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Abstract

The field of natural language processing (NLP)
has made significant strides in recent years,
particularly in the development of large-scale
vision-language models (VLMs). These mod-
els aim to bridge the gap between text and vi-
sual information, enabling a more comprehen-
sive understanding of multimedia data. How-
ever, as these models become larger and more
complex, they also become more challenging
to train and deploy. One approach to address-
ing this challenge is the use of sparsely-gated
mixture-of-experts (MoE) techniques, which
divide the model into smaller, specialized sub-
models that can jointly solve a task. In this
paper, we explore the effectiveness of MoE in
scaling vision-language models, demonstrating
its potential to achieve state-of-the-art perfor-
mance on a range of benchmarks over dense
models of equivalent computational cost. Our
research offers valuable insights into stabiliz-
ing the training of MoE models, understanding
the impact of MoE on model interpretability,
and balancing the trade-offs between compute
performance when scaling VLMs. We hope our
work will inspire further research into the use
of MoE for scaling large-scale vision-language
models and other multimodal machine learning
applications.

1 Introduction

The ability to understand and generate natural language
from visual information is a critical component of many
real-world applications, including visual question an-
swering (VQA), visual reasoning, and multimodal in-
formation retrieval. In recent years, the success of deep
learning in natural language processing (NLP) has led to
the development of large-scale vision-language models
(VLMs) (Tan and Bansal, 2019; Chen et al., 2020; Li
etal.,2021b; Gan et al., 2020; Kim et al., 2021a; Alayrac
et al., 2022; Wang et al., 2022c; Shen et al., 2022b; Li
et al., 2021a; Shen et al., 2022a; Jia et al., 2021; Liet al.,

* equal contribution; § work initiated during an intern-
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github.io.

2022; Yu et al., 2022) that leverage powerful neural net-
work architectures to encode and decode multimodal
information. However, state-of-the-art vision-language
models like Flamingo-80B (Alayrac et al., 2022), BEIT-
3-1.9B (Wang et al., 2022b), and PaLI-17B (Chen et al.,
2022) can be computationally expensive and difficult to
train, which has motivated researchers to explore ways
of improving their efficiency and effectiveness.

Recently, sparsely activated Mixture of Experts (MoE)
models have been successfully employed to scale both
vision (Riquelme et al., 2021; Lou et al., 2021; Mustafa
et al., 2022) and text models (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Zoph et al., 2022; Du et al., 2022).
These models are motivated by the need to increase
model parameters while controlling compute costs. In
addition, these models provide other advantages, includ-
ing sparsity that can mitigate catastrophic forgetting in
continual learningg (Collier et al., 2020; Komatsuzaki
et al., 2022), and an inductive bias that can enhance
performance in multitask learningg (Ma et al., 2018;
Kudugunta et al., 2021; Kim et al., 2021b). Overall, the
use of MoEs has proven to be a promising strategy for
scaling deep learning models across various domains.

Building on the success of MoEs in individual do-
mains and applying the intuition that sparse models
may better handle different tasks versus dense counter-
parts, we investigate the potential of MoEs for vision-
language modeling. To this end, we take the first step in
this direction and explore models that can process both
images and text for vision-language tasks. One simi-
lar effort has been studied in LIMOE (Mustafa et al.,
2022), where the authors proposed a modal-agnostic
CLIP-style (Radford et al., 2021) multimodal MoEs ar-
chitecture, but their focus is mainly on the contrastive
pre-training objective and vision-only downstream tasks.
There are two limitations in this setting: (1) The increas-
ing model capacity of MoEs under the the simple con-
trastive objective can easily lead to over-fitting issues.
(2) The vision-only benchmarking does not reveal the
full power of scaling up multimodal models. Alterna-
tively, our goal is to demonstrate the effectiveness of
MoEs under generative modeling for vision-language
tasks and provide a more comprehensive foundation for
future research in this area.

Specifically, we propose a novel VLM architecture
that employs MoE to scale both the text-based and
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Figure 1: The encoding process of VL-MoE for various modality inputs, for which gray and colored blocks indicate
non-activated and activated modules, respectively. (a) For image input only, the encoding process switches to
V-MOoE or V-FEN (b) For text input only, the encoding process switches T-MoE or T-FFN. (c) For image-Text Pair
input, the encoding process switches, V-MoE & T-MoE and VL-FFN. (d) For the early layers, we scale the V-FFN
and T-FFN with Sparse Mixture-of-Experts as V-MoE and T-MoE, respectively. VL-MoE will utilize conditional
computation to allocate tokens in a modality-specific fashion. V/T-MoE converts multiple V/T-FFNs as experts,
where the image/text input will be conditionally routed by V/T-Router Network.

vision-based feed-forward networks (T-FFN and V-FFN,
respectively) in a unified framework. Our approach di-
vides the model into multiple sub-models, each of which
is responsible for processing a modal-specific subset of
the input data. The text and vision input representa-
tions are then aligned via three mask data modeling
objectives (Wang et al., 2022b).

We train a range of VL-MoE models and evaluate
the model on vision-language classification, vision-
language retrieval, vision-only and language-only tasks,
Our experiments demonstrate that MoE can significantly
improve the efficiency and effectiveness of VLMs, en-
abling them to handle large-scale, real-world multime-
dia data. We scale BASE-size model up to a 1.8B pa-
rameter VL-MOE, srce/168, Which only applies 560M
parameters per token and achieves competitive perfor-
mance with dense models that make use of similar or
more pre-training image-text pair data and apply 3-4 x
more parameters per token.

In summary, our contributions are as follows:

* We propose VL-MOoE, the first large-scale genera-

tive MoEs multimodal models for vision/langauge-
only, as well as vision-and-language tasks.

* We explore various scaling strategies, including in-
creasing dense model size, increasing expert num-
bers, and scaling either T-FFN or V-FFN alone,
to investigate the trade-offs between model com-
plexity and performance on various downstream
tasks.

* We present ablations to understand VL-MoE
model’s behavior, interpretability, and our design
choices.

2 Related Work

Vision-Language Modeling. Vision-language pre-
training (Tan and Bansal, 2019; Lu et al., 2019; Su
et al., 2020; Zhang et al., 2021; Radford et al., 2021; Li
et al., 2020; Kim et al., 2021a; Li et al., 2021a; Wang
et al., 2022c; Bao et al., 2022b; Wang et al., 2022a;

Alayrac et al., 2022; Yu et al., 2022; Wang et al., 2022b;
Lietal., 2022; Chen et al., 2022; Radford et al., 2021;
Jia et al., 2021; Shen et al., 2022b,a; Yuan et al., 2021;
Singh et al., 2021; Liu et al., 2023b) involves developing
model architecture and pretraining objectives to learn
effective multimodal representations from large-scale
image-text pairs. Two main approaches are encoding
distinct modalities separately with different encoders.

For model architecture, there are two main designs.
The first design, utilized by models such as (Radford
etal., 2021; Jia et al., 2021; Yuan et al., 2021) separately
encodes each modality with different encoders. While
this approach performs well for image-text retrieval
tasks, it struggles with complex vision-language tasks
like visual reasoning. The second design, employed by
models like (Tan and Bansal, 2019; Li et al., 2021a; Lu
etal.,2019; Lietal., 2019; Kimet al., 2021a; Chen et al.,
2022; Alayrac et al., 2022), uses a complex fusion mod-
ule with cross-modal attention to combine modalities.
However, this design sacrifices efficiency for improved
performance. Recently, a new design has emerged with
the MOME Transformer used in both VLMo and BE1T-
3. This design unifies the dual-encoder and fusion-
encoder models by introducing a mixture-of-modality-
experts technique. With MOME, various modalities are
encoded within a shared Transformer block, allowing
for improved scalability and achieving state-of-the-art
performance on vision-language tasks. There is an in-
creasing interest to grow the VL model capacity with
an affordable compute budget, including MoE (Mustafa
et al., 2022) and the injection of new trainable modules
on pre-trained models (Alayrac et al., 2022; Shen et al.,
2022a; Liu et al., 2023b; Li et al., 2023d,b; Koh et al.,
2023); the former remains less studied.

For pretraining objectives, multiple cross-modal pre-
training objectives have been studied. They can be cate-
gorized into two classes: (1) Discriminative modeling,
including image-text contrastive learning (Radford et al.,
2021; Jia et al., 2021), image-text matching (Tan and
Bansal, 2019; Kim et al., 2021a; Li et al., 2021a; Bao
et al., 2022b) and word-patch/region alignment (Chen
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et al., 2020; Kim et al., 2021a); (2) Generative mod-
eling, including masked language modeling (Tan and
Bansal, 2019; Su et al., 2020; Kim et al., 2021a) or pre-
fix language modeling (Wang et al., 2022c), masked
region modeling (Tan and Bansal, 2019), multimodal
prefix language modeling (Wang et al., 2022c). Re-
cently, BEIT-3 shows strong scaling results by unifying
the generative multimodal pretraining objective with
masked data modeling, which comprises masked im-
age modeling and masked language modeling on the
monomodal encoders and masked multimodal modeling
on the multimodal encoder. In this paper, we perform
MOoE study, by adopting the MOME Transformer as the
backbone dense network and generative (masked data)
modeling as pretraining objectives given its simplicity
and scaling ability.

More recently, with the introduce of LLaMA (Tou-
vron et al., 2023), PaLI’s research (Chen et al., 2022)
focused on the scaling of V&L components, while
PalLM-E explored the embodied domain more deeply.
BLIP-2 (Li et al., 2023c¢) introduced the innovative Q-
former to bridge image and language encoders, and
this was further enhanced by InstructBLIP (Dai et al.,
2023). Otter (Li et al., 2023a) augmented the instruction-
following capabilities of OpenFlamingo (Laurencon
et al., 2023; Alayrac et al.; Awadalla et al., 2023). Both
MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu et al.,
2023a; Sun et al., 2023) draw inspiration from GPT4’s
capabilities but place emphasis on the efficiency and
integration of visual and linguistic models. In a fresh
approach, mPLUG-OwI (Ye et al., 2023) first aligns vi-
sual features and subsequently fine-tunes the language
model using LoRA. Shikra (Chen et al., 2023) and
Kosmos (Peng et al., 2023) leverage grounded image-
text pairs during their training process. Lastly, QWen-
VL (Bai et al., 2023) made notable strides in scaling
LMM pre-training.

Sparse Mixture of Experts models. We build upon
the concept of deep sparse MoEs, which have been stud-
ied independently in both Computer Vision (Riquelme
et al., 2021; Lou et al., 2021; Mustafa et al., 2022) and
Natural Language Processing (Riquelme et al., 2021;
Lou et al., 2021; Mustafa et al., 2022; Shazeer et al.,
2017; Lepikhin et al., 2020; Fedus et al., 2021; Du et al.,
2022; Zoph et al., 2022; Clark et al., 2022; Zhou et al.,
2022; Komatsuzaki et al., 2022; Kudugunta et al., 2021;
Shen et al., 2023) in the context of conditional computa-
tion. The goal of conditional computation is to increase
the number of model parameters without a proportional
increase in computational cost, which is achieved by
selectively activating only relevant parts of the model
based on input-dependent factors (Bengio, 2013; Chen
et al., 1999; Davis and Arel, 2013). MoE models use a
learned gating mechanism that activates only a subset
of k experts out of F > k for a given input, allowing
an input to select either all experts (Eigen et al., 2013)
or only a sparse mixture thereof, as in recent massive
language models (Fedus et al., 2021; Du et al., 2022).

While many works aim to improve the gating mecha-
nism itself (Hazimeh et al., 2021; Lewis et al., 2021;
Roller et al., 2021; Zhou et al., 2022), MoE models have
also been studied for multitask learning (Hazimeh et al.,
2021; Kudugunta et al., 2021) with per-task routers (Ma
et al., 2018), although a shared pool of experts is typi-
cally used.

MOoE models have been explored for multimodal
learning as well, with LIMOE (Mustafa et al., 2022) and
Uni-MoE (Zhu et al., 2022) being most relevant to our
work. However, LIMOE considers the CLIP-style con-
trast as the pre-training objective, and vision/retrieval
tasks as the downstream evaluation. Uni-MoE focuses
on routing decisions with limited experts and evaluates
on caption/vision/language/retrieval tasks. To the best
of our knowledge, the proposed VL-MOoE is the first the
MOoE scaling study to consider the generalized genera-
tive modeling objective in the VL pre-training, and we
evaluate its scaling performance in a more comprehen-
sive manner, including vision/language-only, as well as
vision-and-language tasks.

3 Method

We first describe the masked data modeling pretrain-
ing objectives. We next discuss MoEs, sparse MoEs
and present how we apply sparse MoEs methodology to
vision-language models, before explaining our design
choices for the routing algorithm and the implementa-
tion of VL-MoE.

3.1 Vision-Language Masked Data Modeling

We utilized a unified masked data modeling objec-
tive (Wang et al.,, 2022b) to pretrain VL-MoE on
monomodal (i.e., images and texts) and multimodal
data (i.e., image-text pairs). This approach has been
demonstrated to be scaling-friendly with small batch-
sizes. Our pretraining process involved masked image
modeling on monomodal image data, masked language
modeling on monomodal text data, and masked vision-
language modeling on multimodal image-text pairs.

Masked Language Modeling We use masked lan-
guage modeling (MLM) to learn language representa-
tions from large-scale text-only data. For MLM, 15%
of tokens in monomodal text data are randomly masked,
and the model is trained to recover the masked tokens
from the corrupted input text. Masked tokens are re-
placed by a [MASK] token 80% of the time, a random
token 10% of the time, and kept the original tokens 10%
of the time, following BERT (Devlin et al., 2019).

Masked Image Modeling In addition to masked lan-
guage modeling, VL-MoE uses masked image modeling
(MIM) to learn vision representations from large-scale
image data. For MIM, block-wise masking is applied
to 40% of image patches, and the pretraining objective
is to reconstruct the discrete visual tokens of masked
patches, following BEiT (Bao et al., 2022a). The im-
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Figure 2: Effect of VL-MOoE scaling on three mask language modeling (MLM), mask image modeling (MIM), and
masked vision-language modeling (VLM) pre-training tasks across training flops.

age tokenizer of BEITv2 (Peng et al., 2022) is used to
obtain the discrete tokens as the reconstructed targets.

Masked Vision-Language Modeling To Ilearn
aligned vision-language representation, we use masked
vision-language modeling (VLM), which extends
masked language modeling and masked image model-
ing to multimodal data. The task aims at recovering
masked image patches and text tokens based on visual
and linguistic clues. In VLM, text tokens (with 50%
mask ratio) are randomly masked as in MLM, and the
model is trained to recover the masked text tokens based
on the joint image-text representations. Image patches
are also masked with the same ratio as in MIM, and
the corresponding visual tokens are predicted based on
the image-text pair. The VLM task further encourages
the model to learn alignments between image and text
pairs.

3.2 VL-MoE Architecture

Input Representation. To obtain text representations,
the input text is tokenized and projected onto word
embeddings ({w;}},), where M is the length of the
tokenized text sequence. Two special tokens, a start-
of-sequence token ([ T_CLS]) and a special boundary
token ([ T_SEP]), are added to the sequence. Text rep-
resentations are obtained by summing the word em-
beddings and text position embeddings, resulting in
H" = [wrcrs), w1, ..., Wy, Wirsee) ] + Thos-

For image representations, the input 2D image v €
RIXWXC i split and reshaped into N = HW /P?
patches v? € RV*(P QC), where C' is the number of
channels, (H, W) is height and width of the input im-
age, and P is the patch size. These patches are then flat-
tened into vectors and linearly projected to obtain patch
embeddings following vision Transformers (Dosovit-
skiy et al., 2020; Touvron et al., 2020; Bao et al., 2022a).
We prepend a learnable special token [I_CLS] to the
sequence. The resulting image input representations are
given by H” = [v(1 c1s7,01, ..., UN]| + Vpos, Where
HY € RV+DxXD v ¢ RP*OXD ig g linear projec-
tion, Vs € RIVFDXD are learnable 1D position em-
beddings.

To form image-text input representations, we con-
catenate image and text input vectors, resulting in

H' = [H; H).

Backbone Network. The dense backbone network
of VL-MOoE is a shared multimodal Transformer, illus-
trated in Figure 1. To encode different modalities, we
utilize a mixture-of-modality-experts (MOME) Trans-
former(Bao et al., 2022b; Wang et al., 2022b), which
takes image and text representations of monomodal data,
as well as representations of image-text pairs as input.
The MOME Transformer comprises multiple layers of
blocks, each consisting of a multi-head self-attention
layer and a feed-forward expert layer. While the self-
attention module is shared across modalities, each feed-
forward expert layer contains a pool of modality-specific
experts (V-FFN, T-FFN, or VL-FFN) that act as a sub-
stitute for the feed-forward network in standard Trans-
formers. This allows for hard routing over the pool of
feed-forward networks based on the modality of the
input tokens.

Conditional Computation with MoEs. The concept
of conditional computation involves selectively activat-
ing different parts of a neural network based on the
input (Bengio, 2013). One specific approach is to use a
mixture-of-experts (MoE) model, where different “ex-
perts” handle different regions of the input space (Jacobs
et al., 1991). In this paper, we adopt the MoE layer pro-
posed in (Shazeer et al., 2017), which consists of E
experts and is defined as MoE(x) = ZF:1 g(x); e;(x).
Here, x is the input to the layer, e; : R” — RP is the
function computed by expert 7, and g : R” +— R is the
“routing” function that determines the input-dependent
weights for the experts. Both e; and g are implemented
as neural networks. Although this formulation still in-
volves a dense network, it can be made sparse by restrict-
ing g to assign only £ < E non-zero weights, thereby
eliminating the computation of unused experts. This
approach allows for super-linear scaling of the number
of model parameters in both training and inference.

VL-MoE. We apply sparse MoE to vision-language
models in the context of the MOME. As illustrated in
Figure 1, inputs from different modalities are routed
to V-FFEN and T-FFN in the first (L — F') layers,
and V-FFN, T-FFN, or VL-FFN in the last F' lay-
ers. To avoid instability due to modality input im-
balance when applying MoEs to modal-agnostic VL-
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modules in V-MOE (Riquelme et al., 2021), we only
use MoE for V-FFN and T-FFN in the first (L — F)
layers. V-FFN and T-FFN have two layers and a
GeLU (Hendrycks and Gimpel, 2016) non-linearity:
VIT-FEN(z) = Wy 0gey(Wi). For VL-MoE, we
replace a subset of V-FFN and T-FFN with V-MoE
and T-MOoE layers, where each expert is an FFN with
the same architecture e;(x) = FFNg, (x) but differ-
ent weights §; = (W%, W4). This design pattern is
similar to that of GShard (Lepikhin et al., 2020) and
V-MOE (Riquelme et al., 2021) models. In V-MoE
and T-MoE layers, each token z € RP” is processed
sparsely by k out of E available experts. To select
which one, a lightweight V/T-Router predicts gating
weights per token: g(x) = softmax(Wyz) € RE,
where W, € RP*¥ is learned. The k activated experts’
outputs are combined linearly according to the gating
weights: MoE(x) = 25:1 g(x)e - FENe ().

To ensure computational efficiency and implemen-
tation constraints, each expert in VL-MoE has a fixed
buffer capacity, which determines the maximum number
of tokens it can process. The assumption is that tokens
are approximately balanced across experts. In case the
capacity is exceeded, some tokens are not processed by
the expert and are dropped, leading to a decrease in the
success rate. This rate is a vital indicator of balanced
routing and training stability. To mitigate this problem,
we employ Batch Priority Routing (BPR) (Riquelme
et al., 2021; Mustafa et al., 2022), which selectively
skips tokens based on their routing weights. BPR pri-
oritizes tokens with larger routing weights, as they are
deemed more informative. Our results show that BPR
is crucial for stable training of VL-MoE. We further an-
alyze token routing decisions in Section 5 and dropped
tokens in Appendix.

4 Experiment

4.1 Pretraining Setup

Pretraining Data. Our pretraining process uses both
monomodal and multimodal data. The monomodal
data comprises ImageNet-22K for images and English
Wikipedia and BookCorpus (Zhu et al., 2015) for text.
The multimodal data combines four datasets of image-
text pairs: Conceptual Captions (Sharma et al., 2018),
SBU Captions (Ordonez et al., 2011), COCO (Lin et al.,
2014), and Visual Genome (Krishna et al., 2017), con-
taining a total of 4 million images and 10 million image-
text pairs.

Pretraining Setting. For the large-size model, we em-
ploy a 24-layer Transformer network with 1024 hidden
size and 24 attention heads, following VIT (Dosovitskiy
et al., 2020), BEiT (Bao et al., 2022a), and VLMO (Bao
et al., 2022b). The use of VL-FFN starts at 20th layer.
The base/small-size model is an 12/8-layer Transformer
network with 768/384 hidden size and 12/6 attention
heads, where VL-FFN is used in 10/8th layer. We ran-
domly initialize the model parameters using the method

described in BEiT (Bao et al., 2022a). The image reso-
lution is set to 224 x 224, and the patch size is 16 x 16.
The maximum sequence length for text is 96. We use
a batch size of 6, 144 and train the model from scratch
for 200k steps, which is equivalent to 40 epochs of the
image-text pairs. Each batch contains 2,048 images,
2,048 texts, and 2, 048 image-text pairs. We perform
image augmentation using random resized cropping,
horizontal flipping, and color jittering, following the
same method as BEiT (Bao et al., 2022a). The text data
is tokenized using a SentencePiece (Kudo and Richard-
son, 2018) tokenizer with a vocabulary size of 64k. We
use the Adam optimizer (Kingma and Ba, 2015) with
51 = 0.9 and B> = 0.999 to optimize the model. The
peak learning rate is 2e-3, and we use linear warmup
for the first 10, 000 steps and cosine learning rate decay.
The weight decay is 0.05, and we disable dropout and
use stochastic depth (Huang et al., 2016) with a rate of
0.1. The three pretrain losses are equally weighted as in
BEIT-3 (Wang et al., 2022b).

MoE Setting. For the default setting of MoEs in VL-
MoEgse/168, We use I = 16 experts for T-FFN and
V-FEN, respectively. All VL-MoEs activate & = 1 ex-
pert per token, similar to Switch Transformer (Fedus
et al., 2021) and LIMoE (Mustafa et al., 2022). We
replace every second dense T-FFN or V-FFN sublayer
with MoE sublayer following GShard (Lepikhin et al.,
2020) and Switch Transformer (Fedus et al., 2021). We
use BPR for stability in V-MoE (Riquelme et al., 2021).
For auxiliary loss, we use loading loss in (Shazeer et al.,
2017) for T-FFN’s MoE and averaged loading loss and
importance loss in V-MoE (Riquelme et al., 2021) for V-
FFN’s MoE. The combination ratio for auxiliary loss is
set as 0.01 in all our experiments We use 32 expert par-
allelism and TUTEL (Hwang et al., 2022) for fast routing
and computation. All the models are based on Deep-
Speed (Rasley et al., 2020). Pre-training experiments
are done on 32 Nvidia Tesla V100-32GB GPUs. Follow-
ing ST-MoE (Zoph et al., 2022), we freeze all the MoE
modules (router and expert network) during finetuning
process. The capacity factor C' is set to be 1.05 during
training and 1 during inference following (Riquelme
et al., 2021).

VL-MOoE in Pretraining. We present the validation
performance of VL-MOoE on the three pretraining tasks
across different scales. The results show that the cost-
performance tradeoff of VL-MoE in terms of pretraining
flops dominates the dense models by a wide margin, in-
dicating that VL-MOoE offers significant improvements
across all scales, from SMALL/8E to LARGE/16E. We
also provide a wall-clock time versus validation perfor-
mance figure in the Appendix, which shows a similar
scaling trend of VL-MoE. Thanks to careful kernel opti-
mization and expert parallelism in DeepSpeed (Rasley
et al., 2020), the maximum wall-clock overhead of VL-
MOE, srce/16E compared to dense counterparts can be
reduced to only 13%.
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language token routing decisions at the V/T-MoE layer placed in the 6-th encoder block —i.e. middle of the network—

for VL-MOE, rGe/16E-

Model images Steps

# Pretrained  # Pretrained # Params VQA
per token

NLVR2 COCO Flickr30K

test-dev  test-std dev test-P TR IR TR IR

Base-size models pretrained in the similar settings

UNITERgasg (Chen et al., 2020) 4AM 200k
VILLAgask (Gan et al., 2020) M 200k
UNIMOgasg (Li et al., 2021b) 4M S00K
VILT (Kim et al., 2021a) 4M 200k
ALBEFgask (Li et al., 2021a) 4M 240k
VLMogase (Bao et al., 2022b) 4AM 200k
B EIT-3BASE* 4M 200k 180M
VL—MOEBASE/](;E 4M 2001( ISOM

120M

210M
180M 76.64 76.89 8277 8334 748 572 923 793

72.70 7291 7718 7785 644 503 859 725

73.59 73.67 7839  79.30 - - 86.6 74.7
73.79 74.02 - - - - 89.7 747
120M 71.26 75770 7613 615 427 835 644

74.54 7470  80.24 80.50 73.1 568 943 828

76.21 76.75 8493 8576 787 603 953 83.8
78.21 78.63 8552 86.77 794 612 96.1 849

Pretained with more aggressive cost, including compute / data / model

VLMO¢arce (Bao et al., 2022b) 4M 200k
ALBEFgase (Li et al., 2021a) 14M 800k
BLIParcE (Li et al., 2022) 129M 1.26M
SIMVLMgase (Wang et al., 2022¢) 1.8B IM
SIMVLMuyce (Wang et al., 2022¢) 1.8B IM
BEIT-3nuce (Wang et al., 2022b) 21M M
PALInuce (Wang et al., 2022b) 1.6B 1M
BLIP2x. (Li et al., 2023b) 129M 250k
BEIT-31arGe " 4M 200k
VL-MOE| ArGE/16E 4M 200k

560M
560M 79.91 7995 86.28 87.14 799 623 965 853

560M 79.94 7998 8564 86.86 782 60.6 953 845
210M 75.84 76.04 8255 83.14 776 60.7 959 856
427M
230M 77.87 78.14  81.72 81.77 -

78.24 78.17 8248 83.08 819 643 973 873
80.03 80.34  84.53 85.15 - - - -
84.19 84.03 9151 9258 848 672 98.0 90.3
84.30 84.30 - - - - - -
81.55 81.66 - - 854 683 976 89.7
78.14 78.23 8523 86.15 792 614 957 841

Table 1: Finetuning results of different models on vision-language classification tasks and image-text retrieval tasks.
We report vqa-score on VQA test-dev and test-standard split, accuracy for NLVR2 development and public test set
(test-P) and top-1 recall for image retrieval (IR) and text retrieval (TR). (* denotes the model that is reproduced by

us and trained with the same setting as VL-MoE.)

4.2 Vision-and-Language Downstream Tasks

In our study, we explore the performance of VL-MoE
on vision-and-language downstream tasks through fine-
tuning experiments on three standard tasks: visual ques-
tion answering (Goyal et al., 2017), natural language
for visual reasoning (Suhr et al., 2019), and image-text
retrieval (Plummer et al., 2015; Lin et al., 2014). Fol-
lowing BEIT-3, we use 480 x 480 image resolution for
VQA fine-tuning and 384 x 384 for the other tasks.

Visual Question Answering (VQA). For VQA, the
task is to generate/choose the correct answer given
a natural image and a question. Following previous
work (Kim et al., 2021a; Bao et al., 2022b; Wang et al.,
2022b), we utilize the VQA 2.0 dataset (Goyal et al.,
2017) and formulate it as a classification problem with
3, 129 most frequent answers. We finetune VL-MoE as
a fusion network to encode both the image and question.
We use the final encoding vector of the [T_CLS] token
as the representation of the image-question pair, and
feed that into a classifier layer to predict the label.

Natural Language for Visual Reasoning (NLVR2).
Visual reasoning task aims to predict whether a text

description is true about a pair of images. We use
NLVR2 (Suhr et al., 2019) dataset for evaluation. Fol-
lowing OSCAR (Li et al., 2020), VinVL (Zhang et al.,
2021) and VLMO (Bao et al., 2022b), we reformulate
the triplet input into two image-text pairs, each contain-
ing the text description and one image. We use VL-MoE
as a fusion network to jointly encode the image and text.
The concatenated final vector of [T_CLS] token from
the two pairs is then fed into a classification layer to
predict the label.

Image-Text Retrieval. For image-text retrieval, it con-
tains both image-to-text retrieval and text-to-image re-
trieval for different target modalities. We use the widely
used COCO (Lin et al., 2014) and Flickr30K (Plummer
et al., 2015) datasets to evaluate the model, and adopt
the Karpathy split (Karpathy and Fei-Fei, 2015) follow-
ing common practices. Noted that in the architecture
of VL-MoE and BEIT-3 (Wang et al., 2022b), it does
not involve the image-text matching module as existing
in CLIP (Radford et al., 2021). To enable image-text
matching, we further fine-tune VL-MoE jointly with
image-text contrastive and image-text matching with
hard negative mining objectives as in VLMO (Bao et al.,
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Tasks
ImageNet MNLI-m

Pretraining
#Images # Steps

Models

Vision Pretraining

ViTg/16 300M 500k 83.6 -
BEI1Tg/16 1.2M 500k 852 -
V-MOEg/6.16r 300M 500k 85.3 -

Vision-Language Pretraining
SIMVLMg,se 1.8B 1M 80.6 64.4
BEIT-3% 4M 200k 832  67.0

BASE
VL- MOEBAQE/IGE 4M 200k 84.5 68.1

Table 2: Results of base-size models on image classifi-
cation (ImageNet-1K) and natural language inference
(MNLI-m). We report top-1 accuracy for both.

2022b) and BEIT-3. During inference, VL-MOoE is used
to encode images and text separately and compute the
matching scores by the dot product of image and text
vectors to obtain the top-k candidates.

Table 1 presents the results of our vision-language
model on classification and retrieval tasks, including
VQA, NLVR2, COCO, and Flickr30K. To ensure a
fair comparison, we provide details on the amount of
pretraining image-text pair data, pretraining steps, and
the number of parameters per input token. Following
LIMOE (Mustafa et al., 2022), we define the number
of parameters per input token as the number of param-
eters that the model applies to each image-text token
pair. Notably, VL-MOE, srce/16E contains 2 billion pa-
rameters in total, but only applies 560 million param-
eters per token. Additionally, all routers combined ac-
count for less than 0.5 million parameters. Our model
outperforms previous large/base-size models on VQA,
NLVR2, COCO, and Flickr30K by a significant mar-
gin, particularly when compared to a reproduced BEIT-
3 (Wang et al., 2022b), which was pretrained using the
same settings as VL-MoE. Moreover, to the best of our
knowledge, VL-MOE is the first to demonstrate that a
mixture-of-experts architecture can successfully scale
with a comparably modest architecture size and training
counts, while achieving generalization performance on
a range of tasks in the context of vision-language tasks.
Interestingly, Switch Transformer (Fedus et al., 2021)
struggles with generalization for language MoE, while
V-MOE (Riquelme et al., 2021) and LIMOE (Mustafa
et al., 2022) only evaluate on downstream vision tasks.
Additionally, VL-MoE even outperforms VLMO| srge
and ALBEF, which are pretrained with more image-
text pair data and initialized from pretrained models, on
COCO and Flickr30K and achieves competitive perfor-
mance on VQA and NLVR2. We assume that this may
be due to the fact that the capacity of VL-FFN has not
been scaled in VL-MoE, as reflected in the pretraining
plot in Figure 2 (the difference of VLM loss between
VL-MoE and dense BEIT-3 model is smaller compared
to that of MLM and MIM loss). We leave the scale of
the VL-FFN module for future work, considering the
increasing instability in modal-agnostic MoE architec-
tures demonstrated in LIMOE (Mustafa et al., 2022).

1.34 | Model
= 132 H —o— Densesman
4‘5 I\ MOEsmaie16-vloss
|2 1.30 —&— MOEsmane16-vloss-no_BPR
~ 1.28 ﬁ'\ —4— MOEsmane16-balance_loss
A 2, MOEmaie16-2l0SS
\ i small/E16™
g 126 \A A:A A\A—A—A
| é A,
c 1.24 ‘>A‘A'(A &i"“ X:Z‘ ey
'E 1.22 ._.
= 1.20 ‘\
1.18
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Figure 4: Effect of auxiliary loss on training stability.

4.3 Vision/Language-Only Downstream Tasks

Image Classification. We use the image classification
task to evaluate the model on the vision-only down-
stream task, where the objective of this task is to cat-
egorize an input image into its corresponding class.
We employ the ILSVRC-2012 ImageNet dataset (Rus-
sakovsky et al., 2015), which consists of 1.3M images
with 1k classes. Following BEIT (Bao et al., 2022a) and
VLMo (Bao et al., 2022b), we perform average pooling
over the final vectors and feed the resulting vector into
a linear classifier layer to predict the label.

Natural Language Inference. We use the natural
language inference task to evaluate the model on the
language-only downstream task. The task involves de-
termining the relationship between two pieces of text.
In this task, a model is given a premise sentence and a
hypothesis sentence, and it needs to determine whether
the hypothesis is true, false, or undetermined based on
the information provided in the premise. We use Multi-
Genre Natural Language Inference (MNLI) (Williams
et al., 2018) dataset, which contains 433k sentence pairs
annotated with textual entailment information. We eval-
uate on matched (MLM-m) setting only.

As shown Table 2, we compare VL-MoE with two
base-size vision Transformers and V-MOE-B/16-E16
on image classification. For BEIT, BEIT-3;,5: and
VL-MoEg,se/168, We perform intermediate finetuning
on ImageNet-22k to compare with VIT pretrained on
ImageNet-22k. The model performs competitively with
previous state-of-the-art supervised and self-supervised
models on ImageNet-1k. Besides the dense counterpart
BEIT-33,5e, VL-MOE also outperforms other strong
vision-language models (SIMVLM) pretrained with
more data and more steps on MNLI-m.

5 Discussions

We conduct ablation studies to analyze the contributions
of Mixture-of-Experts module used in VL-MoE from
different perspectives. We evaluate the models on visual
reasoning (NLVR2), image-text retrieval (Flickr30k),
image classification (ImageNet-1k) and natural lan-
guage inference (MNLI-m).
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Scaling Strategy NLVR2 Flickr30k ImageNet MNLI-m Av

TMoE V-MoE | dev testP TRR@I IRR@I Acc@l Acc &
[1] X X 67.42 68.21 80.4 61.7 67.2 54.3 66.5
[2] v X 7242  72.73 83.2 64.7 67.8 58.3 69.9
[3] X v 71.19 72.23 82.9 64.5 69.2 55.2 69.2
[4] v v 7298 73.34 84.7 65.3 69.0 58.1 70.6

Table 3: Ablation studies of scaling strategies (all the results are based on VL-MoEgya11/516 models). All the
*-MoE uses 16 experts (where T/V stands for applying MoE on the T/V-FFN).

Scaling Strategy. In addition to scaling both T-FFN
and V-FFN, we have also explored different scaling
strategies by applying Mixture-of-Experts (MoEs) mod-
ules for either T-FFN or V-FFN alone. The results of
our experiments are presented in Table 3. Our findings
indicate that scaling a single modality can improve the
downstream performance on the corresponding modality
as well as overall vision-language tasks. However, we
observed that scaling both vision and language modali-
ties leads to the most balanced performing model with
70.6% averaged performance. This may be attributed
to the fact that we employ three different pretraining
objectives for each modality, and scaling each modality
contributes to better optimization of the specific modal-
ity pretraining loss as well as the VLM loss. For further
evidence, we include the pre-training loss in Appendix.

Number of Experts. The optimal number of experts
in Mixture-of-Experts (MoEs) is still a topic of debate,
as there is no agreement on the ideal number. Previous
NLP research has experimented with a wide range of
expert numbers, ranging from thousands in early stud-
ies (Shazeer et al., 2017; Fedus et al., 2021), to as low
as 32 or 64 in more recent research (Zoph et al., 2022;
Du et al., 2022; Zhou et al., 2022), which has become
the standard for vision models (Riquelme et al., 2021;
Mustafa et al., 2022). In Figure 5, we investigate this
further with VL-MOoE, and our findings suggest that
larger expert pools consistently yield performance im-
provements.

Effects of the Auxiliary Losses. As previously men-
tioned, experts in MoEs have a fixed buffer capac-
ity, and without intervention, top-k MoEs tend to col-
lapse, leading to poor performance as most tokens are
dropped (Shazeer et al., 2017; Zhou et al., 2022). To pre-
vent this, prior research has employed auxiliary losses to
promote balanced routing (Riquelme et al., 2021; Zoph
et al., 2022; Zhou et al., 2022; Mustafa et al., 2022).
However, as shown in LIMOE (Mustafa et al., 2022),
in multimodal settings, new challenges emerge, such
as modality misbalance, where one data type may be
more prevalent than the other. We design VL-MoE in a
modal-specific fashion to prevent the instability caused
by imbalance of multimodal data and experiment with
different auxiliary losses for V-MoE: loading balance
loss (Shazeer et al., 2017), averaged loading balance
and important loss (“vloss”) (Riquelme et al., 2021),

Average over NLVR2 and Flickr30k

90.0
87.5
85.0
82.5 —— small
80.0 base
77.5
75.0
1 8 16 32

Number of Experts

Figure 5: Effect of Experts Number.

Size Methods Efficiency Val

Models
#E ParamMem | EP KN | TPS Speedup | Loss
BEIT 180M/0.3G 1002.3 - 4.51

VL-MoE | 16 180M/1.6G
VL-MoE | 16 180M/0.3G
VL-MoE | 16 180M/0.3G
VL-MoE | 8 180M/0.3G
VL-MoE | 16 105M/0.3G

450.5 x0.9 4.49
685.0 x1.4 4.50
887.5 x1.8 4.48
911.5 x1.4 451
1211.3 x1.3 4.50

NSNS >
NS SSN X X%

Table 4: Efficiency results of base-size VL-MoE models
with different optimizations.

z-loss (Zoph et al., 2022)). ! We present the results on
VL-MoEgyaL1/E16 in Figure 4, which suggest that Z-loss
presents to hurt the vision-and-lanaguage pretraininig
of VL-MoE and using loading balance loss only will
introduce unstable training and underperforming mod-
els. The “vloss” turns out to lead to most stable training,
which is consistent with V-MOE (Riquelme et al., 2021)
and LIMOE (Mustafa et al., 2022). BPR also helps in
stablizing training.

Token Routing Examples in VL-MoE. In Figure 3,
we provide a qualitative analysis of token routing deci-
sions on COCO. For vision tokens, their specialization
is clear, as they are routed to specific experts such as
food and vegetable experts, eyes experts, OCR experts,
etc. On the other hand, language tokens show signs
of syntax specialization, with some experts processing
mostly padding tokens, while others focus on nouns and
adjectives (and some padding), excluding prepositions,
determiners, or verbs.

'We find that the T-MoE is quite stable using different aux-
iliary losses, and resort to the most common loading balance
loss in (Shazeer et al., 2017) for T-MoE. We detail the formula
of each auxiliary loss in the Appendix.
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Efficiency In Table 4, we use one V100x 16 node for
benchmarking the efficiency of VL-MoE with various
optimizations. The EP stands for the expert parallelism
provided in DeepSpeed library and KN denotes the spe-
cialized kernel fusing operation we implemented (ex-
pert dispatch as well as bias gelu fusion). From the
table, we see that the throughput for the BEIT model is
1002.3 sample/s, while the optimized VL-MoE with EP
and Kernel has a throughput of 887.5 sample/s with the
same parameters per token, which add around 11% over-
head. Despite the latter being a more complex model,
its throughput doesn’t fall too short of the simpler BEIT.
The Speedup column also suggests that with our opti-
mizations, VL-MoE can even surpass BEIT to reach the
same level of validation loss in terms of speed, given the
same parameter per token size. It’s also valuable to note
that the naive implementation of VL-MoE without any
optimization indeed incurs a wall-clock time loss and
significant memory cost, as seen from the throughput
value of 450.5 sample/s and around 5 x memory.

Comparision with LIMOE. In LIMOE (Mustafa
et al., 2022), the single-modality MoE architecture and
the employed contrastive loss are the two main building
blocks. To directly compare the two components of mul-
timodal LIMOE under our setting, we thoroughly exper-
imented with optimizing either the single-modality MoE
architecture or VL-MoE with contrastive or masked data
modeling (MDM) loss. However, we found that the
models fail to converge when optimizing the LIMOE
architecture with the MDM loss, likely due to the fact
that the MDM losses consist of three losses aiming for
different modalities, which may exacerbate the modality
imbalance problem and make it difficult to optimize
MOoEs even equipped with the entropy balancing loss
in (Mustafa et al., 2022).

Therefore, we focused on optimizing VL-MoE and
LIMOE with the contrastive loss, as it yielded more
stable results. However, it should be noted that while
LIMOE uses 1.8B image-text pairs, our setting only
has 4M. We then report the training and validation loss
across steps by optimizing VL-MoE or LIMOE with
the contrastive loss in Figure 8. The batch size is set to
be 2k. From the zero-shot validation results, it can be
seen that both models quickly overfit to the 4M image-
text pairs, but the single modality MoE architecture
in LIMOE inherits more instability.

Furthermore, we use 4M data to enrich the experi-
ments using contrastive loss with different model set-
tings in Table 5. We can see that LIMOE seems to ex-
hibit a trend where performance doesn’t improve much
or even decreases as the number of training steps in-
creases (from 75k to 100k), especially in the 105M
parameter setting. This could be a sign of overfitting,
where the model is starting to fit the training data more
closely but is not generalizing as well to the valida-
tion/test data. Increasing the number of experts for
LIMOE does not lead to significant performance gains,
especially in the 105M parameter setting. This might

Models Size INOshot
#Param #E | 50k 75k 100k
Contrastive Pretraining
DENSE 105M - 503 632 675
LIMOE 105M 8 537 629 62.0
LIMOE 105M 16 | 546 63.1 62.1
VL-MoE | 105M 8 552 642 683
VL-MoE | 106M 16 | 572 651 69.0
DENSE 180M - 60.1 703 782
LIMOE 180M 8 61.5 704 682
LIMOE 180M 16 | 612 693 675
VL-MoE | 180M 8 62.5 717 789
VL-MoE | 180M 16 | 63.2 724 795

Table 5: Comparision between VL-MoE and LIMOE
using contrastive loss.

indicate that, at this data scale, the additional capac-
ity introduced by more experts isn’t effectively utilized.
However, VL-MoE, with a higher number of experts,
shows a better performance progression with increasing
steps, suggesting a more efficient use of the additional
capacity. VL-MOoE consistently outperforms LIMOE in
most settings, especially as we increase the number of
training steps. This could be attributed to inherent archi-
tectural advantages or better synergy with the training
objective.

6 Conclusion

In this paper, we have explored the use of Mixture-of-
Experts (MoE) for scaling vision-language models. Our
experiments demonstrate that MoE can be a promising
technique for improving the efficiency and effectiveness
of vision-language models. Specifically, we have shown
that dividing a large vision-language model into smaller,
specialized sub-models through MoE can achieve state-
of-the-art performance on several benchmarks while re-
ducing computational costs. Our experiments have also
shown that larger expert pools yield consistent perfor-
mance improvements. Furthermore, we have explored
the impact of MoE on model interpretability and found
it can improve the interpretability of vision-language
models by providing better insights into how the model
processes different inputs.

In conclusion, our findings suggest that MoE is a
valuable technique for scaling vision-language models,
enabling them to handle large-scale, real-world multi-
media data. Our work opens up new research directions
for exploring the effectiveness of MoEs in other vision-
language tasks, such as visual question answering, vi-
sual reasoning and image-text retrieval, and we hope
our findings will inspire further investigations into this
research area.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, lain Barr, Yana Hasson, Karel

11337



Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Infor-
mation Processing Systems.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-

representation learning. In Computer Vision - ECCV
2020 - 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part XXX, volume
12375 of Lecture Notes in Computer Science, pages
104—-120. Springer.

toine Miech, Iain Barr, Yana Hasson, Karel Lenc,  Ajdan Clark, Diego De Las Casas, Aurelia Guy, Arthur

Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,

Mensch, Michela Paganini, Jordan Hoffmann, Bog-
dan Damoc, Blake Hechtman, Trevor Cai, Sebas-
tian Borgeaud, et al. 2022. Unified scaling laws for
routed language models. In ICML, pages 4057-4086.
PMLR.

Andrew Zisserman, and Karen Simonyan. 2022.  ppark Collier, Efi Kokiopoulou, Andrea Gesmundo,

Flamingo: a visual language model for few-shot learn-
ing. CoRR, abs/2204.14198.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hes-
sel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al.
2023. Openflamingo: An open-source framework for
training large autoregressive vision-language models.
arXiv preprint arXiv:2308.01390.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,

and Jesse Berent. 2020. Routing networks with
co-training for continual learning. arXiv preprint
arXiv:2009.04381.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony

Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In-
structblip: Towards general-purpose vision-language
models with instruction tuning. arXiv preprint
arXiv:2305.06500.

and Jingren Zhou. 2023. Qwen-vl: A frontier large =~ Andrew Davis and Itamar Arel. 2013. Low-rank ap-

vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei.

proximations for conditional feedforward compu-
tation in deep neural networks. arXiv preprint
arXiv:1312.4461.

2022a. BEiT: BERT pre-training of image transform-  Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

ers. In ICLR.

Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu,
Owais Khan Mohammed, Kriti Aggarwal, Subho-
jit Som, Songhao Piao, and Furu Wei. 2022b. Vlmo:
Unified vision-language pre-training with mixture-of-
modality-experts. In Advances in Neural Information
Processing Systems.

Yoshua Bengio. 2013. Deep learning of representa-
tions: Looking forward. In Statistical Language and

Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171-4186. Association for Computa-
tional Linguistics.

Speech Processing: First International Conference, ~ Alexey Dosovitskiy, Lucas Beyer, ~Alexander

SLSP 2013, Tarragona, Spain, July 29-31, 2013. Pro-
ceedings 1, pages 1-37. Springer.

Ke Chen, Lei Xu, and Huisheng Chi. 1999. Improved
learning algorithms for mixture of experts in mul-
ticlass classification. Neural networks, 12(9):1229—
1252.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang,
Feng Zhu, and Rui Zhao. 2023. Shikra: Unleashing
multimodal Ilm’s referential dialogue magic. arXiv
preprint arXiv:2306.15195.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier-
giovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas
Beyer, et al. 2022. Pali: A jointly-scaled mul-
tilingual language-image model. arXiv preprint
arXiv:2209.06794.

Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al.
2020. An image is worth 16x16 words: Trans-
formers for image recognition at scale. preprint
arXiv:2010.11929.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,

Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqgi Zhou, Adams Wei Yu, Orhan Firat, et al.
2022. Glam: Efficient scaling of language models
with mixture-of-experts. In ICML, pages 5547-5569.
PMLR.

David Eigen, Marc’ Aurelio Ranzato, and Ilya Sutskever.

2013. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. UNITER: universal image-text

11338

Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. CoRR,
abs/2101.03961.


https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.48550/arXiv.2204.14198
https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=p-BhZSz59o4
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu,
Yu Cheng, and Jingjing Liu. 2020. Large-scale adver-
sarial training for vision-and-language representation
learning. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the V in VQA
matter: Elevating the role of image understanding in
visual question answering. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
6325-6334. IEEE Computer Society.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdh-
ery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul
Mazumder, Lichan Hong, and Ed H. Chi. 2021.
Dselect-k: Differentiable selection in the mixture
of experts with applications to multi-task learning.
In Advances in Neural Information Processing Sys-
tems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (GELUSs). arXiv preprint
arXiv:1606.08415.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
Kilian Q. Weinberger. 2016. Deep networks with
stochastic depth. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV,
volume 9908 of Lecture Notes in Computer Science,
pages 646-661. Springer.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin
Jose, Prabhat Ram, et al. 2022. Tutel: Adap-
tive mixture-of-experts at scale. arXiv preprint
arXiv:2206.03382.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
4904-4916. PMLR.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 3128-3137. IEEE Computer
Society.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021a.
ViLT: Vision-and-language transformer without con-
volution or region supervision. In Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research,
pages 5583-5594. PMLR.

Young Jin Kim, Ammar Ahmad Awan, Alexandre
Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. 2021b. Scalable and effi-
cient moe training for multitask multilingual models.
arXiv preprint arXiv:2109.10465.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel
Fried. 2023. Grounding language models to im-
ages for multimodal generation. arXiv preprint
arXiv:2301.13823.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2022.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints. arXiv preprint arXiv:2212.05055.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Int. J.
Comput. Vis., 123(1):32-73.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium. As-
sociation for Computational Linguistics.

Sneha Kudugunta, Yanping Huang, Ankur Bapna,
Maxim Krikun, Dmitry Lepikhin, Minh-Thang Lu-
ong, and Orhan Firat. 2021. Beyond distillation:
Task-level mixture-of-experts for efficient inference.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 3577-3599.

Hugo Laurengon, Lucile Saulnier, Léo Tronchon, Stas
Bekman, Amanpreet Singh, Anton Lozhkov, Thomas
Wang, Siddharth Karamcheti, Alexander M Rush,
Douwe Kiela, et al. 2023. Obelisc: An open web-
scale filtered dataset of interleaved image-text docu-
ments. arXiv preprint arXiv:2306.16527.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.

11339


https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://proceedings.neurips.cc/paper/2021/hash/f5ac21cd0ef1b88e9848571aeb53551a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f5ac21cd0ef1b88e9848571aeb53551a-Abstract.html
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/kim21k.html
http://proceedings.mlr.press/v139/kim21k.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012

Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. BASE lay-
ers: Simplifying training of large, sparse models. In
ICML. PMLR.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. 2023a. Otter: A
multi-modal model with in-context instruction tuning.
arXiv preprint arXiv:2305.03726.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023c. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image
pre-training for unified vision-language understand-
ing and generation. In ICML, pages 12888-12900.
PMLR.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021a. Align before fuse: Vision and language
representation learning with momentum distillation.
In Advances in neural information processing sys-
tems, volume 34, pages 9694-9705.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
CoRR, abs/1908.03557.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao
Liu, Jiachen Liu, Hua Wu, and Haifeng Wang. 2021b.
UNIMO: towards unified-modal understanding and
generation via cross-modal contrastive learning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 2592—
2607. Association for Computational Linguistics.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao.
2020. Oscar: Object-semantics aligned pre-training
for vision-language tasks. In Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXX, vol-
ume 12375 of Lecture Notes in Computer Science,
pages 121-137. Springer.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou
Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and
Yong Jae Lee. 2023d. Gligen: Open-set grounded
text-to-image generation. CVPR.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
common objects in context. In Computer Vision -
ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V, volume 8693 of Lecture Notes in Computer
Science, pages 740-755. Springer.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning.

Haotian Liu, Kilho Son, Jianwei Yang, Ce Liu, Jian-
feng Gao, Yong Jae Lee, and Chunyuan Li. 2023b.
Learning customized visual models with retrieval-
augmented knowledge. CVPR.

Yuxuan Lou, Fuzhao Xue, Zangwei Zheng, and Yang
You. 2021. Cross-token modeling with conditional
computation. arXiv preprint arXiv:2109.02008.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. VILBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 13-23.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan
Hong, and Ed H. Chi. 2018. Modeling task relation-
ships in multi-task learning with multi-gate mixture-
of-experts. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23,
2018. ACM.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver,
Rodolphe Jenatton, and Neil Houlsby. 2022. Mul-
timodal contrastive learning with limoe: the
language-image mixture of experts. arXiv preprint
arXiv:2206.02770.

Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg.
2011. Im2text: Describing images using 1 million
captioned photographs. In Advances in Neural Infor-
mation Processing Systems 24: 25th Annual Confer-
ence on Neural Information Processing Systems 201 1.
Proceedings of a meeting held 12-14 December 2011,
Granada, Spain, pages 1143—-1151.

Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and
Furu Wei. 2022. Beit v2: Masked image model-
ing with vector-quantized visual tokenizers. ArXiv,
abs/2208.06366.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao,
Shaohan Huang, Shuming Ma, and Furu Wei.
2023. Kosmos-2: Grounding multimodal large
language models to the world. arXiv preprint
arXiv:2306.14824.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting

11340


http://proceedings.mlr.press/v139/lewis21a.html
http://proceedings.mlr.press/v139/lewis21a.html
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
https://doi.org/10.1007/978-3-030-58577-8_8
https://doi.org/10.1007/978-3-030-58577-8_8
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3219819.3220007
https://proceedings.neurips.cc/paper/2011/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1109/ICCV.2015.303

region-to-phrase correspondences for richer image-  Sheng Shen, Chunyuan Li, Xiaowei Hu, Yujia Xie, Jian-

to-sentence models. In 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago,
Chile, December 7-13, 2015, pages 2641-2649. IEEE
Computer Society.

wei Yang, Pengchuan Zhang, Zhe Gan, Lijuan Wang,
Lu Yuan, Ce Liu, et al. 2022a. K-lite: Learning trans-
ferable visual models with external knowledge. In
Advances in Neural Information Processing Systems.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748-8763.
PMLR.

Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and
Kurt Keutzer. 2022b. How much can clip benefit
vision-and-language tasks? In ICLR.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,

Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2021. FLAVA: A foun-
dational language and vision alignment model. CoRR,
abs/2112.04482.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimizations
enable training deep learning models with over 100
billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3505-3506.

Furu Wei, and Jifeng Dai. 2020. VL-BERT: pre-
training of generic visual-linguistic representations.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,

Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 6418-6428. Association
for Computational Linguistics.

and Jason Weston. 2021. Hash layers for large sparse Zhiging Sun, Sheng Shen, Shengcao Cao, Haotian Liu,

models. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual.

Chunyuan Li, Yikang Shen, Chuang Gan, Liang-
Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. 2023.
Aligning large multimodal models with factually aug-
mented rlhf. arXiv preprint arXiv:2309.14525.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, = Hao Tan and Mohit Bansal. 2019. LXMERT: Learning

Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C Berg, and Li Fei-Fei. 2015. Imagenet large
scale visual recognition challenge. IJCV.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 1: Long Papers, pages 2556-2565. As-
sociation for Computational Linguistics.

cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 5099-5110.
Association for Computational Linguistics.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-

cisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. 2020. Training data-efficient image trans-
formers & distillation through attention. preprint
arXiv:2012.12877.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In /CLR.
OpenReview.net.

Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne = Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai

Longpre, Jason Wei, Hyung Won Chung, Barret Zoph,
William Fedus, Xinyun Chen, et al. 2023. Mixture-
of-experts meets instruction tuning: A winning com-
bination for large language models. arXiv preprint
arXiv:2305.14705.

11341

Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jin-
gren Zhou, and Hongxia Yang. 2022a. Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. CoRR,
abs/2202.03052.


https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://aclanthology.org/P18-1238/
https://aclanthology.org/P18-1238/
https://aclanthology.org/P18-1238/
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.18653/v1/p19-1644
https://doi.org/10.18653/v1/p19-1644
https://doi.org/10.18653/v1/p19-1644
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://arxiv.org/abs/2202.03052
https://arxiv.org/abs/2202.03052
https://arxiv.org/abs/2202.03052

Wenhui Wang, Hangbo Bao, Li Dong, Johan
Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit
Som, et al. 2022b. Image as a foreign language: Beit
pretraining for all vision and vision-language tasks.
arXiv preprint arXiv:2208.10442.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai,
Yulia Tsvetkov, and Yuan Cao. 2022c. SimVLM:
Simple visual language model pretraining with weak
supervision. In ICLR.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1112—
1122, New Orleans, Louisiana.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023.
mplug-owl: Modularization empowers large lan-
guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models. CoRR, abs/2205.01917.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen
Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang,
Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang,
Michael Zeng, Luowei Zhou, and Pengchuan Zhang.
2021. Florence: A new foundation model for com-
puter vision. CoRR, abs/2111.11432.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. VinVL: Revisiting visual representa-
tions in vision-language models. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021, pages 5579-5588.
Computer Vision Foundation / IEEE.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Y Zhao, Andrew M Dai, Zhifeng
Chen, Quoc V Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing. In Advances in
Neural Information Processing Systems.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Jinguo Zhu, Xizhou Zhu, Wenhai Wang, Xiaohua Wang,
Hongsheng Li, Xiaogang Wang, and Jifeng Dai.
2022. Uni-perceiver-moe: Learning sparse gener-
alist models with conditional moes. arXiv preprint
arXiv:2206.04674.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19-27.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and
transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

A Appendix

A.1 Further Analyses

“Dropped” Tokens. In MoE training, the issue of
“Dropped Tokens” is inherited (Lepikhin et al., 2020;
Shazeer et al., 2017; Mustafa et al., 2022; Riquelme
et al., 2021; Zhou et al., 2022) and caused by the lim-
ited capacity of each MoE expert, which can lead to
instability. To provide a detailed analysis of this issue,
we present Figure 6, which illustrates the distribution
of dropped tokens in VL-MoEg,sg/16g across different
pre-training tasks. The figure shows that MLM and
MIM tasks exhibit a more balanced distribution of to-
kens compared to VLM task, which may explain the
improved performance of using MoEs in the former
two pre-training tasks, as depicted in Figure 2. Addi-
tionally, the problem of dropped imag tokens is more
severe compared to dropped text tokens, which aligns
with the results of different scaling strategies presented
in Section 5 and the findings in (Mustafa et al., 2022;
Riquelme et al., 2021).

Pretrain Losses for Different Scaling Strategies.
We additionaly report the effect of different scaling strat-
egy in Section 5 for VL-MoEgyar1/16g Scaling on three
mask language modeling (MLM), mask image modeling
(MIM), and masked vision-language modeling (VLM)
pre-training tasks across training steps in Figure 7. The
results support our hypothesis that using three distinct
pretraining objectives for each modality and scaling
each modality leads to improved optimization of both
the specific modality pretraining loss and the VLM loss.

Additional Results We conduct experiments using
COCO captions following (Wang et al., 2022b), where
VL-MoE achieves 139.2 for CIDEr and 23.1 for SPICE,
which outperforms the BE1T-3 with 137.5 for CIDer
and 22.7 for SPICE using base-size. We also observe
interesting routing specialization when generating the
final word “cake” considering the T-MoE in VL-MoE in
Figure 3. “NN: lady” and “NN: slicing” route to experts
1 and 13 respectively. “DT: A, a” both route to expert 1.
“JJ: hairnet, big” route to expert 7. These routings under-
score the inherent nature of expert specialization in the
VL-MoE model, potentially highlighting its advantages.
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Figure 6: “Dropped” Token analyses for VL-MOoE, srge/165 With three mask language modeling (MLM), mask
image modeling (MIM), and masked vision-language modeling (VLM) pre-training tasks. Above the dashed line
denotes the ratio of tokens that exceed the expert capacity and will be dropped.
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Figure 7: Effect of different scaling strategy in Section 5 for VL-MoEgy11/165 scaling on three mask language
modeling (MLM), mask image modeling (MIM), and masked vision-language modeling (VLM) pre-training tasks

across training steps.

A.2 Hyperparameter

Visual Question Answering (VQA). We fine-tune
the base/large-size models for 10 epochs with 128

batch size. The peak learning rate is 3e-5. Following
VLMO (Bao et al., 2022b), the input image resolution
is 480 x 480.
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Figure 8: Comparision of Dense, VL-MoE, and LIMOE on contrastive pre-training task across training steps.

Natural Language for Visual Reasoning (NLVR2).
For results of Table 1, the base/large-size models are
fine-tuned for 10 epochs with 128 batch size. The peak
learning rate of the base-size models is set to 5e-5. The
input image resolution is 384 x 384. For ablation ex-
periments, we fine-tune the models for 10 epochs with
128 batch size, and choose learning rates from {5e-3,
le-4}. The input image resolution is 224 x 224. All the
ablation results of NLVR2 are averaged over 3 runs.

COCO. We fine-tune the base/large-size model for 20
epochs with 2048 batch size. The peak learning rate is
2e-5 and the input image resolution is 384 x 384.

Flickr30K. For results of Table 1, the base/large-size
models are fine-tuned for 40 epochs with a batch size
of 2048 and a peak learning rate of le-5. We use the
fine-tuned model on COCO as the initialization. The
input image resolution is 384 x 384. For all ablation
experiments, we fine-tune the models for 10 epochs with
1024 batch size. The peak learning rate is set to Se-5,
and the input image resolution is 224 x 224.

ImageNet-1k. We fine-tune the base-size VL-MoE
with V-MoE and V-FFN only for 15 epochs with 2048
batch size. The peak learning rate is 3e-5 and the input
image resolution is 384 x 384.

MNLI. We fine-tune the base-size VL-MoE with T-
MoE and T-FFN only for 10 epochs with 32 batch size.
The peak learning rate is 3e-5.

A.3 Formula of Auxiliary Loss

Given a token x € RP”, we denote by g(xz) =
softmax(Wz) € RE the gating weights across the E
experts, with W € RE*D being the routing parameters.
When we deal with a batch of multiple tokens {x;}?_,,
we use the notation X € R"*P,

Importance loss. We follow the definition
from (Riquelme et al., 2021; Mustafa et al., 2022). The
importance loss Qiyp, ensures that the gating weights
are evenly distributed among the experts, maintaining
a balanced profile. For any experte € {1,..., E}, we
have

imp,(X) = ) g(x).

rzeX

and the loss (i, is defined via the squared coefficient
of variation for imp(X) = {imp_(X)}£_,
std(imp(X)) \?
i)

Qimp(X) = <mean(imp(X)

Load loss. Like previously, we follow (Riquelme
et al., 2021). We assume the gating weights gnoisy(w)
are obtained by perturbing the routing function with
noise, i.e., gnoisy() = softmax(Wx + ) with
e ~ N(0,0%I) and 0 = 1/E. We denote 7y, the k-
th largest entry of Wz + . The importance loss Qimp
aims to balance the selection probability of experts by
focusing on the likelihood of choosing them, as assign-
ing tasks to experts is a discrete process. The load loss
Qoad complements this by striving to even out the num-
ber of assignments among the experts. To calculate the
selection probability, the expert e € {1,..., E'} is as-
sumed to be among the top-k even when resampling
only the noise as

— (W),
pe(?Iﬁ) =1~ @(777}6 ( Cl:) )
o
with ® the cumulative distribution function of a Gaus-
sian distribution. The load loss (20,4 is eventually de-
fined by

( std(load(X)) \?
oaa (X)) = (mean(load(X)))
where load(X) = {load.(X)}Z_, ,

load (X) = ) pe().

rzeX

Z-loss. The z-loss 2,10 introduced in (Zoph et al.,
2022) aims at controlling the maximum magnitude of
the router activations A = {Wx;}7, € R"*F with
entries a; . = (Wa;).. The loss is defined by

n E 2
Qatoss (X) = %Z <10g (Z exp (%,e))) :
i=1 e=1

v-loss. The notation “v-loss” we used in Section 5 is
essentially the final employed loss in V-MOE (Riquelme
etal., 2021), where Qyioss(X) = 0.5 % Qimp(X) +0.5 %
Qload (X)
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