor as the one-hop reasoner and
T-norms as logic operators to obtain the continuous
truth value of an EPFO query. Then the embed-
dings are optimized to maximize the continuous
truth value. However, this method is time consum-
ing and cannot handle negation queries well (Wang
et al., 2023b). (2) LMPNN (Wang et al., 2023b),
which is related to our work, also utilizes pretrained
KGE to conduct one-hop inferences on atomic for-
mulas, the generated results are regarded as the
messages passed in Graph Neural Network (GNN)
(Wu et al., 2020). However, in the LMPNN, KGE
and GNN are coupled, which means the KGE func-
tion is invoked during every message propagation
on each edge in the inference. Besides, LMPNN
has to design of distinct logical message propaga-
tion functions for different types of score functions
in KGE, as well as for different types of regular-
ization optimization. Compared to LMPNN, Q2T
only requires a single invocation of the KGE score
function for any type of complex query. There-
fore, Q2T is better suited for leveraging KGE with
higher complexity and larger parameters. Addition-
ally, Q2T can be employed with any KGE without
the need for additional code modifications, so it is
more modular.

SQE (Bai et al., 2023) is also related to our work,
it uses a search-based algorithm to linearize the
computational graph to a sequence of tokens and
then uses a sequence encoder to compute its vector
representation. Another related work is KgTrans-
former (Liu et al., 2022). It also uses the Trans-
former to encode queries, but it outputs the final
node embedding directly. To improve transferabil-
ity and generalizability, KgTransformer introduces
a two-stage masked pre-training strategy, which
requires more pre-training data and time. However,
Q2T can outperform KgTransformer easily with
much less parameters and training time.

3 Preliminary

In this section, we formally introduce knowledge
graph (KG). Then, we use symbols of KG to define
EFO-1 query and its corresponding Disjunctive
Normal Form (DNF). Finally, we introduce neural
link predictors.

3.1 Knowledge Graph and EFO-1 Queries

We represent a KG as a set of factual triples, i.e.,
G = {(h, r, t) ∈ V × R × V}, where h, r ∈ V
denote the head and tail entity, r ∈ R represents
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Figure 3: The different reasoning mode for the query "Where did the person who won the Turing Award in AI
graduate from?". (A) Q2T adopts end-to-end reasoning mode: encoding the query graph to obtain two representation
gh, gr, then the pretrained neural link predictor takes gh, gr as inputs and output predicted tail entities, which is
similar to answering simple queries. (B) QE-based methods utilize step-by-step reasoning mode: iteratively apply
the neural set operators to get answers. Step 1 and Step 2 denote applying set projection from AI and Turning Award
respectively. Step 3 denotes applying set intersection to the results of Step 1 and Step 2. Finally, Step 4 denotes
applying set projection to the result obtained in Step 3.

the relation. We make r(h, r) = 1 if and only if
there is a directed relation r between h and t.

Following previous work (Ren and Leskovec,
2020), we define the Existential First Order queries
with a single free variable (EFO-1), and an arbi-
trary EFO-1 logical formula can be converted to
the Disjunctive Normal Form (DNF) as follows:

q[V?] = V?. ∃V1, ...,∃Vn : c1 ∨ ... ∨ cm (1)

where V? is the only free variable and Vi, 1 ≤ i ≤ n
are n existential variables, each ci, 1 ≤ i ≤ m
represents a conjunctive clause like ci = ei1 ∧
ei2∧...∧eiki , and each eij , 1 ≤ j ≤ ki indicates an
atomic formula or its negation, i.e., eij = r(a, b) or
¬r(a, b), where r ∈ R, a, b can be either a constant
e ∈ V or a variable V .

3.2 Neural Link Predictor
KGE is a kind of neural link predictor, for simplic-
ity, neural link predictors mentioned in this article
refer to KGE models. Given the head entity em-
bedding h, relation embedding r, and tail entity
embedding t, KGE can compute the score ϕ(h, r, t)
of the triple (h, r, t), where ϕ(h, r, t) indicates the
likelihood that entities h and t hold the relation r.

4 Q2T: Transforming Query to Triple

There are two main components in Q2T: (1) The
Neural Link Predictor. (2) The Query Encoder.
This section begins with an introduction to the pre-
training of neural link predictors. Subsequently, we
present QueryGraphormer, a Transformer-based

model that incorporates structural information, as
a query encoder. Q2T utilizes the query encoder to
encode complex queries, producing representations
that are used as inputs in neural link predictors, as
depicted in Figure 4.

4.1 The Pretrained Neural Link Predictor

As answers of complex queries are generated by
the pretrained neural link predictor finally, its per-
formance directly affects the final performance.

Aiming to get neural link predictors with good
performance, the training object we use contains
not only terms for predicting the tail entity of a
given triple, but also a term for predicting the re-
lation type, which has been proved to significantly
improve entity ranking (Chen et al., 2021). The
training object is defined as follows:

argmax
θ∈Θ

∑

(h,r,t)∈G
[log Pθ(t|h, r) + λ log Pθ(r|h, t)]

log Pθ(t|h, r) = ϕ(h, r, t)− log
∑

t′∈E
exp

[
ϕ(h, r, t′)

]

log Pθ(r|h, t) = ϕ(h, r, t)− log
∑

r′∈R
exp

[
ϕ(h, r′, t)

]

(2)

where θ ∈ Θ are the model parameters, including
entity and relation embeddings, h, r, t denote head
entity, relation and tail entity, h, r, t denote their
corresponding embeddings under θ , ϕ is a scoring
function, λ is a hyper-parameter determining the
contribution of the relation prediction objective.
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Figure 4: The framework of Q2T. The steps of answering complex queries in Q2T are: (1) Transforming the origin
query graph to a augmented graph without edge attributes. (2) Flattening the augmented graph to a sequence, and
initializing the sequence with the pretrained KGE. (3) Encoding the sequence representations with QueryGraphormer
which considers the structural information of the graph. (4) Inputting the final representations of gh, gr, and other
entity representations to the score function of the pretrained KGE to calculate the probability list of entities.

4.2 The QueryGraphormer

Transformer for CQA With the great success of
Transformer (Vaswani et al., 2017) in NLP, Trans-
former has also been proved to perform well for
graph representation learning (Ying et al., 2021).
KgTransformer (Liu et al., 2022) is the first work
to apply Transformer on query graphs, which first
turns relations into relation-nodes to transform the
query graph into an augmented graph without edge
attributes, then masks adjacency matrices (Hu et al.,
2020) to self-attention. However, this limits recep-
tive field of each node, which means each node can
only obtain information from its neighbors.

Motivated by Graphormer (Ying et al., 2021),
we propose QueryGraphormer, which uses the di-
rected distance between any two nodes as a bias
term in the attention mechanism, to solve these
drawbacks. This helps the model effectively cap-
ture spatial dependencies within the augmented
graph (obtained through the same transformation
as KgTransformer).

The biggest difference between our proposed
QueryGraphormer and KgTransformer is that out-
puts of QueryGraphormer are inputted to pretrained
neural link predictors to get the final predicted an-
swers, while KgTransformer outputs the final pre-
dicted answer embedding directly.

4.2.1 Input Representations Construction
In this part, we introduce how to construct input
sequence representations for QueryGraphormer.

Initial input representations. Similar to BERT
(Devlin et al., 2019) model which introduces a spe-

cial token [CLS] to represent the sentence-level
feature, in QueryGraphormer, we add two special
node: [gh] and [gr], which represent a virtual head
node and a virtual relation node respectively. In the
view of graph, [gh] and [gr] can be regraded as two
virtual nodes connected to all nodes in the query
graph. We attach [gh] and [gr] at the beginning of
each sequence, then a query graph is flattened into
a sequence, S = [gh, gr, v1, ..., vn], where n is the
number of nodes in the augmented graph, ni, i ≤ n
is an entity node, relation node or MASK node. For
each node, its input representation is a frozen em-
bedding from the pretrained KGE if it is an entity
node or relation node, or a trainable embedding
otherwise. We denote the initial representation of
S as S0 ∈ Rm×d0 , where m = n + 2, d0 is the
dimension of the pretrained KGE.

Projection. After obtaining the initial represen-
tations of S , we use MLP to project features from
high-dimensional to low-dimensional to reduce
the parameter amount and calculation time of the
QueryGraphormer, which is described as follows:

S1 =MLPproj(S
0) (3)

where S1 ∈ Rm×d1 and S0 ∈ Rm×d0 are the
inital/projected representations of S, and d1 < d0.

Handle negation queries. Aiming to make the
input representations of negation queries different
from positive queries. We apply a linear transforma-
tion on node representation that represents a nega-
tion relation: hneg

i = Ahi, where A ∈ Rd1×d1 ,
hi ∈ Rd1 denotes the the i-th element (negation
relation node) in S1.
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4.2.2 Self-Attention with Distance Message
Directed Distance Encoding. Similar to the Spa-
tial Encoding used in Graphormer (Ying et al.,
2021), we employ a function ϕ(vi, vj) : V × V →
R which measures the spatial relation between vi
and vj in the query graph g. Unlike Graphormer
which uses the distance of the shortest path to be
the function, in this paper, we use the directed dis-
tance of the shortest path, because the topological
order is crucial in query graphs, that is, predeces-
sors and successors of each node should be treated
differently.

The directed distance of the shortest path is de-
fined as follows:

ϕ(vi, vj) = dir ∗ spd(vi, vj) (4)

dir = sgn(layer(vi)− layer(vj)) (5)

where spd(vi, vj) denotes the distance of the short-
est path between vi and vj , layer(vj) denotes the
layer number of vj (obtained by topological sort),
sgn(x) is the sign function: sgn(x) = 1 if x ≥ 0,
sgn(x) = 0 if x < 0.

For each output value of ϕ, we allocate a train-
able scalar to be a bias term in the self-attention.
Then the attention αij between vi and vj is com-
puted in the following way (for simplicity, we only
consider single-head self-attention here):

αij =
exp aij∑m
k=1 exp aik

(6)

aij =
(hiW

Q)(hjW
K)T√

d1
+ bψ(vi,vj) (7)

where WQ,WK ∈ Rd1×d1 are Query and Key
matrices, bψ(vi,vj) is a learnable scalar indexed by
ψ(vi, vj). By doing this, each node in the query
graph can not only aggregate the information of all
other nodes, but also decide which nodes should
pay more attention to based on distance messages.

The result of self-attention for vi is obtained as
follows:

Attni =

n∑

j=1

αij(hjW
V ) (8)

where W V ∈ Rd1×d1 is Value matrix.
Then we adopt the classic Transformer encoder

to get the output representations of layer l, which
is described as follows:

h
′(l) = LN(MHA(h(l−1)) + h(l−1))) (9)

h(l) = LN(FFN(h
′(l)) + h

′(l)) (10)

FFN(x) = act(xW1 + b1)W2 + b2 (11)

where MHA denotes Multi-Head Attention de-
scribed before, FFN denotes Feed-Forward
blocks, LN denotes layer normalization, W1 ∈
Rd1×d2 ,W2 ∈ Rd2×d1 , and act is the activation
function. In QueryGraphormer, we make d1 = d2.

4.2.3 Training Object of QueryGraphormer
Finally, we feed the representations of gh and gr
in the last layer, denoted as gh, gr ∈ Rd1 , into the
pretrained neural link predictor to obtain predicted
answers. Formally, given a query graph g, the score
of each tail entity ti is calculated as follows:

s(ti | g) = ϕ(gh
′, gr ′, ti) (12)

gh
′ =MLPrev(gh), gr

′ =MLPrev(gr) (13)

where MLPrev projects the representations from
d1 dimension back to d0 dimension, ti ∈ Rd0 is
the pretrained embedding of entity ti, ϕ is the score
function of the pretrained KGE.

It is noteworthy that ti is from the pretrained en-
tity embeddings, and they are not needed to updated
in the training of QueryGraphormer, which effec-
tively reduces the number of parameters needed to
be updated.

Our training object is to maximize the log proba-
bilities of correct answer t, the loss function (with-
out label smoothing for simplicity) is defined as
follows:

L = −(s(t | g)− log
K∑

i=1

exp [s(ti | g)]) (14)

where t and ti are the answer entity and negative
entity (random sampling), respectively.

5 Experiments

In this section, we conduct experiments to demon-
strate the effectiveness and efficiency of Q2T and
the necessity of decoupling the training for simple
and complex queries.

5.1 Experiment Setup

Datasets. To compare our results and previous
works directly, we conduct our experiments on
the widely used datasets generated by Ren and
Leskovec. The logical queries in these datasets
are generated from FB15k (Bordes et al., 2013),
FB15k-237 (Toutanova and Chen, 2015), and
NELL995 (Xiong et al., 2017). More details about
these queries can be found in Appendix A.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni Ap An

FB15k

BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.4 14.3 14.7 11.5 6.5 12.4 41.6 11.8
Q2P 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 21.9 20.8 12.5 8.9 17.1 46.8 16.4
ConE 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1 49.8 14.8
(with pretrained KGE)
CQD-CO 89.2 25.6 13.6 77.4 78.3 44.2 33.2 41.7 22.1 - - - - - 46.9 -
LMPNN 85.0 39.3 28.6 68.2 76.5 46.7 43.0 36.7 31.4 29.1 29.4 14.9 10.2 16.4 50.6 20.0
Q2T 89.4 44.3 33.6 72.1 79.4 55.3 47.7 65.8 38.2 19.5 21.3 16.2 10.2 16.7 58.4 16.8

FB15k
-237

BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.6 3.4 20.9 5.4
Q2P 39.1 11.4 10.1 32.3 47.7 24.0 14.3 87.0 9.1 4.4 9.7 7.5 4.6 3.8 21.9 6.0
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6 23.4 5.9
FuzzQE 42.2 13.3 10.2 33.0 47.3 26.2 18.9 15.6 10.8 9.7 12.6 7.8 5.8 6.6 24.2 8.5
(with pretrained KGE)
CQD-CO 46.7 9.6 6.2 31.2 40.6 23.6 16.0 14.5 8.2 - - - - - 21.9 -
LMPNN 45.9 13.1 10.3 34.8 48.9 22.7 17.6 13.5 10.3 8.7 12.9 7.7 4.6 5.2 24.1 7.8
Q2T 48.4 15.6 12.4 37.8 51.9 28.6 19.4 21.8 12.8 6.1 12.4 8.4 4.5 4.1 27.6 7.1

NELL

BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.6 5.1 7.8 10.0 3.1 3.5 24.6 5.9
Q2P 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4 5.1 7.4 10.2 3.3 3.4 25.5 6.0
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9 27.2 6.4
FuzzQE 58.1 19.3 15.7 39.8 50.3 28.1 21.8 17.3 13.7 8.3 10.2 11.5 4.6 5.4 29.3 8.0
(with pretrained KGE)
CQD-CO 60.4 17.8 12.8 39.3 46.6 30.1 22.1 17.3 13.2 - - - - - 28.8 -
LMPNN 60.6 22.1 17.5 40.1 50.3 28.4 24.9 17.2 15.7 8.5 10.8 12.2 3.9 4.8 30.7 8.0
Q2T 61.1 22.1 18.0 41.1 52.3 30.3 23.4 19.5 15.3 5.8 7.5 11.3 3.7 4.3 31.5 6.5

Table 1: MRR results of different CQA models over three KGs. AP and AN denote the average score of EPFO
queries (1p/2p/3p/2i/3i/pi/ip/2u/up) and queries with negation (2in/3in/inp/pin/pni), respectively. The boldface
indicates the best result of each query type.

Ap An

Q2T (no structrual information) 30.2 5.6
- Adjacency Matrices Masking 30.5 6.4
- Undirected Distance Encoding 31.0 6.5
- Directed Distance Encoding 31.5 6.5

Table 2: MRR of models with different structural infor-
mation encoding strategies on the NELL dataset.

Evaluation. The evaluation metrics follows the
previous works (Ren and Leskovec, 2020), which
aims to measure the ability of models to discover
hard answers. That is, these answers cannot be
found in the training KG by symbolic methods due
to missing edges. Concretely, for each hard an-
swer v of a query q, we rank it against non-answer
entities and calculate the Mean Reciprocal Rank
(MRR) as evaluation metrics.

Baselines. We mainly compare our work with
non symbolic-integrated CQA models for EFO-1
queries. The baselines can be divided into two
types: (1) Without pretrained KGE, such as BetaE
(Ren and Leskovec, 2020), ConE (Zhang et al.,
2021), Q2P (Bai et al., 2022) and FuzzQE (Chen
et al., 2022). (2) With pretrained KGE, such as
CQD-CO (Arakelyan et al., 2021), and LMPNN
(Wang et al., 2023b).

As some works (e.g. KgTransformer (Liu et al.,
2022)) do not support negation queries, they use the

EPFO queries (queries without negation) generated
by Ren et al., we also compare these works on the
EPFO datasets in Appendix F. We also compare
our work with symbolic-integrated CQA models in
Appendix G.

5.2 Comparison with Baselines

Table 1 shows the MRR results of Q2T and base-
lines on EFO-1 queries over three benchmarks. The
experiment settings can be found in Appendix B.

From the table, we can find that our Q2T can
achieve the state-of-the-art performance on almost
all positive queries over three datasets. Especially
on FB15k and FB15k-237, our Q2T has a signifi-
cant improvement on EPFO performance, achiev-
ing 15.4% and 14.9% relative improvement on AP
respectively. Furthermore, compared to the step-
by-step reasoning mode, the end-to-end reasoning
mode can eliminate error cascading to some ex-
tent, which is reflected in the better performance
on multi-hop queries (2p/3p). More details about
the model parameters can be found in Appendix C.

This results show that, even without the explicit
modeling for neural set operators, our Q2T can
still perform well on logical queries, one poten-
tial explanation is as follows: Each pretrained
neural link predictor can be regarded as a neu-
ral knowledge base which record the structure
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Figure 5: Hyperparameter analysis on NELL. Am, Ai, An, Ap denote the average MRR of multi-hop queries,
intersection queries, negation queries, and all positive queries. Since the performance is too low when the label
smoothing is 0, they are not shown in the figure (A).

of KG, while learning to transformer complex
queries into suitable inputs for the link predictor
can be seen as an end-to-end process of retriev-
ing answers from this neural knowledge base.

Compared to BetaE, Q2P and ConE, Q2T’s
strong performance on both simple and complex
queries underscores the critical importance of sepa-
rating their training processes.

Although Q2T cannot outperform previous mod-
els on negation queries, it still gets competitive per-
formance. One potential explanation for this lies in
the fact that the neural link predictor is exclusively
pretrained on positive triples. The distribution of
answer entities for positive triples tends to be more
concentrated, whereas queries containing negation
operators result in a more dispersed answer entity
distribution. For example, the "complement" oper-
ator can yield numerous candidate answers, as seen
in queries like "Who is not the winner of the Tur-
ing Award." Consequently, pretrained KGE models
struggle to generate suitable answer embeddings
for queries with dispersed answer distributions.

We also test the performance of Q2T with differ-
ent pretrained KGE on the FB15k-237 queries, and
the results are shown in Appendix E.

5.3 Ablation Studies
In this section, we conduct further experiments to
demonstrate the effectiveness of Directed Distance
Encoding and investigate how hyperparameters af-
fect the performance on each query type.

Structure Encoding. We compare our proposed
Directed Distance Encoding to two commonly used
strategies: Undirected Distance Encoding and Ad-
jacency Matrices Masking, which are described in
section 4.2. The results are reported in Table 2, it

can be found that models with structural informa-
tion perform well consistently in CQA, indicating
that structural information is necessary. Besides,
Distance Encoding that leverages global receptive
field is better than Adjacency Matrices Masking
that uses local receptive field. Besides, compared
to undirected distance, directed distance can further
improve performance by introducing extra topolog-
ical information that help each node to treat their
predecessors and successors differently.

Label smoothing. Label smoothing is crucial in
Q2T, model without label smoothing suffer from
severe overfitting, resulting in bad performance on
all queries. More details about label smoothing
can be found in Appendix D. Figure 5 (A) shows
how label smoothing influences performance, it
can be observed that different types of queries pre-
fer different label smoothing values, multi-hop and
negation queries prefer high label smoothing value
while intersection queries do the opposite, we think
this difference is caused by the difference in the av-
erage number of answers, as shown in Appendix A.
More specifically, queries with more candidate
answers prefer higher label smoothing value.

Number of layers. To justify how the number
of layers affects Q2T, we test the performance of
models with a different number of layers on differ-
ent query types. Figure 5 (B) demonstrates that (1)
For intersection queries, model with two layers can
handle them well, more layers lead to overfitting.
(2) For multi-hop queries, more layers are needed
to model long dependencies in the query graphs.
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#params As Ac Ap An
Q2T (NF) 56M 44.3 22.0 24.5 5.8
Q2T (F) 26M 48.6 25.1 27.7 7.3

Table 3: Impact of whether freezing KGE on perfor-
mance. Q2T (NF) denotes Not Freezing KGE, while
Q2T (F) denotes Freezing KGE. As, Ac denotes the av-
erage MRR of simple queries and complex queries. The
number of parameters of the KGE is 30M.

5.4 Training with trainable KGE

Aiming to further prove the necessity of decou-
pling the training for simple queries and complex
queries, on the FB15k dataset, we conduct exper-
iments on Q2T with frozen/not frozen pretrained
KGE. The results are shown in Table 3, where Q2T
(NF) means training KGE and encoder on simple
and complex queries together, Q2T (F) means only
training encoder for complex queries. Although
Q2T (NF) has more trainable parameters, it per-
form worse than Q2T (F). Especially on simple
queries, a neural link predictor trained on simple
queries can already handle it well, however, a more
complex model trained on more complex queries
leads to worse performance. As the final results are
predicted by the pretrained link predictor (KGE),
the worse the performance on simple queries, the
worse the performance on complex queries.

6 Conclusion

In this paper, we present Q2T to transform diverse
complex queries into a unified triple form that can
be solved by pretrained neural link predictors. Q2T
not only decouples the training of complex queries
and simple queries from the training perspective,
but also decouples KGE and the query encoder
from the model perspective. The experiments on
three datasets demonstrate that Q2T can achieve the
state-of-the-art performance on almost all positive
queries.

7 Limitations

The limitations of our proposed Q2T are as follows:
(1) Q2T cannot handle negation queries well. Us-
ing more strategies to enable Q2T to answer nega-
tion queries well is a direction for future work. (2)
We only use KGE as our pretrained link predictors,
as the performance of Q2T is highly dependent on
the pretrained link predictors. Other type models
(e.g. GNN based model) as pretrained link predic-
tors may perform better. (3) Limited to time and

resource, we only test performance of Q2T with
different KGE models on the FB15k-237 queries.
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Figure 6: The illustration of all query types. The
p, i, n, u represent projection, intersection, negation,
and union operations respectively.

A Data Details

The nine query types are shown in Figure 6. Specif-
ically, there are five query types (1p/2p/3p/2i/3i)
evaluated in a supervised manner, five query types
(2in/3in/inp/pin/pni) evaluated in a few-shot man-
ner, and four query types (2u/up/pi/ip) evaluated in
a zero-shot manner. Given the query type, a sample
is generated by random walking on the KG. The
splitting of datasets are shown in Table 4. The av-
erage number of answers of test queries are shown
in Table 5.

It should be noted that the training queries and
the test queries are generated by random walking
on Gtrain (containing training edges) and Gtest
(containing training, validation, and testing edges),
respectively, which means that models need to pre-
dict at least one missing edges by knowledge graph
reasoning.

B Experiment settings

For pretrained KGE model, we use the same set-
tings as CQD (Arakelyan et al., 2021) and LMPNN
(Wang et al., 2023b): ComplEx (Trouillon et al.,
2016) model with rank 1000. The difference is that
we use relation prediction as an auxiliary training
objective in the training of ComplEx, as stated in
section 4.1, so our ComplEx model perform better
on 1p queries. The MRR scores of baselines we
use are reported by Wang et al..

The default setting of Q2T is: 6 layer, 768 hidden

size, 12 number of heads. We tune the hyperparam-
eters of Q2T on the validation set for each dataset
by grid search. We consider the batch size from
{512, 1024, 2048}, learning rate from {1e-4, 2e-4,
4e-4, 5e-4}, and label smoothing from {0.2, 0.4,
0.6, 0.8}. Our experiments are conducted on GTX
3090 with PyTorch 1.11, and the random seed are
fixed for each experiment. The best hyperparame-
ters for each datasets are shown in Table 6.

C Model parameters and training time

Table 7 show the number of parameters for mod-
els in Table 1. Although Q2T requires training
KGE first and then training the query encoder, the
overall training time is still shorter than that of
other methods. This is due to the high training effi-
ciency achieved by decoupling the training process
of KGE and the query encoder.

BetaE (Ren and Leskovec, 2020), ConE (Zhang
et al., 2021), Q2P (Bai et al., 2022) don’t use pre-
trained KGE, they train neural set operators with
KG embeddings from the zero, which is very inef-
ficient. Although these methods seem to have less
parameters than the pretrained KGE used in Q2T,
they have much longer training time (e.g. The train-
ing times of BetaE and ConE are estimated to more
than 20 hours under the official settings, while the
training time for Q2T is less than 10 hours). Be-
sides, the training for KGE on simple queries is
efficient due to the simple structure of KGE, e.g.,
on the NELL queries, although ComplEx (Trouil-
lon et al., 2016) model has 110M parameters, its
training can be done in one hour.

D Label Smoothing

Aiming to prevent models from overfitting, label
smoothing uses soft one-hop labels, instead of
hard ones, to introduce noise during training. The
smoothed label yls is computed as follows:

yls = (1− α)yh +
α

K

where yls is the smoothed label, yh is the original
label, α is the parameter of label smoothing, K
is the number of sampling. Lastly, standard cross-
entropy loss is applied to these smoothed labels.

E Performance of Q2T with different
pretrained KGE

Table 8 presents the MRR results of Q2T with dif-
ferent pretrained KGE on the FB15k-237 queries
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Training Validation Test
Dataset 1p/2p/3p/2i/3i others 1p others 1p others
FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15k-237 149,689 14,968 20,101 5,000 22,812 5,000
NELL 107,982 10,798 16,927 4,000 17,034 4,000

Table 4: Number of training, validation, and test queries generated for different query types.

Dataset 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
FB15k 1.7 19.6 24.4 8.0 5.2 18.3 12.5 18.9 23.8 15.9 14.6 19.8 21.6 16.9
FB15k-237 1.7 17.3 24.3 6.9 4.5 17.7 10.4 19.6 24.3 16.3 13.4 19.5 21.7 18.2
NELL995 1.6 14.9 17.5 5.7 6.0 17.4 11.9 14.9 19.0 12.9 11.1 12.9 16.0 13.0

Table 5: Average number of answers of test queries in datasets generated by Ren and Leskovec.

Dataset batchsize dropout ls lr
FB15k 1024 0.1 0.4 4e-4
FB15k-237 1024 0.1 0.6 4e-4
NELL 1024 0.1 0.6 5e-4

Table 6: The best hyperparameters of Q2T on datasets
generated by Ren and Leskovec. The ls and lr denote
label smoothing and learning rate respectively.

generated by Ren and Leskovec. CP (Lacroix et al.,
2018), DistMult (Yang et al., 2015) and ComplEx
(Trouillon et al., 2016) are trained under the best
hyperparameters settings provided by Chen et al.,
while Tucker (Balazevic et al., 2019) is trained un-
der the best hyperparameters settings provided by
Balazevic et al.. It can be observed that the perfor-
mance of link predictors directly affects the final
performance on complex queries. We also find that
Q2T with different KGE models may be good at
solving different queries.

F Comparison with more baselinse on
EPFO datasets

Table 10 shows the HIT@3 results of different
CQA models on EPFO queries generated by Ren
et al.. KgTransformer (Liu et al., 2022) utilizes two-
stage pre-training : The first stage aims to initialize
KgTransformer with KGs’ general knowledge, and
the second stage refines its ability for small queries
during inference. Although KgTransformer has
more parameters (8 layers, 1024 hidden size) and
spends more time on more pre-trianing data, it still
performs worse than our Q2T. The potential reason
that KgTransformer perform better on pi/ip queries
is that these type of queries may included in its pre-
training data, which are randomly sampled from
KGs.

G Comparison with symbolic-integrated
model

In contrast to non symbolic-integrated methods
(e.g., BetaE (Ren and Leskovec, 2020), Q2P (Bai
et al., 2022), CQD-CO (Arakelyan et al., 2021)),
which use fixed-dimension intermediate embed-
dings (e.g., 102), symbolic-integrated methods
(e.g., GNN-QE (Zhu et al., 2022)) employ inter-
mediate fuzzy set sizes that scale linearly with the
Knowledge Graph size (e.g., 104).

We select GNN-QE as a representative of
symbolic-integrated methods for comparison with
our Q2T, the results are shown in Table 12. It
should be noticed that, GNN-QE employs NBFNet
(Zhu et al., 2021) which applies a multi-layers
GNN on the whole KGs for each projection op-
eration. Besides, GNN-QE applies fuzzy logic
operations to fuzzy sets of entities, so each node
needs to obtain the probability list of all entities (a
tensor with shape (|V |, )). As a result, GNN-QE
requires much more training time and lots of GPU
resources, it requires 128GB GPU memory to run
a batch size of 32, while Q2T only demands 12GB
GPU memory to run a batch size of 1024. Even
then this, Q2T is also competitive with GNN-QE.
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Model FB15k FB15k-237 NELL
#pretrained

KGE params
#trainble
params

#pretrained
KGE params

#trainble
params

#pretrained
KGE params

#trainble
params

BetaE - 19M - 20M - 58M
ConE - 28M - 24M - 63M
Q2P - 11M - 9.9M - 29M
(with pretrained KGE)
CQD 35M 0M 30M 0M 128M 0M
LMPNN 35M 16M 30M 16M 128M 16M
Q2T 35M 26M 30M 26M 128M 26M

Table 7: The number of parameters for each model. CQD only use pretrained KGE to obtain answers with
optimization-based method, so it doesn’t have other trainable parameters.

KGE Model 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni Ap An

TuckER 45.3 12.5 10.1 28.2 39.8 21.8 15.8 16.9 10.0 7.0 8.9 7.6 4.0 5.0 22.2 6.5
CP 46.3 14.9 12.1 37.1 51.3 28.6 17.8 17.4 12.0 6.0 11.7 8.8 4.7 3.9 26.4 7.0
DistMult 47.2 15.1 11.9 37.2 50.9 28.1 18.3 18.7 12.2 6.2 12.5 8.4 4.5 4.1 26.6 7.1
ComplEx 48.5 16.2 12.6 37.8 51.8 28.6 19.2 21.9 12.5 6.4 12.7 8.5 4.6 4.2 27.7 7.3

Table 8: The MRR results of Q2T with different pretrained KGE on the FB15k-237 queries generated by Ren and
Leskovec.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up Avg

FB15k-237

GQE 0.405 0.213 0.153 0.298 0.411 0.085 0.182 0.167 0.160 0.230
Q2B 0.467 0.240 0.186 0.324 0.453 0.108 0.205 0.239 0.193 0.268
EmQL 0.389 0.201 0.154 0.275 0.386 0.101 0.184 0.115 0.165 0.219
CQD ( CO ) 0.512 0.213 0.131 0.352 0.457 0.146 0.222 0.281 0.132 0.272
CQD ( Beam ) 0.512 0.288 0.221 0.352 0.457 0.129 0.249 0.284 0.121 0.290
KgTransformer 0.459 0.312 0.276 0.398 0.528 0.189 0.286 0.263 0.214 0.325
Q2T 0.530 0.329 0.276 0.415 0.529 0.167 0.251 0.358 0.230 0.343

NELL

GQE 0.417 0.231 0.203 0.318 0.454 0.081 0.188 0.200 0.139 0.248
Q2B 0.555 0.266 0.233 0.343 0.480 0.132 0.212 0.369 0.163 0.306
EmQL 0.456 0.231 0.172 0.331 0.483 0.143 0.244 0.226 0.207 0.277
CQD ( CO ) 0.667 0.265 0.220 0.410 0.529 0.196 0.302 0.531 0.194 0.368
CQD ( Beam ) 0.667 0.350 0.288 0.410 0.529 0.171 0.277 0.531 0.156 0.375
KgTransformer 0.625 0.401 0.367 0.405 0.546 0.203 0.306 0.469 0.270 0.399
Q2T 0.670 0.409 0.373 0.397 0.543 0.198 0.282 0.534 0.316 0.414

Table 10: HIT@3 results of different CQA models on EPFO queries generated by Ren et al.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni Ap An

FB15k-237 GNN-QE 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8 26.8 10.2
Q2T 48.4 15.6 12.4 37.8 51.9 28.6 19.4 21.8 12.8 6.1 12.4 8.4 4.5 4.1 27.6 7.1

NELL GNN-QE 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3 28.9 9.7
Q2T 61.1 22.1 18.0 41.1 52.3 30.3 23.4 19.5 15.3 5.8 7.5 11.3 3.7 4.3 31.5 6.5

Table 12: Comparison between Q2T and GNN-QE.
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