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Abstract

We introduce PersonaLM - Domain-distributed
span-Aggregated K-nearest N-gram retrieval aug-
mentation to improve language modeling for
Automatic Speech Recognition (ASR) person-
alization. PersonaLM leverages contextually
similar n-gram word frequencies for recogniz-
ing rare word patterns associated with unseen
domains. It aggregates the next-word proba-
bility distribution based on the relative impor-
tance of different domains to the input query.
To achieve this, we propose Span Aggregated
Group-Contrastive Neural (SCAN) retriever
that learns to rank external domains/users by
utilizing a group-wise contrastive span loss that
pulls together span representations belonging to
the same group while pushing away spans from
unrelated groups in the semantic space. We pro-
pose ASAP benchmark for ASR LM personaliza-
tion that consists of three user-specific speech-
to-text tasks for meetings, TED talks, and fi-
nancial earnings calls. Extensive experiments
show that PersonaLM significantly outperforms
strong baselines with a 10-16% improvement
in perplexity and a 5-8% reduction in Word Er-
ror Rates on popular Wikitext-103, UserLibri,
and our ASAP dataset. We further demonstrate
the usefulness of the SCAN retriever for im-
proving user-personalized text generation and
classification by retrieving relevant context for
zero-shot prompting and few-shot fine-tuning
of LLMs by 7-12% on the LAMP benchmark.

1 Introduction

Language modeling is a core task in NLP with im-
portant applications in automatic speech recogni-
tion (ASR) (Mikolov et al., 2010; Chen et al., 2015;
Xu et al., 2018). Pre-trained LMs (Irie et al., 2019a;
Li et al., 2020a) memorize a surprising amount of
knowledge from their training corpora in the un-
derlying neural network parameters(Petroni et al.,
2019; Jang et al., 2022). However, this makes it dif-
ficult to personalize them for text generation, non-
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Figure 1: ASR Personalization: During training, the LM
is pre-trained on a generic corpus and optionally fine-tuned
on the out-of-domain corpus (see dotted). For query q at in-
ference, LM output pLM is interpolated with the probability
distribution pext retrieved from domain-specific external cor-
pus for next word prediction p(wt|q) and ASR re-scoring.

streaming ASR re-scoring, and on-device stream-
ing ASR models for unseen users and domains
due to the existence of user-preferred rare word
patterns, facts, proper names, and other domain-
specific tail words not seen frequently in the train-
ing data (Schick and Schütze, 2019; Maynez et al.,
2020; Serai et al., 2022). Retrieval augmentation
(Lewis et al., 2020) (see Fig. 1) can help person-
alize LMs by explicitly exposing them to external
world knowledge during inference (Borgeaud et al.,
2022). LMs leverage the retrieval mechanism to
select contextually relevant users/domains from an
external corpus and then attend over that knowl-
edge to inform their predictions (Liu et al., 2022).

Prior research has explored kNN-LM memoriza-
tion (Khandelwal et al., 2020), RETRO (Borgeaud
et al., 2022), and attention-based caches (Grave
et al., 2017). However, these methods are not suited
for retrieving relevant domains/users prior to con-
text selection, rather were proposed primarily to en-
hance the memorization capabilities of LM. Recent
approaches, notably REALM (Guu et al., 2020)
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and RAG (Lewis et al., 2020), incorporate a non-
parametric retrieval step during LM pre-training,
thus being unable to adapt their context representa-
tion for unseen domains.

We address the challenge of capturing rare word
patterns associated with specific users/domains by
exploiting n-gram word frequencies from under-
lying domains. Further, we hypothesize that n-
gram patterns are domain/user-specific, and aug-
menting LM predictions with n-gram probabilities
from a subset of query-relevant users/domains may
lead to better personalization. We anticipate the
retrieval augmentation through n-gram frequencies
to have additional advantages of very low com-
putational overhead, efficient caching, and asyn-
chronous updates for newer data without the need
for re-computation from scratch.

We propose PersonaLM -
Domain-distributed Span-aggregated
k-Nearest N-gram Language Model that
aggregates top-k nearest n-gram co-occurrence fre-
quencies from each domain weighted according to
the domain’s relative importance to the input query,
which is augmented with the target word probabil-
ity distribution for next word prediction and ASR
second-pass re-scoring. We utilize a novel Span
Aggregated Group-Contrastive Neural (SCAN)
retriever that can learn highly discriminative
semantic representations to distinguish between
text spans from the same group as opposed to
random spans using a group-wise contrastive
loss. SCAN retriever assigns a relevance score to
each textual document/recording from an external
corpus based on its semantic similarity with the
input query to weigh their contribution to the final
prediction. Our main contributions are:

• PersonaLM retrieval augmentation for ASR
personalization that leverages group-wise con-
trastive loss to train Span Aggregated Group-
Contrastive Neural (SCAN) retriever for
ranking query-relevant external domains/users
and augments domain-distributed k-nearest n-
gram frequencies to improve LM predictions.

• ASAP - a novel benchmark for ASR LM
personalization consisting of three user-
specific ASR tasks in the domains of meet-
ings, TED talks, and financial conference calls.
PersonaLM significantly outperforms strong
baselines on ASAP benchmark, UserLibri,
and Wikitext-103 corpus by ∼ 10− 16% per-
plexity gain and ∼ 5− 8% WER reduction.

• Downstream Application: SCAN retriever
improves context retrieval in personalized text
generation and classification via zero-shot
prompting and few-shot fine-tuning of LLMs
on LaMP corpus by 7− 12%.

2 Related Work

Language Modeling for Rare Words Prediction:
Earliest works explored the use of LSTM with
auxiliary pointer networks to predict rare words
and long-term dependencies in language modeling
(Merity et al., 2017). Neural cache augmentation
(Grave et al., 2017) stored past hidden activations in
cache memory to predict out-of-vocabulary words.
Implicit cache memorization (Li et al., 2020b) used
cache to store past word occurrences as an alter-
native to the attention-based pointer mechanism.
For the ASR re-scoring task, cross-sentence neural
LMs proposed to use word usage in preceding sen-
tences to re-rank n-best hypotheses of upcoming
sentences (Sun et al., 2021; Irie et al., 2019b).
Retrieval Augmentation for Language Model-
ing: kNN-LM (Khandelwal et al., 2020) interpo-
lated pre-trained LMs with contexts extracted from
an external data store using the kNN algorithm.
REALM (Guu et al., 2020) proposed a neural re-
triever to leverage external knowledge during LM
pre-training. (Ram et al., 2023) augmented GPT-
2 with a large episodic memory for a zero-shot
reduction in perplexity. Retrieval-Enhanced Trans-
former (Retro) (Borgeaud et al., 2022) retrieved
document chunks similar to preceding tokens using
a cross-attention module. Our work is the first to
use domain-distributed n-gram representations over
document spans to retrieve rare word patterns from
the most relevant external knowledge domains.

3 PersonaLM Retriever Augmentation

Fig. 2 describes our proposed PersonaLM retrieval
augmentation approach that biases the predictions
from a base LM with the next word probabili-
ties based on the relevance of unseen topic/users
to the input query. Given an input query q =
(w1, · · · , wt−1) at inference, autoregressive LMs
estimate the probability distribution for target to-
ken wt as PLM (wt|q). To augment the LM out-
put with domain-specific word occurrence infor-
mation, we calculate the probability distribution
of next word prediction over the vocabulary condi-
tioned on the relevance of the underlying domains
(d1, d2, · · · , dK) to the query (q) by marginalizing
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Figure 2: PersonaLM: At inference, we compute the relevance score P (di|q) between the query and domains di as the dot
product of their SCAN retriever representations. We construct a data store for each n-gram frequency matrix. k-most similar
n-gram contexts wrt to the input query are retrieved and their weighted summation based on the domain’s relevance score is
computed to get probability distribution over targets PPersonaLM (wt|q) and interpolated with LM probabilities PLM (wt|q).

Figure 3: SCAN Retriever: Input query q followed by text
spans (xs, · · · , xe) from the positive domain (d+) and N − 1
negative domains (d−) separated by [SEP] are passed through
the encoder followed by a projector layer and an average
pooling layer. SCAN retriever is trained via a group-wise
contrastive loss to force the hidden representation of the query
q̂ close to its own spans zi, while far away from other groups.

over the retrieved documents as:

PD−RAG(wt|q) =
∑K

i=1 P (di|q)× P (wt|di, q)

3.1 SCAN Retriever
Fig. 3 shows the architecture of our proposed Span
Aggregated Group-Contrastive Neural (SCAN) re-
triever which is a Transformer encoder pre-trained
with Masked Language Modeling (MLM) as well
as a novel group-wise contrastive span loss to force
the semantic representations of the input query
close to its ground truth domain and away from
random spans from the different domains. During
the training of the SCAN retriever, we first sam-
ple spans of varying granularities from multiple
domains and encode them using the Transformer
encoder. Group-wise contrastive loss is then ap-
plied to learn discriminative semantic presentations
for enhanced retrieval performance.
Document Span Sampling: Different granular-
ities of spans capture different properties of the
input text. For example, phrase-level spans can
capture specific words or entities mentioned in the

text while paragraph-level spans can capture more
abstract properties of the text such as topic infor-
mation. In this work, we explicitly sample a set of
text spans at the phrase level, sentence level, and
paragraph level. We extract T spans for each level
of granularity to obtain a total of 3T spans corre-
sponding to each input document D. Text spans
(xs, · · · , xe) are sampled such that their start posi-
tion is taken from a uniform distribution U(1, l−1)
the span length l = e − s + 1 is determined by a
beta distribution B(a, b)× (l− s), where l denotes
the number of phrases/sentences/paragraphs in the
document with a, b as hyperparameters.

Multi-domain Text Encoding: Formally, let
there be a query q with an associated positive
domain d+ and a pool of N − 1 negative
domains (d−i ). For each domain, we concate-
nate the input query with multiple spans, add
a special [CLS] token before the query text
and a [SEP] token between the multiple spans
to obtain the concatenated text sequence t =
[CLS], q, [SEP ], x1s · · ·x1e, [SEP ] · · · , xNs · · ·xNe .
We encode the input text sequence using a multi-
layer Transformer encoder which maps each
word to a low-dimensional dense representation
h0, h1, · · · , hi = Transformer(x0, x1, · · · , xi),
where hi ∈ RH with H as the size of hidden
dimension. We then pass the encoded repre-
sentation through a project layer which is a
fully-connected layer followed by a non-linear
activation pi = Tanh(FFN(hi)) to prevent
representation collapse during contrastive learning.
An average pooling operation is applied over the
projected word representations to obtain the output
representations as z = AvgPool(ps · · · pe).
Group-wise Contrastive Training: We use group-
wise contrastive learning that incentives for rep-
resentations of spans in a group sharing the same
semantics to be similar while penalizing the rep-
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resentations of groups expressing different seman-
tics to be distinguished from each other. It en-
courages the SCAN retriever to discriminate and
score related query-span pairs (from the same do-
main) higher than unrelated (from different do-
mains) pairs. Given a mini-batch with N domains,
the group-wise contrastive loss function LGC is
applied over M = N ∗ (3T + 1) spans as:

LGC =
−1

3T

N∑

i=1

T∑

v∈d+

log
exp(sim(zi, zv)/τ)∑M

j=1 1i ̸=j exp(sim(zi, zj)/τ)

where sim(·) refers to the dot product and τ is the
temperature parameter.

3.2 Retrieving Relevant Domains
At inference, we encode the concatenated query
text with the document spans through the SCAN
retriever. The relevance score assigned by the
retriever model to a particular domain di based
on the input query q is denoted by P (di|q) is
computed via the dot product operation between
the [CLS] token embedding (zq) and the average
pooled embeddings of the document spans (zdi) as
P (di|q) = sim(zq, zdi).

3.3 Constructing k-Nearest N-gram
Co-occurrence Matrix

We hypothesize that words that occur together in
a specific domain have a high chance of trigger-
ing during inference. N-gram frequency matrices
store co-occurrence information in a matrix such
that each cell (i, j) corresponds to the normalized
frequency of the observed word wi ∈ V follow-
ing a sequence of n− 1 words in a document. To
exploit the word-level co-occurrence probabilities
in text, we construct the n-gram frequencies ma-
trices for each target domain di for n ∈ [2, 4] over
the entire vocabulary set V as f i

[(wt−n→wt−1),wv ]
.

However, n-gram frequencies tend to get sparser
with higher values of n. Moreover, restricting the
query n-grams to only exact matches leads to a loss
of information due to ignorance of semantically
similar n-grams (Li et al., 2017). To overcome
these drawbacks, we utilize k-nearest n-grams. We
construct domain-specific n-gram data stores with
keys as the pair of Bert vector representation of
the n-gram (BERT(wt−n → wt−1) and next word
(wv); values as the frequency of co-occurrence
in the given domain f i

[(wt−n→wt−1),wv ]
. At infer-

ence, PersonaLM uses k-NN with Euclidean dis-
tance metric to query the datastore for top-k nearest

neighbor n-grams based on their BERT representa-
tions. The top-k probability distributions obtained
from the n-gram datastore are summed over the
entire vocabulary to get f̂ i

[(wt−n→wt−1),wv ]
. The

next word prediction for a selected domain is cal-
culated as a weighted sum of k-nearest bigrams,
trigrams, and 4-gram frequencies as P (wt|di, q) =∑4

j=2 αj ∗ [f̂ i
[(wt−j→wt−1),1]

, · · · f̂ i
[(wt−j→wt−1),V ]],

where αj ∈ [0, 1] are hyperparameters.

3.4 LM Augmentation
We compute the PersonaLM retrieved next-word
probability PD−RAG(wt|q) by summing the nor-
malized k-nearest n-gram co-occurrence probabili-
ties weighted by the relevance score of the selected
domain over the target vocabulary as:

PD−RAG(wt|q) =
K∑

i=0

sim(zq, zdi)×

(

n∑

j=2

αj∗[f̂ i
[(wt−j→wt−1),1]

, · · · f̂ i
[(wt−j→wt−1),V ]])

Finally, we interpolate the retrieved next-
word probability distribution through PersonaLM
(pD−RAG) with the base LM output (PLM ) using
a hyperparameter λ to produce the final next-word
probability distribution as:

P (wt|q) = λPD−RAG(wt|q)+(1−λ)PLM (wt|q)

4 Experiments

4.1 Training SCAN retriever
We start with a pre-trained BERT model as the en-
coder which is further trained using group-wise
contrastive learning objective on the following
IR benchmarks: (1) MS MARCO Passage Rank-
ing (MARCO Dev Passage), (2) MS MARCO
Document Ranking (MARCO Dev Doc) Nguyen
et al. (2016); (3) TREC 2019 Passage Ranking
(TREC2019 Passage) and (4) TREC 2019 Docu-
ment Ranking (TREC2019 Document) Craswell
et al. (2020). While training the SCAN retriever,
we train the Transformer model with permutations
of span order. Hence, the spans from positive do-
mains are not necessary to always precede the spans
from negative domains. Similarly, the spans from
an individual domain are not necessitated to be al-
ways together in the sequence. This ensures the
learned span representations are robust in terms of
their relative order. More details are in Appendix.
B.9.
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4.2 Datasets

We evaluate the PersonaLM method on our pro-
posed ASAP dataset and the UserLibri corpus.

We propose the ASR Language Model Person-
alization (ASAP) benchmark which aims to evalu-
ate the efficacy of LMs for personalized automatic
speech recognition based on user/domain-specific
information for next word prediction and ASR n-
best second-pass restoring.
(1) Personalized Meeting ASR of user’s spoken
utterances in professional meetings. This task as-
sesses the model’s ability to capture user-preferred
dialogue patterns and linguistic characteristics. We
leverage the AMI Meeting corpus (Kraaij et al.,
2005) by splitting the user-specific recordings to
obtain personalized utterance-text pairs.
(2) Personalized TED Talk ASR to convert
recorded TED talks delivered by a specific user
into text transcript. This task evaluates the LM’s
capability to capture topics-aware word patterns in
the speeches from the TED-LIUM v3 corpus (Her-
nandez et al., 2018). We split the recorded TED
talks temporally with historical utterance-text pairs
forming the domain-specific train set.
(3) Personalized Financial Earning Calls ASR:
Perform speech-to-text for financial earnings con-
ference calls that include company-specific finan-
cial information. The task aims to evaluate a
language model’s capacity to extract company-
specific named entities, abbreviations, facts, and
long-tail word patterns. We adopt the conference
call-transcript pairs from combined Earnings-21
(Rio et al., 2021) and Earnings-22 (Del Rio et al.,
2022) datasets. Additionally, we use Wikitext-103
(Merity et al., 2017) to test the LM domain adapta-
tion in topic-specific documents. PersonaLM can
be applied to a variety of different datasets with
varying “domains” i.e. speakers/topics/categories.
For example, the recordings in the AMI Meet-
ing corpus are split based on speaker IDs. Do-
mains in Earnings-21+22 data correspond to dif-
ferent companies. A specific domain in the TED-
LIUM v3 dataset refers to a TED talk speaker. Do-
mains in Wikitext-103 correspond to individual
Wikipedia pages. Data Preprocessing: To study
personalization in language modeling, we refor-
mulated all the listed datasets to identify explicit
users/domains. For each dataset, we combined
the original train/val/test portions and splitted user-
based data in the ratio of 70:10:20 such that each
user/domain appears only in one of splits. Table

Dataset Train Val Test Vocab Size Domain # Domains
Earnings-21+22 49.6K 7.1K 14.2K 20K Financial Company 169
AMI Meeting Corpus 17.1K 2.7K 5.8K 11K Meeting Speaker 135
TED-LIUM v3 188.9K 26.6K 9.3K 46K TED speaker 2351
Wikitext-103 2M 300K 10K 200K Wikipedia Page 30k
UserLibri 6.3M 700K 10K 10K Books 107

Table 1: Data stats of ASAP, UserLibri, and WikiText-103.

1 shows statistics on dataset size and distribution.
UserLibri Dataset (Breiner et al., 2022a) refor-
mulates the Librispeech corpus into user-specific
audio-transcript pairs supplemented with personal-
ized text-only data corresponding to each user with
similar vocabulary, character names, and writing
styles as the recordings.

4.3 Experiments for ASR Personalization

Language Model Architecture: We experiment
with both LSTM and Transformer LMs. LSTM
model has 2 layers with a 300-d embedding layer
and a hidden dimension of 1500. Transformer LM
consists of 4 layers of encoder-decoder with 12
heads, 128-d hidden representations, and a feed-
forward layer of 3072-d. For generating ASR n-
best hypotheses, we use a pre-trained RNN-T ASR
Model with Emformer encoder (Shi et al., 2021),
LSTM predictor, and a joiner with 80M parameters.
More hyperparameter details in Appendix Sec.B.9
Pre-training LMs: LSTM and Transformer LMs
are pre-trained on Librispeech (Panayotov et al.,
2015) train set for 25 epochs with batch size of
256, Adam optimizer and cross-entropy loss for
next word prediction. We select model checkpoints
with least perplexity on the Librispeech validation.
Adaptation to Unseen Domains: We evaluate the
retrieval augmentation in two settings: (1) Without
fine-tuning: LM pre-trained on generic corpus; (2)
With fine-tuning: LM pre-trained on generic corpus
and fine-tuned on the entire out-of-domain train
corpus. In both cases, evaluation is performed on
the out-of-domain test set.
Baselines: (i) LSTM/Transformer: Language
model without any augmentation, (ii) Neural
Cache Model (Grave et al., 2017) augments LM
output with continuous a cache memory of previous
hidden states. The stored keys are used to retrieve
the next word through a dot product-based memory
lookup with the query. (iii) kNN-LM (Khandel-
wal et al., 2020): Following (Das et al., 2022), we
adopt kNN-LM to memorize context vectors from
representations from out-of-domain train set in an
external data store. During inference, the k-nearest
neighbors of the decoder output representations are
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interpolated with LM output. (iv) Unified N-gram
Co-occurrence: N-gram word frequency matrices
built from the combined out-of-domain train set
of each user/domain are augmented with LM at
inference. (v) PersonaLM w\ other retrievers:
Replacing SCAN retriever with DPR (Karpukhin
et al., 2020) or Contriever (Izacard et al., 2021).
Ablation Studies: (i) PersonaLM w\o SCAN re-
triever: We use the dot product of query and do-
main context encoded through pre-trained BERT
to compute the weightage of each domain; (ii) Per-
sonaLM w\o k-Nearest N-grams: Similar to kNN-
LM, we augment the NWP with k-nearest Bert con-
texts vectors extracted from individual domains.
We compute relevance scores from the SCAN re-
triever to get the weighted sum of the probability
distributions from each domain.
Evaluation Metrics: We utilize word-level per-
plexity scores to evaluate LM performance for next-
word prediction. We also report Word Error Rate
(WER) for ASR second-pass re-scoring for ASAP
corpus. For UserLibri, we evaluate WER per user
for both streaming and non-streaming ASR settings.
For each model, we report results with minimal per-
plexity by iterating the interpolation parameter λ
between 0 to 1 in increments of 0.1.
ASR Model Architecture for UserLibri: We uti-
lize separate architectures for streaming and non-
streaming ASR. The Conformer Hybrid Autore-
gressive Transducer (HAT) from Breiner et al.
(2022a) has 86M parameter and consists of 12 en-
coder layers of 512-d, 4 attention heads, convolu-
tion kernel size of 32, and a HAT decoder with a
single RNN layer of 640-d. Each label is embed-
ded with 128-d, and inputs are tokenized with a
1k Word-Piece Model trained on the LibriSpeech
train set. The models are trained with Adam using
group-norm (Wu and He, 2018). For streaming
ASR evaluation, the Conformer HAT model uses
causal convolution, local self-attention, and left-
sided context stacking to ensure no look-ahead.
The non-streaming version has multi-headed atten-
tion. COnformer models in both cases are trained
on 960 hours of LibriSpeech audio training set. The
LSTM decoder in streaming ASR is a 2-layer RNN
of size 1340 with 25M parameters. It uses a similar
Word Piece model as the Conformer.

4.4 SCAN Retriever Experiments on LaMP

LaMP (Salemi et al., 2023) is a benchmark cor-
pus to evaluate LM personalization on the follow-

Model WikiText-103 Earnings-21+22
Perplexity (↓) Perplexity (↓)

W
ith

ou
tF

in
e-

tu
ni

ng

LSTM 1384.1 757.6
+ Neural Cache 1325.3 723.8
+ kNN-LM 1191.6 659.1
+ Unified N-gram Co-occurrence Retrieval 603.6 477.2
+ PersonaLM w \DPR 544.3 420.3
+ PersonaLM w \Contriever 539.8 412.3
+ PersonaLM 527.9 405.6
+ PersonaLM w\o SCAN Retriever 542.8 415.4
+ PersonaLM w\o k-Nearest N-gram 542.3 415.7

W
ith

Fi
ne

-t
un

in
g

LSTM 103.9 66.2
+ Neural Cache 97.6 66.0
+ kNN-LM 91.8 65.7
+ Unified N-gram Co-occurrence Retrieval 89.2 64.5
+ PersonaLM w \DPR 84.2 63.0
+ PersonaLM w \Contriever 80.2 59.6
+ PersonaLM 77.8 57.8
+ PersonaLM w\o SCAN Retriever 82.7 61.5
+ PersonaLM w\o k-Nearest N-gram 82.3 61.9

(a) LSTM LM

Model WikiText-103 Earnings-21+22
Perplexity (↓) Perplexity (↓)

W
ith

ou
tF

in
e-

tu
ni

ng

Transformer 1322.3 834.2
+ Neural Cache 1295.3 802.4
+ kNN-LM 1150.4 717.8
+ Unified N-gram Co-occurrence Retrieval 585.3 454.8
+ PersonaLM w \DPR 578.2 452.7
+ PersonaLM w \Contriever 569.3 446.1
+ PersonaLM 567.6* 440.4*
+ PersonaLM w\o SCAN Retriever 572.9 448.2
+ PersonaLM w\o k-Nearest N-gram 572.1 447.9

W
ith

Fi
ne

-t
un

in
g

Transformer 88.6 55.2
+ Neural Cache 86.8 54.9
+ kNN-LM 79.3 54.2
+ Unified N-gram Co-occurrence Retrieval 76.5 53.8
+ PersonaLM w \DPR 76.1 52.6
+ PersonaLM w \Contriever 72.5 49.6
+ PersonaLM 70.9* 48.2*
+ PersonaLM w\o SCAN Retriever 74.8 51.5
+ PersonaLM w\o k-Nearest N-gram 73.5 50.3

(b) Transformer LM

Table 2: Results comparing the performance of PersonaLM
Retrieval Augmentation for (a) LSTM and (b) Transformer
LMs with baselines and ablations (in red) for the Next
Word Prediction task on WikiText-103 and Earnings-21+22
datasets. PersonaLM achieves the lowest perplexity scores
across all settings. * indicates that the result is statistically
significant (5 runs) based on Wilcoxon’s signed rank test
(p < 0.001).

ing user-specific text classification and generation
tasks: (1) citation identification, (2) news cate-
gorization (3) product rating prediction, (4) news
headline generation, (5) scholarly title generation.
Each data sample contains an input sequence to the
model, a target output, and several text samples that
encapsulate the user profiles that can be employed
for LLM personalization.
Baselines: Inspired by (Salemi et al., 2023), we
compare SCAN retriever with strong baseline re-
trievers for user-specific context selection: 1) Ran-
dom, (2) BM25, and (3) Contriever.
Evaluation on LLM Personalization: We evalu-
ate different retrievers for personalized prompt con-
struction in following settings: (a) Zero-shot LLM
prompting: Retrieve top-k most relevant user items
from external corpus to append in prompts for GPT-
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Model AMI Meeting Corpus TED LIUMv3
Perplexity (↓) WER (↓) Perplexity (↓) WER (↓)

W
ith

ou
tF

in
e-

tu
ni

ng

Audio Model Only (Emformer) – 32.54 – 17.23
Audio Model + LSTM 1636.4 31.75 427.7 13.51

+ Neural Cache 1545.4 31.69 414.5 13.25
+ kNN-LM 1232.2 31.62 389.7 7.82
+ Unified N-gram Co-occurrence Retrieval 606.7 31.25 335.4 7.34
+ PersonaLM w \DPR 490.5 31.22 332.8 7.23
+ PersonaLM w \Contriever 471.2 31.15 315.0 7.16
+ PersonaLM 463.8* 31.01* 313.8* 7.01*
+ PersonaLM w\o SCAN Retriever 480.2 31.13 320.3 7.15
+ PersonaLM w\o k-Nearest N-gram 478.9 31.10 318.8 7.14

W
ith

Fi
ne

-t
un

in
g

Audio Model Only (Emformer) – 32.54 – 17.23
Audio Model + LSTM 37.7 31.40 132.6 13.27

+ Neural Cache 37.5 31.36 132.2 13.03
+ kNN-LM 37.1 31.27 131.5 7.76
+ Unified N-gram Co-occurrence Retrieval 36.6 31.20 130.3 7.44
+ PersonaLM w \DPR 36.2 31.16 130.2 7.28
+ PersonaLM w \Contriever 35.1 31.14 128.7 7.03
+ PersonaLM 34.7* 31.01* 127.5* 6.90*
+ PersonaLM w\o SCAN Retriever 35.9 31.14 129.7 7.10
+ PersonaLM w\o k-Nearest N-gram 35.7 31.12 129.4 7.07

(a) LSTM LM

Model AMI Meeting Corpus TED LIUMv3
Perplexity (↓) WER (↓) Perplexity (↓) WER (↓)

W
ith

ou
tF

in
e-

tu
ni

ng

Audio Model Only (Emformer) – 32.54 – 17.23
Audio Model + Transformer 2114.3 32.05 442.0 13.24

+ Neural Cache 1987.5 32.01 424.5 13.18
+ kNN-LM 1579.0 31.95 398.6 7.57
+ Unified N-gram Co-occurrence Retrieval 637.1 31.37 332.3 7.22
+ PersonaLM w \DPR 624.9 31.33 327.4 7.14
+ PersonaLM w \Contriever 601.4 31.25 310.1 7.05
+ PersonaLM 592.6* 31.16* 308.3* 6.92*
+ PersonaLM w\o SCAN Retriever 610.3 31.29 316.6 7.15
+ PersonaLM w\o k-Nearest N-gram 608.5 31.27 315.5 7.05

W
ith

Fi
ne

-t
un

in
g

Audio Model Only (Emformer) – 32.54 – 17.23
Audio Model + Transformer 29.5 31.28 116.7 12.98

+ Neural Cache 29.3 31.24 116.2 12.78
+ kNN-LM 29.1 31.19 115.6 7.35
+ Unified N-gram Co-occurrence Retrieval 28.1 31.14 114.0 7.21
+ PersonaLM w \DPR 27.7 31.10 113.0 7.04
+ PersonaLM w \Contriever 26.4 31.03 112.3 6.93
+ PersonaLM 25.7* 30.88* 111.1* 6.86*
+ PersonaLM w\o SCAN Retriever 27.0 31.09 112.7 7.00
+ PersonaLM w\o k-Nearest N-gram 26.9 31.05 112.8 6.98

(b) Transformer LM

Table 3: Results comparing the performance of PersonaLM
Retrieval Augmentation for (a) LSTM and (b) Transformer
LMs with baselines and ablations (in red) for the Next Word
Prediction and Second-Pass ASR Re-scoring tasks on AMI
Meeting Corpus and TED LIUMv3 datasets. PersonaLM
achieves minimum perplexity WER on both datasets. * indi-
cates that the result is statistically significant (5 runs) based
on Wilcoxon’s signed rank test (p < 0.001).

3.51 and FlanT5-XXL (Chung et al., 2022); (b)
Few-shot LM Fine-tuning: Fine-tuning FlanT5-
base (Chung et al., 2022) using top-k retrieved
items from the user profile. More details on fine-
tuning FlanT5-base in Appendix Sec. B.9

5 Results and Analysis

Perplexity Evaluation: Tables 2 and 3 compare
the perplexity scores of the proposed PersonaLM
retrieval augmentation against other baselines. We
observe that the Neural Cache model (Li et al.,
2020b) slightly improves over naive LM baselines
but struggles due to its inability to handle long-
range dependencies through pointer mechanism.
Consistent with observations of Wang et al. (2023),
kNN-LM (Khandelwal et al., 2020) reduces per-
plexity by 5-10% but is still challenged by the non-
parametric fuzzy nature of k-nearest Bert context

1https://platform.openai.com/docs/models/gpt-3-5

Model
Streaming Non-Streaming

Test-Clean Test-Other All Test-Clean Test-Other All
Conformer Transducer (Audio Model Only) 6.0 11.2 8.5 2.5 6.8 4.5
Conformer Transducer + LM (25M) 5.2 9.1 7.1 2.0 5.5 3.7
+ Fine-tuned LM (p13n) 5.2 8.7 6.9 1.9 4.6 3.2
+ Unified N-gram Retrieval 5.1 8.6 6.8 1.9 4.4 3.1
+ PersonaLM w\ Contriver 5.0 8.5 6.8 1.8 4.4 3.0
+ PersonaLM 4.8* 8.3* 6.6* 1.6* 4.2* 2.8*
+ PersonaLM w\o SCAN retriever 5.1 8.6 6.9 1.8 4.6 3.0
+ PersonaLM w\o k-Nearest N-gram 5.0 8.5 6.8 1.8 4.5 3.1

Table 4: Performance comparison of PersonaLM Retrieval
Augmentation with baselines and ablations for personalized (a)
streaming ASR and (b) non-streaming ASR on the UserLibri
dataset. PersonaLM reduces the WER by 7-12% across all
settings. * indicates that the result is statistically significant (5
runs) based on Wilcoxon’s signed rank test (p < 0.001).

vectors selected amongst billions of stored contexts
from a gigantic data store. Similar to (Drozdov
et al., 2022), our experiments show that Unified
N-gram Co-occurrence shows slight improvement
over kNN-LM as n-grams are better at capturing
highly domain-specific rare word patterns. How-
ever, it still suffers from sub-optimal n-gram re-
trievals from a mixture of domains as the target
probabilities get averaged out when computed over
the entire external corpus. Our proposed method
achieves SOTA performance and improves the LM
perplexity by a significant margin on WikiText-103
(57.1− 61.8% w\o fine-tuning, 20.0− 25.1% with
fine-tuning), Earnings21+22 (46.4 − 47.2% w\o
fine-tuning, 11.4− 12.6% with fine-tuning), AMI
Meeting Corpus (71.6 − 71.9% w\o fine-tuning,
7.9− 12.8% with fine-tuning), and TED LIUMv3
(26.6 − 30.2% w\o fine-tuning, 3.8 − 4.7% with
fine-tuning) over base LMs, demonstrating that con-
textually matching query with most relevant do-
mains via SCAN retriever module boosts retrieval
performance which reinforces the next word pre-
diction task. Replacing the SCAN retriever in Per-
sonaLM with other baseline retrievers like Dense
Passage Retriever (DPR) or Contriever leads to de-
graded performance. However, the performance
does not decrease below kNN-LM or Unified N-
gram Co-occurrence Retrieval methods, signifying
the marginal benefit of domain-specific retrieval to
augment LM predictions.
ASR Rescoring Analysis on ASAP dataset: Table
3 shows results of second-pass ASR rescoring on
AMI Meetings and TED LIUMv3 datasets where
our proposed approach improves WER relatively
by ∼ 5%. Retrieval-augmented LMs when com-
bined with the n-best hypotheses produced by the
audio model lead to statistically significant WER
reduction with respect to both kNN-LM and Per-
sonaLM with Contriever baselines. Combining
audio model and PersonaLM allows wins on tail

11320



Dataset Metric
FlanT5-XXL GPT-3.5 FlanT5-base (fine-tuned)

Non-personalized Contriver SCAN Retriever Non-personalized Contriver SCAN Retriever Non-personalized Contriever SCAN Retriever
LaMP-1U: Personalized
Citation Identification

Accuracy 0.522 0.675 0.687 0.510 0.701 0.715 0.522 0.731 0.745

LaMP-2U: Personalized
News Categorization

Accuracy 0.591 0.598 0.608 0.610 0.693 0.702 0.730 0.835 0.843
F1 0.463 0.471 0.484 0.455 0.455 0.466 0.504 0.637 0.648

LaMP-3U: Personalized
Product Rating

MAE 0.357 0.282 0.276 0.699 0.658 0.644 0.314 0.258 0.246
RMSE 0.666 0.584 0.565 0.977 1.102 0.980 0.624 0.572 0.559

LaMP-4U: Personalized
News Headline Generation

ROUGE-1 0.164 0.192 0.211 0.133 0.160 0.172 0.158 0.201 0.212
ROUGE-L 0.149 0.178 0.187 0.118 0.142 0.155 0.144 0.185 0.192

LaMP-5U: Personalized
Scholarly Title Generation

ROUGE-1 0.455 0.467 0.475 0.395 0.398 0.409 0.424 0.453 0.470
ROUGE-L 0.410 0.424 0.433 0.334 0.336 0.342 0.382 0.414 0.425

Table 5: Performance comparison of zero-shot FlanT5-XXL, GPT-3.5, and few-shot fine-tuned FlanT5-base for personalized
text classification and generation results on the eval set of LaMP dataset. For all metrics the higher the better, except for RMSE
and MAE. Prompting LLMs with user-specific context selected by the SCAN retriever consistently reports the best performance.

words while avoiding losses on common word
occurrences. Evaluation on UserLibri dataset
(Breiner et al., 2022b) shows that PersonaLM im-
proves WER for both streaming and non-streaming
ASR. Compared to fine-tuning the LM on the en-
tire external personalized corpus (p13n LM), Per-
sonaLM can selectively learn user-specific discrim-
inative patterns in speech text and weigh it appro-
priately for biasing the LM predictions.

Ablation Analysis: Tables 2-4 highlights in red
show the ablation study for PersonaLM. We ob-
serve that SCAN retriever is critical in all settings
due to its enhanced ability to learn enhanced dis-
criminative document representations that help as-
sign appropriate weights to external domains. Re-
moving the k-nearest N-grams severely deteriorates
the performance as the LM is no longer able to
exploit the personalized n-gram probability distri-
bution from different domains. The severe per-
formance drop in WER for speech datasets in the
absence of either of the components underscores
their significance for personalized ASR tasks.

Adaptation to Unseen Domains: Retrieval aug-
mentation with fine-tuned LMs shows a sustained
relative gain of 5-18% across all settings despite
having seen the same data during the fine-tuning
stage. This observation validates our hypothesis
that despite the benefits of transfer learning for out-
of-domain generalization, explicit memorization is
needed to effectively learn user-specific linguistic
patterns not retained during fine-tuning.

Qualitative Examples: Qualitative examples from
ASAP, Wikitext, and UserLibri datasets in Table 6
along with model predictions. PersonaLM is able
to able to correctly predict proper nouns, abbrevia-
tions, and homonyms mistaken by fine-tuned LM
and kNN-LM baselines, while also fixing the prob-
lem of over-prediction of domain-specific frequent
words commonly observed in Unified N-gram Co-
occurrence Retrieval baseline.
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(b) Transformer

Figure 4: Plot of λ (interpolation parameter) vs perplexity of
PersonaLM with fine-tuned (a) LSTM, (b) Transformer LMs
on WikiText-103, Earnings-21+22, AMI Corpus, and TED
LIUMv3 datasets. Curves show convex characteristics with
the optimal value of λ varying with different settings.

Impact of Interpolation Parameter: Figure 4
shows the optimal value of interpolation parame-
ter λ varies in different settings. λ vs perplexity
curve shows convex characteristics for all variants
of PersonaLM. Perplexity scores improve with in-
creasing λ as explicit memorization of rare word
patterns mined from matching domains benefits the
next word prediction task but starts to drop mono-
tonically after reaching an inflection point.

Downstream Application of SCAN Retriever:
Table 5 shows the application of different retriev-
ers for improving user-personalized text genera-
tion and classification on the LaMP dataset. We
aim to retrieve the most relevant user profiles that
can be augmented with query context for zero-shot
prompting or few-shot fine-tuning of LLMs. SCAN
retriever outperforms both BM-25 and Contriever
baselines and shows significant gains across dif-
ferent metrics compared to non-personalized LMs
across all subtasks. As opposed to earlier advances
where retrieval augmentation was performed dur-
ing LM training (Lewis et al., 2020; Guu et al.,
2020), the core merits of our proposed SCAN re-
triever are that it is extensible to any LM (LSTM,
Transformer, GPT, etc), can seamlessly adapt to
new users, enable in-context retrieval augmenta-
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Win/Loss Ground Truth Fine-tuned LM kNN-LM Unified N-gram Retrieval PersonaLM Type
Win king sharr khan king sir can king sir khan king share can kingsharr khan Proper Name
Win murdoch blinked mr duck winged mom duck blink murdock blinked murdoch blinked Proper Name
Loss tied to a woman tied to a woman tied too a woman died to a woman died to a woman homonym
Win lord of baghdad lord of bag dad lord of bag dad lord baghdad lord of baghdad homonym
Win mister beale mister bell mister bell mister be elle mister beale Proper Name
Win thanks izzy thanks is he thanks is he thank is he thanks izzy homonym
Win North American Treaty Alliance North American Treaty All Hands North American Treaty Organization North American Treaty Alliance North American Treaty Alliance Abbreviation Term
Loss utterly RSVP for this our invitation utter RSVP for this our invitation utter respect for this our invitation utterly rest for this our invitation utterly respectively for this our invitation Abbreviation Term

Table 6: Qualitative examples: Ground truth, baseline predictions, and PersonaLM predictions for a few samples from UserLibri
and ASAP eval set. PersonaLM is able to able to correctly predict proper nouns, abbreviations, and homonyms mistaken by
fine-tuned LM and kNN-LM baselines, while also fixing the problem of over-prediction of domain-specific frequent words
commonly observed in Unified N-gram Co-occurrence Retrieval baseline.

tion without any LM-specific fine-tuning, and re-
quires very small memory footprint with negligible
computational overhead.

6 Conclusion

We introduce PersonaLM retrieval augmentation
for ASR personalization using a SCAN retriever
trained via group-contrastive learning to rank tex-
tual documents from an external knowledge corpus
based on their semantic similarity with the input
query. We aggregate the probability distribution
of the next word prediction by utilizing domain-
specific n-gram word frequency representations
weighted by the relative importance of the exter-
nal domains to the input query. Experiments on
our proposed ASAP benchmark and the UserLibri
dataset show that our method achieves SOTA per-
plexity and WER. We show that the SCAN retriever
is also useful for in-context LLM augmentation for
zero-shot prompting and few-shot fine-tuning.

7 Limitations

Through careful analysis of error cases, we found
that there are two main types of prediction errors
from the proposed model. First, our methodology
is challenged by the phenomenon of contradictory
information. As retrieval augmentation relies on
external data that may be from varying sources,
fact verification and rare word confounders in cer-
tain cases can be confusing for our models. Our
approach does not reconcile facts, names or out-of-
domain patterns from varying information sources,
but rather takes a frequentist approach due to the
reliance on n-grams. For example, consider this
query - "Nigerian authorities report fresh aggres-
sion on June 15, 2018, that led to the death of - ".
To complete the query, several external new article
sources are ranked highly by our SCAN retriever.
However, only a few of them are relevant to the date
the query was executed, while some of them were
later debunked as misinformation. Tackling this
type of error requires fact-checking and document

grounding mechanisms to cite what information
was used for next-word prediction. Another major
limitation of this method is that it ignores accented
speech and speech that causes cold start problems
for noisy speech samples wherein the contextual
query is corrupted from the start. As a result, ASR
rescoring is unable to take advantage of previously
predicted utterances. This leads to exacerbating
the ASR performance that was already suffering
due to noise in the audio domain. For instance, the
Conformer model personalized using PersonaLM
for TED talks recorded in an auditorium does not
generalize well to political speeches conducted in
open settings with background crowd noises.

8 Ethics Statement

We utilize the publicly available Wikitext, AMI
Meetings corpus, TED-LIUM v3, Earnings-21,
Earnings-22, UserLibri, and LaMP datasets for
ASR and language modeling. Our curated bench-
marks are composed of open-source and publicly
available datasets repurposed for ASR and LM. Our
proposed ASAP benchmark does not provide any
new annotations but rather reformulates the data
splits for our experiments. Our study on user or
domain personalization does not target any known
individual, race, gender, topic, or ethnicity. Person-
alization is limited to a user’s linguistic character-
istics. We do not utilize any PII at any step in our
experiments.
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A Appendix

A.1 Limitations

Through careful analysis of error cases, we found
that there are two main types of prediction errors
from the proposed model. First, our methodology
is challenged by the phenomenon of contradictory
information. As retrieval augmentation relies on
external data that may be from varying sources,
fact verification and rare word confounders in cer-
tain cases can be confusing for our models. Our
approach does not reconcile facts, names or out-of-
domain patterns from varying information sources,
but rather takes a frequentist approach due to the
reliance on n-grams. For example, consider this
query - "Nigerian authorities report fresh aggres-
sion on June 15, 2018, that led to the death of - ".
To complete the query, several external new article
sources are ranked highly by our SCAN retriever.
However, only a few of them are relevant to the date
the query was executed, while some of them were
later debunked as misinformation. Tackling this
type of error requires fact-checking and document
grounding mechanisms to cite what information
was used for next-word prediction. Another major
limitation of this method is that it ignores accented
speech and speech that causes cold start problems
for noisy speech samples wherein the contextual
query is corrupted from the start. As a result, ASR
rescoring is unable to take advantage of previously
predicted utterances. This leads to exacerbating
the ASR performance that was already suffering
due to noise in the audio domain. For instance, the
Conformer model personalized using PersonaLM
for TED talks recorded in an auditorium does not
generalize well to political speeches conducted in
open settings with background crowd noises.
Potential Risks: Our models are exploratory and
academic in nature and should not be used for real-
world financial/political/healthcare purposes with-
out extensive investigations into their shortcom-
ings/randomness/biases. Unhandled Cases: The
current work is limited to the English language and
would need suitable tools in other languages to pro-
cess audio, LM tokenization, vocabulary, and pre-
trained multilingual language models. Moreover,
our method has been tested on limited domains
of Wikipedia text, professional meetings, recorded
speeches, and financial earning calls. Applications
to life-critical scenarios such as healthcare, public
safety, and law will need further investigation.

B Reproducibility Checklist

B.1 Summary of paper’s main claims
The novel contributions of our work include:

• PersonaLM retrieval augmentation for ASR
personalization that leverages group-wise con-
trastive loss to train Span Aggregated Group-
Contrastive Neural (SCAN) retriever for
ranking query-relevant external domains/users
and augments domain-distributed k-nearest n-
gram frequencies to improve LM predictions.

• ASAP - a novel benchmark for ASR LM
personalization consisting of three user-
specific ASR tasks in the domains of meet-
ings, TED talks, and financial conference calls.
PersonaLM significantly outperforms strong
baselines on ASAP benchmark, UserLibri,
and Wikitext-103 corpus by ∼ 10− 16% per-
plexity gain and ∼ 5− 8% WER reduction.

• Downstream Application: SCAN retriever
improves context retrieval in personalized text
generation and classification via zero-shot
prompting and few-shot fine-tuning of LLMs
on LaMP corpus by 7− 12%.

B.2 Citation to creators of artifacts
We use four publicly available datasets for evalu-
ation - WikiText-103 (Merity et al., 2017), com-
bined Earnings-21 + Earnings-22 (Rio et al., 2021;
Del Rio et al., 2022), AMI Meeting (Kraaij et al.,
2005), and TED-LIUM v3 (Hernandez et al., 2018).
We use Librispeech (Panayotov et al., 2015) text
corpus for LM pre-training. We prefer to combine
both versions of Earnings Call datasets to make the
corpus more domain-diverse. We use the UserLibri
corpus to evaluate retrieval augmentation for per-
sonalizing streaming and non-streaming ASR. We
use the LaMP (Salemi et al., 2023) dataset for per-
sonalized text generation and classification through
retrieval augmentation with LLMs.

• WikiText-103 Dataset2

• Earnings-21 Datatset3

• Earnings-22 Dataset4

• AMI Meeting Corpus5

2https://blog.salesforceairesearch.com/the-wikitext-long-
term-dependency-language-modeling-dataset/

3https://github.com/revdotcom/speech-
datasets/tree/main/earnings21

4https://github.com/revdotcom/speech-
datasets/tree/master/earnings22.

5https://groups.inf.ed.ac.uk/ami/corpus/
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• TED-LIUM v3 Dataset6

• Librispeech Dataset7

• userLibri Dataset8

• LaMP Dataset9

B.3 License and terms for use of data artifacts
All the datasets are publicly available and free to
use for research purposes.

B.4 Intended use of data artifacts:
The intended use of text and speech datasets is to
improve language modeling and ASR re-scoring.
Enhancements in speech recognition and general
NLP models can increase the accessibility of AI
tools and open new pathways to deploy AI for so-
cial good.

B.5 Steps taken to protect/anonymize names,
identities of individual people, or
offensive content:

We do not use any identifiable user data for any
experiments. All datasets already come with PII
data redacted prior to their public release.

B.6 Coverage of domains, languages,
linguistic phenomena, demographic
groups represented in data:

Our work performs next word prediction and ASR
second pass re-scoring on data from Wikipedia,
financial earning calls, meeting recordings, and
speeches in the English language. Adaptation to
other languages may need appropriate processing.

B.7 Data statistics and Processing
The data statistics are given in Table 7. For each
text sentence/utterance, all alphabets were lower-
case, numbers were converted into their respective
word forms, and punctuation was removed. To
experiment with the out-of-domain generalization
ability of the proposed approach, we reformulated
existing datasets to identify explicit domains. For
each dataset, we combined the train/val/test por-
tions and considered all sentences/utterances in
each Wikipedia page/call/recording as part of a par-
ticular domain. We then split sentences within the
same domain in the ratio of 70:10:20 to form new
train/val/test splits.

6https://www.openslr.org/51/
7https://huggingface.co/datasets/librispeech_asr
8https://www.kaggle.com/datasets/google/userlibri
9https://lamp-benchmark.github.io/

B.8 Total computational budget and
computing infrastructure:

We performed training and inference of the models
on industrial strength CPU and clusters of multi-
ple 32GB V100 GPUs. The model takes between
12-36 hours to train on either of the four datasets.
Inference/ Fine-tuning time varies from 3-7 hours
per dataset.

B.9 Experimental setup, hyperparameter
search, and best-found values:

Hyper-parameters for our experiments were tuned
on the respective out-of-distribution evaluation sets
to find the best configurations for different datasets.
We detail the training setup as follows:
Training Setup for PersonaLM Retriever: We
experiment with a range of hyperparameters in
PersonaLM such as: size of hidden layers in
Fully Connected Layer {64, 128, 256}, dropout
δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5.0.6}, learning rate λ ∈
{1e−−5, 2e−5, 3e−5, 4e−5, 5e−5}, weight de-
cay ω ∈ {1e−6, 1e−5, 1e−4, 1e−3}, batch size
b ∈ {4, 8, 16, 32, 64, 128, 256, 512} and epochs
(≤ 25). We use a pre-trained BERT model and
further train it using contrastive learning loss.
Pre-training Language Models: For all experi-
mental settings, we use an LSTM model of 2 lay-
ers with a 300-dimension embedding layer and
a hidden dimension of 768. The Transformer
model consists of 4 layers of encoder-decoder with
12 heads, 128 dimensions hidden representations,
Layer Norm input dimensions of 768, attention
dropout of 0.2, and a feed-forward layer of 3072
dimensions. We use a batch size of 256 and train
till 25 epochs. We use a learning rate of 1e − 4,
a fixed learning rate scheduler, a force anneal of
26, a learning rate shrink of 0.8, and a Gelu acti-
vation function. We use Adam optimizer with eps
of 1e − 8, weight decay of 1e − 6, and betas of
(0.9, 0.999) to compute cross-entropy loss as word
level. We select the model checkpoint with the
least perplexity on the Librispeech validation set.
Fine-tuning Language Models: LSTM and Trans-
former models were fine-tuned on the out-of-
domain train set with a batch size of 256 for 25
epochs. We select the model checkpoint with the
least perplexity on the out-of-domain validation
set.
ASR Audio Models: For generating ASR n-best
hypotheses, we use a pre-trained RNN-T model
with the Emformer encoder (Shi et al., 2021),
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Dataset Train Val Test Vocab Size Domain # Domains
Earnings-21+22 49.6K 7.1K 14.2K 20K Earning Call 169
AMI Meeting Corpus 17.1K 2.7K 5.8K 11K Meeting Recording 135
TED-LIUM v3 188.9K 26.6K 9.3K 46K TED Talk 2351
Wikitext-103 2M 300K 10K 200K Wikipedia Page 30k
UserLibri 6.3M 700K 10K 10K Books 107

Table 7: Data stats of ASAP, UserLibri, and WikiText-103.

LSTM predictor, and a joiner with 80M param-
eters.
PersonaLM Retrieval Augmentation: Probabil-
ity distribution obtained from bi-gram frequencies
for each vocabulary word in the co-occurrence ma-
trices was normalized. Trainable parameters in
the Neural Retrieval module were frozen during
inference and used to encode query and domain
contexts. For each model, we report results with
minimal perplexity by iterating the interpolation
parameter λ between 0 to 1 in increments of 0.1.
Loss Functions: PersonaLM retrieval augmenta-
tion uses both group-wise contrastive loss and
MLM loss to train the neural retriever. For pre-
training and fine-tuning the LMs, we use cross
entropy loss over target words in the sequence.
Model Parameters: The audio LSTM model has
around 80M parameters. Transformer LM has ap-
prox 247M parameters while the LSTM LM has
around 6.5M parameters. The conformer model
for streaming and non-streaming ASR in UserLibri
dataset has 86M parameters.
Evaluation Metrics: We utilize word-level per-
plexity scores to evaluate language model perfor-
mance for next-word prediction. We also report
Word Error Rate (WER) for ASR second-pass re-
scoring in speech datasets.
Data Preprocessing: For each text sen-
tence/utterance in the ASAP benchmark, all
alphabets were lower-cased, numbers were
converted into their respective word forms, and
punctuation was removed.
Pre-training SCAN Retreiver: The maximum
query and span lengths for the ranking datasets
are set to 32 and 128, respectively. We experi-
ment the learning rate between {1e − −5, 2e −
5, 3e − 5, 4e − 5, 5e − 5}, weight decay ω ∈
{1e − 6, 1e − 5, 1e − 4, 1e − 3}, batch size
b ∈ {4, 8, 16, 32, 64, 128, 256, 512} and epochs
(≤ 25). and Adam optimizer with a linear warm-up
for the first 10% steps.
Fine-tuning FlanT5-base for LaMP Experi-

ment: We utilize a FlanT5-base model for few-
shot fine-tuning experiments with a learning rate
experimented between {1e − −5, 2e − 5, 3e −
5, 4e − 5, 5e − 5}, weight decay ω ∈ {1e −
6, 1e − 5, 1e − 4, 1e − 3}, batch size b ∈
{4, 8, 16, 32, 64, 128, 256, 512} and epochs (≤ 25)
and Adam optimizer. We utilize a linear warmup
scheduler for 5% of the total training steps and train
for a maximum of 20 epochs. The maximum input
prompt length is 512 tokens.

B.10 Implementation Software and Packages
We implemented our solution in Python 3.6 using
the PyTorch framework. We used the following
libraries and modules:

• Huggingface’s implementation for BERT
transformers. 10

• FAISS Library 11 for fast kNN retrieval.

• Scipy 12 for scientific computations

• NLTK 13 for sentence processing

• OpenAI 14 for GPT-3.5 turbo

B.11 Model Decisions
We choose optimal k in the kNN algorithm to be
400. We experiment with bigrams, trigrams, and
4-grams. The optimal weightage of the n-grams
is [(0.6− 0.7), (0.10− 0.20), (0.05− 0.10)]. We
choose the maximum value of T = 20 from each
document for training the SCAN retriever.

B.12 LLM Prompts
We utilize the prompts given by (Salemi et al.,
2023) in the paper Appendix for retrieval augmen-
tation experiments. This was done to ensure a
straightforward comparison with baseline BM25

10https://huggingface.co/
11https://github.com/facebookresearch/faiss
12https://scipy.org/
13https://www.nltk.org/
14https://platform.openai.com/docs/models/overview
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and Contriever. The retrieved user profiles were
added to the prompt context while ensuring the
maximum context length is respected.

B.13 Instructions given to participants or
annotators

We do not annotate any new data.

B.14 Annotator recruitment and payment
We do not annotate any new data.

B.15 Consent for data annotation
We do not annotate any new data.

B.16 Protocol approval by ethics review board
We do not annotate any new data.

B.17 Demographic and geographic
characteristics of the annotator
population

We do not annotate any new data.
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