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Abstract

Measuring the semantic similarity between two
sentences is still an important task. The word
mover’s distance (WMD) computes the similar-
ity via the optimal alignment between the sets
of word embeddings. However, WMD does
not utilize word order, making it challenging to
distinguish sentences with significant overlaps
of similar words, even if they are semantically
very different. Here, we attempt to improve
WMD by incorporating the sentence structure
represented by BERT’s self-attention matrix
(SAM). The proposed method is based on the
Fused Gromov-Wasserstein distance, which si-
multaneously considers the similarity of the
word embedding and the SAM for calculating
the optimal transport between two sentences.
Experiments demonstrate the proposed method
enhances WMD and its variants in paraphrase
identification with near-equivalent performance
in semantic textual similarity. Our code is avail-
able at https://github.com/ymgw55/
WSMD.

1 Introduction

The task of measuring the semantic textual similar-
ity (STS) of two sentences is essential for natural
language processing with various applications (Cer
et al., 2017). There are several methods for mea-
suring STS, among which many methods using
Optimal Transport (OT) distance have been pro-
posed and have shown good performance (Kusner
et al., 2015; Huang et al., 2016; Chen et al., 2019;
Yokoi et al., 2020).

OT theory gives a method to measure the dif-
ference between two distributions by setting the
transport cost of a unit mass and considering the
allocation of the transported mass to minimize the
total cost. This allocation is called optimal trans-
port, and the total cost is called the OT distance.

A basic form of OT distance is the Wasserstein
distance, which measures the similarity between
sets using the distance between the elements in

Figure 1: An illustration of OT for word embeddings
from sentence 1 to sentence 2. Words are aligned by
word similarity in WMD; e.g., obama matches president.
Words are aligned by sentence structure in SMD or by
word similarity and sentence structure simultaneously
in WSMD; e.g., obama matches press. See Section 2.

the sets (Kantorovich, 1960). Word Mover’s Dis-
tance (WMD) computes Wasserstein distance by
considering a sentence as a set of word embed-
dings (Kusner et al., 2015).

However, WMD does not consider the word or-
der of sentences, making it challenging to identify
paraphrases. Let us see the following illustrative
example of the paraphrases adapted from (Kusner
et al., 2015) and (Zhang et al., 2019):

(a) Obama speaks to the media in Illinois.

(b) The President greets the press in Chicago.

(c) The press greets the President in Chicago.

Here (b) is a paraphrase of (a), while (c) has a very
different meaning from (a). However, all these
sentences have a high overlap of words. Thus,
WMD cannot distinguish these pairs.

To account for sentence structure, we focused
on BERT (Devlin et al., 2019), an attention-based
model that has recently achieved remarkable perfor-
mance in natural language processing tasks. BERT
is a masked language model that performs task-
specific fine-tuning after pre-training on a large
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Figure 2: An illustration of OT for SAMs from sen-
tence 1 to sentence 2. To avoid crowding the diagram,
arrows are shown in only two SAM elements. The
darker the color, the higher the value of the SAM el-
ement (reflecting a real SAM used in Table 1). The
difference of SAM values is small for the word align-
ment of SMD or WSMD; e.g., (obama, speaks) matches
(press, greets). The difference is large for that of WMD;
e.g., (obama, speaks) matches (president, greets). See
Section 2.

dataset. By inputting a sentence into the pre-
trained BERT, we can extract the Self-Attention
Matrix (SAM), which represents the dependencies
between words in the sentence. SAM encodes sen-
tence structure information, such as syntactic in-
formation (Clark et al., 2019; Htut et al., 2019;
Luo, 2021). Therefore, sentence structure can be
incorporated into STS by measuring the distance
between SAMs.

We propose a novel method called sentence
Structure Mover’s Distance (SMD) in Section 5
that measures the optimal transport distance be-
tween sentence structures represented in SAMs.
SMD aims to find the optimal word alignment by
considering the transport cost between elements of
SAMs, while WMD considers the transport cost
between word embeddings. To compute SMD,
we employ the Gromov-Wasserstein (GW) dis-
tance (Mémoli, 2011; Peyré and Cuturi, 2020), the
optimal transport distance for measuring structural
similarity between sets.

SMD is ineffective by itself because it measures
only the difference between sentence structures.
Thus SMD is used in combination with WMD. We
improve WMD-like methods (i.e., WMD and its
variants based on Wasserstein distance between
sets of word embeddings) by combining SMD
with them in Section 6. This proposed method
is called Word and sentence Structure Mover’s Dis-
tance (WSMD). WSMD simultaneously measures
the difference between word embeddings and the
difference between sentence structures. WSMD

employs the Fused Gromov-Wasserstein (FGW)
distance (Vayer et al., 2019, 2020), known as the op-
timal transport distance that combines both Wasser-
stein and GW distances.

2 Illustrative example

Here we explain how our proposed method works
for the example of the paraphrases in Section 1.
The original WMD and its improvement with our
proposal are computed for this example and shown
in Table 1. We computed these values using the
word embeddings taken from the input layer of
BERT and the SAMs taken from the second head of
the eighth layer of BERT. The details of the setting
will be described in Section 7.2. The similarity
should be high for the sentence pair (a) vs. (b), i.e.,
case (1), while the similarity should be low for the
sentence pair (a) vs. (c), i.e., case (2).

Looking at the values of the original WMD for
the two cases, we find that they are about the same.
Thus, WMD failed to give a reasonable sentence
similarity. This failure is explained in Fig. 1 by
illustrating word embeddings for case (2). WMD
tries to find the closest word for each word, match-
ing obama to president, media to press, and so on;
the word alignment is indicated as the short dotted
arrows. Then, WMD is computed by averaging the
length of these short arrows, indicating a high sen-
tence similarity contrary to the fact that the actual
similarity is low for case (2).

However, the word alignment for WMD is in-
appropriate, given the word order and sentence
structure. Our proposed method correctly matches
obama to press and media to president. This word
alignment is shown as the long arrows with solid
lines in Fig. 1. WMDλ in Table 1 is computed by
averaging the length of these arrows, i.e., the same
formula as WMD but using the OT taking account
of the sentence structure. We find that WMDλ

increases for case (2), correctly indicating a low
sentence similarity.

Fig. 2 explains how our proposed method takes
account of the sentence structure. Given a word
alignment between two sentences, we can think of
a matching of elements between the two SAMs by
applying the word alignment to both the rows and
the columns of the matrices. For example, the word
alignment of WMD in Fig. 1 induces the matching
from (obama, speaks) to (president, greets), (me-
dia, speaks) to (press, greets), and so on. SMD
minimizes the average difference of SAM values
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case sentences WMD WMDλ WSMD similarity

(1)
(a) obama speaks to the media in illinois.

12.54 12.54 7.26 high
(b) the president greets the press in chicago.

(2)
(a) obama speaks to the media in illinois.

12.55 13.30 8.03 low
(c) the press greets the president in chicago.

Table 1: Similarity measures for sentence pairs (a) vs. (b) and (a) vs. (c) of Section 1.

between the matched elements. This recovers the
correct word alignment in this example. WSMD
minimizes the weighted sum of the objectives for
WMD and SMD; we used the mixing ratio λ = 0.5
here. As shown in Table 1, WSMD correctly indi-
cates that the sentences in case (2) are less similar
than those in case (1).

3 Related Work

This paper focuses on sentence similarity measures
using the OT of word embeddings. For example,
WMD (Kusner et al., 2015) uses uniform word
weights and the L2 distance of word embeddings as
the transport cost. By modifying the word weights
and the transport cost, various WMD-like methods
have been developed to compute sentence similar-
ity based on the Wasserstein distance between sets
of word embeddings. For example, Word Rotator’s
Distance (WRD) (Yokoi et al., 2020) uses the vec-
tor norm of the word embedding for the weight and
the cosine similarity for the cost. There are many
attempts to improve WMD by incorporating word
order and sentence structure information into the
weight, cost, and penalty terms, as explained be-
low. However, none of them consider the optimal
transport of sentence structures nor utilize SAMs
from BERT.

In OPWD (Su and Hua, 2019), the temporal dif-
ference between word embeddings wi and w′

j is
measured by the distance between their relative
temporal positions (i/n − j/m)2, where n and
m represent the lengths of the corresponding sen-
tences. This difference is incorporated into the
transport cost and an additional regularization term.
WMDo (Chow et al., 2019) identifies consecutive
words common to two sentences as a chunk and in-
troduces a penalty term according to the number of
chunks. In Syntax-aware WMD (SynWMD) (Wei
et al., 2022), the word weight is computed from the
word co-occurrence extracted from the syntactic
parse tree of sentences, and a word embedding in-
corporates those from its subtree of the parse tree.

The weight and the cost in SynWMD are called
Syntax-aware Word Flow (SWF) and Syntax-aware
Word Distance (SWD), respectively. In Recursive
Optimal Transport Similarity (ROTS) (Wang et al.,
2020, 2022), a recursive optimal transport method
is introduced to capture word dependencies in sen-
tences. To measure sentence similarity, the pair-
wise cosine similarity of words is weighted using
this optimal transport and aggregated. In Mover-
Score (Zhao et al., 2019), the inverse document
frequency (IDF) is used for the word weight, and
the word embeddings from BERT are used for com-
puting the cost. BERTscore (Zhang et al., 2020a)
also uses IDF and BERT embedding, but it employs
greedy matching instead of OT for word alignment.

4 Optimal transport of words

We review the computation of WMD. In the follow-
ing, we denote two sentences as

s = (wi)
n
i=1, s

′ = (w′
j)

m
j=1 ⊂ Rd,

where wi,w
′
j ∈ Rd are word embeddings, and

n,m are sentence lengths. SAM is denoted A =
(Aii′) ∈ Rn×n and A′ = (A′

jj′) ∈ Rm×m, respec-
tively, for s and s′. The element Aii′ is the attention
weight from wi to wi′ , and the element A′

jj′ is the
attention weight from w′

j to w′
j′ . Each row of SAM

is normalized as
∑n

i′=1Aii′ =
∑m

j′=1A
′
jj′ = 1.

The weights on wi and w′
j in the probability

distributions for s and s′ are denoted by u =
(ui)

n
i=1 ∈ Rn

≥0, with
∑n

i=1 ui = 1, and u′ =
(u′j)

m
j=1 ∈ Rm

≥0, with
∑m

j=1 u
′
j = 1, respectively.

In this paper, unless otherwise stated, the weights
on words in a sentence are equal, i.e., the uniform
distribution specified as

u = (1/n)ni=1, u
′ = (1/m)mj=1. (1)

4.1 Wasserstein distance
Sentences s and s′ cannot be naively compared be-
cause they are generally different in length, and
the corresponding words are unknown. We then
consider the word transport from s to s′ to obtain
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the word alignment. Interpret the sentence s as the
amount of mass ui at position wi. First, we denote
Pij ∈ [0, 1], the amount of mass transported from
position wi to position w′

j , and consider the trans-
port matrix P = (Pij) ∈ Rn×m

≥0 with nonnegative
elements. Next, we define the distance function
c(wi,w

′
j) ∈ R≥0 as the cost of transporting a unit

mass from wi to w′
j and specify the distance ma-

trix C = (Cij) = (c(wi,w
′
j)) ∈ Rn×m

≥0 . Given P
and C, the transport from wi to w′

j costs CijPij ,
and the total cost of transport is

n∑

i=1

m∑

j=1

CijPij . (2)

Finding the optimal transport matrix P̂ = (P̂ij)
that minimizes the total cost, we compute the
Wasserstein distance between s and s′ as the mini-
mum value of the total cost

∑n
i=1

∑m
j=1CijP̂ij .

4.2 Word mover’s distance

Word Mover’s Distance (WMD) (Kusner et al.,
2015) is Wasserstein distance applied to word em-
beddings. In the original WMD, the weight on
words is the uniform distribution (1), and the dis-
tance function is Euclid distance between word
embeddings wi and w′

j . The distance matrix is
defined as

Cij = c(wi,w
′
j) = ∥wi −w′

j∥2. (3)

Therefore, WMD between s and s′ is

WMD(s, s′) = min
P∈Π(u,u′)

n∑

i=1

m∑

j=1

CijPij . (4)

Here, Π(u,u′) is the set of all possible values of
the transport matrix P defined as
{
P ∈ Rn×m

≥0

∣∣∣
n∑

i=1

Pij = u′j ,
m∑

j=1

Pij = ui

}
,

and u,u′ are omitted on the left side of (4).

4.3 Limitations of WMD

WMD cannot account for the word order of the
sentences because it treats a sentence as a set of
word embeddings to find the optimal transport dis-
tance. Therefore, it is hard to distinguish sentence
pairs with significant word overlaps in the case of
static word embeddings. For some models, such
as BERT and ELMo, the problem remains even
for dynamic word embeddings that depend on the
context because the similarity is still high between
word embeddings of the same word (Ethayarajh,

Figure 3: Transport of sentence structure induced by
word transport. The array of transport from the i-th
word is pi and that from the i′-th word is pi′ . The
amount of transport from the (i, i′)-th element of SAM
is defined by the outer product of pi and pi′ .

2019). WMD does not distinguish the case (1)
and the case (2) of Table 1 in Section 2 using the
0th layer of BERT as a statistic word embedding.
Moreover, the difference is slight even if the 12th
layer of BERT is used as a dynamic word embed-
ding: WMD = 9.17 for case (1) and WMD = 9.26
for case (2).

5 Optimal transport of sentence
structures

In this section, we propose to apply the GW dis-
tance to the SAM of BERT to measure the opti-
mal transport distance between sentence structures.
Later in Section 6, we will attempt to improve
WMD using this method.

5.1 Gromov-Wasserstein distance

As seen in Section 2, the transport of sentence struc-
ture from s to s′, i.e., transport from A to A′, is
induced by the transport of words. How can we de-
fine the structure transport consistent with a given
word transport?

Let us consider pi = (Pi1, . . . , Pim), the array
of transport amount Pij from the i-th word of s
to the j-th word of s′. As illustrated in Fig. 3, we
apply pi to the i-th row of A and pi′ to the i′-th
column of A. This defines the transport from Aii′

of s to A′
jj′ of s′ as the outer product of pi and pi′ ;

the transport amount from position Aii′ to position
A′

jj′ is defined as PijPi′j′ .
The above definition of transport between SAMs

is consistent with the transport of words. From
the definition of transport, the mass at Aii′ is∑m

j,j′=1 PijPi′j′ = uiui′ , and the mass at Ajj′ is
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∑n
i,i′=1 PijPi′j′ = u′ju

′
j′ . This implies that the

marginal mass for rows and columns coincides with
the mass of words, and thus the transport preserves
the mass.

In this paper, we specify the cost of transporting
a unit mass as |Aii′ − A′

jj′ |2. Then, the cost of
transport is |Aii′−A′

jj′ |2PijPi′j′ , and the total cost
of transport from A to A′ is

EA,A′(P) :=

n∑

i,i′=1

m∑

j,j′=1

|Aii′ −A′
jj′ |2Pij Pi′j′

(5)

Finding the optimal transport matrix P̂ that min-
imizes the total cost EA,A′(P), we compute
the Gromov-Wasserstein (GW) distance (Mémoli,
2011; Peyré and Cuturi, 2020) between A and A′

as the minimum value of (5).

5.2 Sentence structure mover’s distance
Applying the GW distance to SAMs, we propose
the sentence Structure Mover’s Distance (SMD),
which is the optimal transport distance considering
the dependency of words in a sentence.

SMD(A,A′) = min
P∈Π(u,u′)

EA,A′(P) (6)

Note that SMD is not a metric of a metric space,
while it can still measure the structural difference.
The general definition of GW distance considers
the p-th root of the total cost for the form |Aii′ −
A′

jj′ |p in (5), and it is a metric if Aii′ is a symmetric
distance matrix. Thus using an asymmetric SAM is
not GW distance in a strict sense. We consider the
case p = 2 and the square root is omitted because
it does not affect the magnitude order.

6 Optimal transport of words and
sentence structures

Here, we propose an optimal transport distance that
simultaneously considers the word embeddings and
sentence structure.

6.1 Word and sentence structure mover’s
distance

As seen in Section 4.3, WMD computes Wasser-
stein distance using Euclid distance of word embed-
dings but cannot handle sentences with different
meanings depending on word order. On the other
hand, as seen in Section 5.2, SMD computes the
GW distance using the SAM of BERT, which en-
codes the sentence structure, but it cannot handle
individual word information like word embeddings.

Therefore, by combining WMD-like methods (i.e.,
WMD and its variants obtained by modifying C,u
and u′) with SMD, we propose an optimal trans-
port distance, Word and sentence Structure Mover’s
Distance (WSMD), that utilizes word features and
considers word dependency within a sentence. By
specifying the mixing ratio parameter λ ∈ [0, 1],
we obtain

WSMD((s,A), (s′,A′)) =

min
P∈Π(u,u′)

n∑

i,i′=1

m∑

j,j′=1

{
(1− λ)Cij

+ λk
∣∣Aii′ −A′

jj′
∣∣2
}
PijPi′j′ , (7)

where k is a normalization parameter. For further
details about k, refer to Appendix A. By noting∑n

i′=1

∑m
j′=1 Pi′j′ = 1, WSMD = WMD for

λ = 0. For λ = 1, WSMD = kSMD.
For an intermediate value λ ∈ (0, 1), WSMD

considers both WMD and SMD. Let P̂ be the op-
timal transport matrix, i.e., P that attains the min-
imum of (7). Substitute this P̂ into (2) and (5),
denote them as WMDλ and SMDλ, respectively.
Then we can write

WSMD = (1− λ)WMDλ + λkSMDλ. (8)

This decomposition is explained in Appendix B.
The optimal transport distance that simultane-

ously considers the Wasserstein and GW distances,
as in WSMD, is known as the Fused Gromov-
Wasserstein (FGW) distance (Vayer et al., 2019,
2020). However, like SMD, WSMD uses an asym-
metric SAM, so WSMD is not a metric in general.

7 Experiments

We compare the performance of our proposed
method and existing baseline methods on the task
of measuring semantic textual similarity (STS) be-
tween two sentences.

7.1 Datasets

7.1.1 PAWS dataset
Paraphrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019) has a binary label
for an English sentence pair indicating paraphrase
(i.e., the sentence pair has the same meaning) or
non-paraphrase. The binary classification of these
labels can be considered an STS task. If the trans-
port distance for a pair is small, we classify the pair
as a paraphrase; otherwise, we classify it as a non-
paraphrase. The effectiveness of this classification
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Dev Test

PAWSQQP 1500 (24.7%) 677 (28.2%)
PAWSWiki 1500 (42.3%) 8000 (44.2%)

STSB 1500 1379

Table 2: The number of sentence pairs used in our ex-
periments. Train sets are not used. The percentage of
paraphrases for PAWS is shown in parentheses.

is then evaluated using the AUC as the metric.
There are two types of PAWS: PAWSQQP and

PAWSWiki, constructed from sentences in Quora
and Wikipedia, respectively. Table 2 shows
the number of sentence pairs and the percent-
age of paraphrases used in our experiments. In
PAWSQQP, since the test set is not provided, the
first 1500 pairs were selected from the 11988 pairs
in the train set to make a new dev set, and the
original dev set was considered as a test set. In
PAWSWiki, the first 1500 pairs were selected from
the dev set.

7.1.2 STS Benchmark dataset
The STSB dataset (Cer et al., 2017) contains
human-annotated scores for English sentence pairs,
reflecting the average similarity on a six-point scale.
Table 2 shows the number of sentence pairs. Spear-
man’s rank correlation (Spearman’s ρ) is used to
compare these scores with optimal transport dis-
tances.

7.2 Models
We used BERT, SimCSE (Gao et al., 2021) and
RoBERTa (Liu et al., 2020) from the Hugging Face
transformers library (Wolf et al., 2020) and see
Table 8 in Appendix C for details.

SimCSE is a sentence embedding model based
on contrastive learning with BERT. It has two types:
unsup-SimCSE and sup-SimCSE, depending on
how positive samples are defined. In this study,
unsup-SimCSE is used.

RoBERTa is a model that improves the perfor-
mance of BERT by changing the pre-training set-
tings of BERT, and by tuning the hyperparameters.

The BERT, SimCSE, and RoBERTa models we
used have 12 layers and 12 heads, resulting in a
total of 144 extractable SAMs. We input the sen-
tences into BERT and removed the stopwords and
special tokens such as [CLS] and [SEP] from the
output tokens1.

1For one of the benchmarking OT methods (SynWMD),

The word embeddings used in the experiments
are the static embeddings2 taken from the input
layer, i.e., the 0th layer, and the dynamic embed-
dings taken from the final layer, i.e., the 12th layer.
We call such word embeddings BERT0, BERT12,
and so on. When computing embeddings for STS
methods such as WMD, recomputing the embed-
dings for each method may result in different em-
beddings due to the randomness of dropout. There-
fore, to ensure an accurate comparison of STS
methods, we had computed the embeddings once
and used them for all the STS methods. We per-
formed whitening for all the word embeddings be-
cause the representation of BERT is known to be
anisotropic (Ethayarajh, 2019).

7.3 Baseline methods

The following simple baseline methods for repre-
senting a sentence were selected. The similarity for
a sentence pair is computed by the cosine similarity
of the two vectors.

Bag-of-Words (BoW) is a high-dimensional
vector whose elements are the frequency of oc-
currence in a sentence for all words.

Average Pooling (Avg. Pool.) is simply the av-
erage vector of word embeddings in a sentence.

[CLS] token3 is the first token in the input se-
quence, and in SimCSE it is used specifically for
sentence embedding.

SIF (Arora et al., 2017) is an unsuper-
vised method that sums word embeddings with
frequency-based weights and subtracts the first sin-
gular vector from the SVD.

uSIF (Ethayarajh, 2018) is an unsupervised
method that replaces the dot product with arcco-
sine in the probability model of SIF and subtracts
multiple singular vectors instead of just the first.

Conceptor Negation (Con. Neg.) (Liu et al.,
2019) is an unsupervised method that optimizes
the performance of sentence embeddings for a new
corpus while preserving the performance for older
corpora when dealing with multiple datasets.

BERTScore (Zhang et al., 2020b) is an auto-
matic evaluation metric for text generation and
computes a similarity score by comparing each
token in a sentence with each token in another sen-

we did not remove the stopwords since removing them would
have deteriorated the performance.

2Note that the embeddings taken from the 0th layer are only
approximate statistic embeddings, because the segmentation
embeddings and the position embeddings are added.

3Instead of [CLS] token, we used <s> token for RoBERTa.
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Figure 4: The AUC values of WMD (⋆) and WSMD (•,
▲) on the PAWSQQP (x-axis) and PAWSWiki (y-axis)
dev sets for BERT0. The • symbol indicates the AUC
value of the WSMD for a single head. The ▲ symbol
indicates the AUC value of the average WSMD for
multi-heads within a layer. While there are significant
variations in the • symbols, the ▲ symbols are more
stable. In fact, the ▲ symbols have a higher correlation
coefficient than the • symbols, as shown in Table 3.

WSMD calculation # ρ× 100

single head (•) 144 69.30
multi-heads within a layer (▲) 12 74.50

Table 3: The Spearman’s ρ between AUC values of
WSMD for PAWSQQP and those for PAWSWiki in
Fig. 4. The average WSMD for multi-heads within
a layer has a higher correlation than the WSMD for a
single head.

tence.
DynaMax (Zhelezniak et al., 2019) is a fully

unsupervised and non-parametric similarity that
dynamically extracts and max-pools good features
depending on the sentence pair.

7.4 Benchmarking OT methods

The following OT methods computed from
word embeddings were selected: WMD (Kusner
et al., 2015) with the uniform and IDF weights.
WRD (Yokoi et al., 2020) with the norm and IDF
weights. SynWMD (Wei et al., 2022) with SWF
weights and cost defined by cosine similarity and
SWD. WMDo (Chow et al., 2019) with cost de-
fined by cosine similarity. OPWD (Su and Hua,

2 4 6 8 10 12
Layer

0.2

0.3

0.4

0.5

BV

PAWSQQP dev
BERT
SimCSE
RoBERTa

Figure 5: The layer-wise BVA for BERT, SimCSE, and
RoBERTa on the PAWSQQP dev set. BVA is high from
the fifth layer in each model.

BERT SimCSE RoBERTa

0th Embs. 8 6 9
12th Embs. 8 6 9

Table 4: Top1 layer for BERT, SimCSE, and RoBERTa.
The layer was selected from the fifth onward based on
the AUC of the average WSMD for a single layer using
the PAWSQQP dev set.

2019) with cost defined by L2 distance and cosine
similarity. ROTS (Wang et al., 2020, 2022) using
the most effective method ROTS+SWC+mean. We
used Python Optimal Transport (POT) (Flamary
et al., 2021) to implement simple WMD-like meth-
ods, SMD, and WSMD. We also used the OPWD
part of the publicly available code for OWMD (Liu
et al., 2018), but other parts could not be found.

7.5 Head selection to compute SAM

Which heads should we use for WSMD? Fig. 4
shows the AUC values of WMD and WSMD for
each head on the PAWSQQP and PAWSWiki dev
sets. It also shows the AUC values computed for
the WSMD averaged over multiple heads within a
layer. Table 3 shows the Spearman’s ρ for AUC val-
ues in Fig. 4. These results suggest that when cal-
culating WSMD, selecting an appropriate layer and
using the average WSMD for multi-heads within
that layer is likely to result in more stable perfor-
mance than using a single head.

It is not desirable to change the heads or layers
for each data set. Therefore, we first define bidirec-
tional attention variability BVA as a score for the
layer containing SAMs that can capture the context
of sentences. We then consider averaging WSMD
using the SAMs of the layers selected based on
BVA. For details on BVA, see Appendix E.

Fig. 5 shows the layer-wise BVA for BERT, Sim-
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SAMl

BERT0 BERT12
PAWSQQP PAWSWiki STSB PAWSQQP PAWSWiki STSB

AUC × 100 ρ × 100 AUC × 100 ρ × 100

top 1 9.90 5.22 -0.74 0.26 0.66 -1.98
5-12 6.84 3.55 -0.53 -0.04 0.00 -1.32
1-12 7.38 3.32 -0.97 -0.06 -0.37 -1.34

Table 5: Average score improvement of WSMD for
WMD-like methods with BERT.

SAMl

SimCSE0 SimCSE12
PAWSQQP PAWSWiki STSB PAWSQQP PAWSWiki STSB

AUC × 100 ρ × 100 AUC × 100 ρ × 100

top 1 5.44 1.67 -0.62 0.17 0.59 -0.93
5-12 4.39 0.90 -0.30 0.15 -0.06 -1.01
1-12 5.79 1.42 -0.73 0.33 -0.03 -1.20

Table 6: Average score improvement of WSMD for
WMD-like methods with SimCSE.

SAMl

RoBERTa0 RoBERTa12
PAWSQQP PAWSWiki STSB PAWSQQP PAWSWiki STSB

AUC × 100 ρ × 100 AUC × 100 ρ × 100

top 1 11.04 2.49 -0.74 0.01 0.37 -1.37
5-12 11.48 2.43 -0.88 0.13 0.24 -1.38
1-12 10.42 2.28 -1.10 -0.11 0.01 -1.41

Table 7: Average score improvement of WSMD for
WMD-like methods with RoBERTa.

CSE, and RoBERTa on the PAWSQQP dev set.
BVA is high from the fifth layer in each model.
Thus, we consider the following three ways to
compute the average WSMD4: (i) The average
WSMD using the best single layer from the fifth
onward (top1 layer). (ii) The average WSMD over
the fifth onwards (5-12 layers). (iii) The average
WSMD over all the layers (1-12 layers). Table 4
presents the top1 layer chosen for each model. It is
worth noting that the top1 layer selected using the
PAWSQQP dev set was applied to all other datasets.
It is also important to note that the selection of
layers (i.e., 5-12 layers) in method (ii) was based
only on BVA of sentences from PAWSQQP dev set
without any reference to the labels for the binary
classification. In particular, method (iii) is fully
unsupervised in terms of layer selection.

7.6 Results

Some WMD-like methods (WMD, WRD, Syn-
WMD) are combined with SMD (as indicated as
WSMD) and compared with the original method to
see if an improvement by introducing WSMD. We
use λ = 0.5 for WSMD. For more details about the
parameters for the other methods, see Appendix D.

4We used PAWSQQP dev set for the layer selection be-
cause it has better performance compared to PAWSWiki, and
also because STSB is a dataset with different properties than
PAWS.

WSMD is not attempted for ROTS, OPWD and
WMDo because these methods cannot be expressed
in the form (4).

7.6.1 Comparison of WSMD Performance

Fig. 6 shows the experimental results compared
to some baselines using BERT embeddings. For
PAWSQQP at the top of Fig. 6 and PAWSWiki at
the middle of Fig. 6, the best-performing layer se-
lection is the top1 layer, and improvements were
observed in WSMD with WMD, WRD, and Syn-
WRD for both BERT0 and BERT12. The top1 layer
is chosen based on the PAWSQQP dev set, there-
fore the performance improvement is greater in
PAWSQQP compared to PAWSWiki. For STSB at
the bottom of Fig. 6, there is a small decrease in per-
formance. However, especially with BERT0, per-
formance can be improved on the PAWS datasets
while still maintaining some level of performance
on STSB.

Similar to Fig. 6, the experimental results for
SimCSE and RoBERTa are shown in Appendix
Figs. 7 and 8, respectively. We observe that the re-
sults are roughly similar to those for BERT, while
the methods using RoBERTa0 show better perfor-
mance compared to those using RoBERTa12 on
STSB. Detailed results for each dataset are shown
in Appendix Tables 19, 20, and 21.

7.6.2 Comparison of layer selection methods

Tables 5, 6, and 7 show the performance improve-
ment of WSMD using different head selection. It
is observed that the performance on PAWSQQP

and PAWSWiki improves for all models when the
top1 layer is selected. As shown in Fig. 6, partic-
ularly significant performance improvements are
observed when the 0th-layer embeddings are used.

In addition, even for unsupervised layer selec-
tion, the performance improvements are seen on
PAWSQQP and PAWSWiki for all 0th-layer embed-
dings. In particular, for RoBERTa on PAWS, while
the performance improves when using layers from
5 to 12 based on BVA, the performance decreases
when using layers from 1 to 12. This may suggest
that the early layers do not have enough contextual
information, as also indicated by BVA in Fig. 5.

For STSB, although no performance improve-
ment is observed, the performance degradation is
limited to a small 2%.
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7.7 Supplementary experiments
In addition to the abovementioned experiments,

we have conducted other experiments in different
settings.

To evaluate the generality of our method, we con-
ducted experiments with DistilBERT (Sanh et al.,
2019) as a model with a different number of lay-
ers than BERT, and with BERT trained with a dif-
ferent seed (Sellam et al., 2022). We evaluated
the performance of these models on PAWSQQP,
PAWSWiki, and STSB. WSMD also showed strong
performance on these models, especially on PAWS.
More details can be found in Appendix G.

We also extended our experiments to another
dataset, SICK-R (Marelli et al., 2014), using BERT
to measure semantic textual similarity. Similar to
STSB, the degradation in performance was within
2%. Detailed results of this additional study are
also available in Appendix H.

Given the small size of the PAWSQQP test set,
which contains only 677 sentence pairs, we also
present the scores on the PAWSQQP train set using
our method for WMD in Appendix I. The result
suggests that improvements in paraphrase identi-
fication by WSMD are observed even when the
dataset size increases.

These results confirm the effectiveness of our
method on different datasets, using different mod-
els with SAMs.

8 Conclusion

Since WMD treats a sentence as a set of word em-
beddings and computes sentence similarity, it can-
not consider the word order in the sentence. There-
fore, we focused on the fact that the SAM of the
input sentence obtained from the pre-trained BERT
represents the relationship between words in the
sentence and has information on the sentence struc-
ture. We proposed an optimal transport distance
WSMD that improves existing WMD-like meth-
ods by using FGW distance that simultaneously
measures the difference between word embeddings
and the difference between sentence structures. We
conducted experiments on paraphrase identifica-
tion on PAWS and sentence similarity on STSB,
confirming the proposed method boosts PAWS per-
formance with minimal impact on STSB.
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Figure 6: Performance of WSMD with several WMD-
like methods (SMD, WMD, WRD, SynWMD) for
BERT. The scores (AUC or Spearman’s ρ) are com-
pared with the original WMD-like methods. Methods
that are not applicable to WSMD are positioned on the
diagonal line. Values above the diagonal line represent
performance improvements achieved by WSMD.
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Limitations

• As seen in Section 7.6, there was not much
improvement in scores on STSB compared to
PAWS. Since methods like uSIF, which con-
sider sentences as sets of words, show good
performance, it is assumed that in STSB, un-
like PAWS, there are fewer sentences where
word order changes significantly alter the
meaning, and the SMD term of WSMD is con-
sidered noise. In fact, in STSB, it was found
that there is a strong correlation between the
number of common words in a sentence pair
and similarity. See the Appendix J for details.

• As noted in the Section 7.6, WSMD shows a
smaller performance improvement with 12th
embeddings compared to 0th embeddings in
PAWS. This is probably due to the fact that
the 12th embeddings are contextualized, and
the changes in word order within sentences in
PAWS are reflected in the embeddings.

• Sentences with the same meaning do not nec-
essarily have the same structure. For example,
I don’t think it makes sense and it doesn’t make
sense are a pair of sentences with the same
meaning. Still, they have different structures,
so using WSMD might decrease the sentence
similarity score.

• Compared to regular WMD, as the number
of SAMs used in WSMD increases, the com-
putation time also increases. However, since
WSMD can be computed independently for
each SAM, parallel processing is possible if
resources are available.

• WSMD cannot be applied directly to other em-
beddings, such as word2vec, because different
tokenizers are used for each embedding. How-
ever, it may be possible to use WSMD through
processing such as replacing the tokens of the
model with words in the other embeddings
vocabulary.
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A WSMD definition details

For clarity, we rewrite equation (7). By specifying
the mixing ratio parameter λ ∈ [0, 1], we obtain

WSMD((s,A), (s′,A′)) =

min
P∈Π(u,u′)

n∑

i,i′=1

m∑

j,j′=1

{
(1− λ)Cij

+ λk
∣∣Aii′ −A′

jj′
∣∣2
}
PijPi′j′

where k = CM/AMSE is computed from

CM =
n∑

i=1

m∑

j=1

Cij

nm

AMSE =
n∑

i,i′=1

m∑

j,j′=1

|Aii′ −A′
jj′ |2

n2m2
.

Note that our definition of k is only to increase
the interpretability of λ, and k does not change the
performance at all. By this definition, CM repre-
sents the average of Cij , and AMSE the average of
|Aii′ −A′

jj′ |2. From this, we can roughly consider
Cij ∼ CM , |Aii′ −A′

jj′ |2 ∼ AMSE . If we employ
k, then k|Aii′−A′

jj′ |2 ∼ CM/AMSE ·AMSE ∼ Cij .
With this formulation, we can use an easily in-
terpretable value for λ, such as 0.5. By noting∑n

i′=1

∑m
j′=1 Pi′j′ = 1, WSMD = WMD for

λ = 0. For λ = 1, WSMD = kSMD. For an inter-
mediate value λ ∈ (0, 1), WSMD considers both
WMD and SMD. We normalized λ by introducing
the factor k in (7). CM and AMSE are interpreted as
(2) and (5), respectively, by specifying Pij = uiu

′
j

with the uniform weight (1).

B Decomposition of WSMD into WMD
and SMD components

Let P̂ be the optimal transport matrix of (7), i.e.,
P that attains the minimum of (7). Substitute this
P̂ into (2) and (5), denote them as WMDλ and
SMDλ, respectively. Then we rewrite equation (8)
as follows:

WSMD = (1− λ)WMDλ + λkSMDλ.

In case (2) of Table 1, we computed WSMD =
8.03, k = 688, λ = 0.5. This is decomposed into
the components WMDλ = 13.30 and kSMDλ =
2.76. On the other hand, we can also compute
WMD = 12.55 and kSMD = 2.76 in the same
setting, which indicates that WSMD is not a simple
interpolation of WMD and kSMD. This is because

the optimal transport matrices in the computation
of WMD, SMD, and WSMD are all different in
general, and in WSMD, the optimization considers
the two components simultaneously.

Interestingly, the decomposition (8) indicates
that WMDλ can be interpreted as an improvement
of WMD by utilizing (λ/(1 − λ))kSMDλ as a
penalty term. Thus, in addition to WSMD, WMDλ

can also be used as a sentence similarity measure,
although this is not the main argument of this paper.

C Models

The Hugging Face models used in the experiments
are presented in Table 8.

D Parameters for each method

Parameters are shown for each method used in the
experiments. We provide explanations for terms
that may be unclear or less intuitive compared to
the original notation in the paper. numSVToRe-
move means the number of singular vectors to be
removed.

D.1 SIF

Parameters of SIF used in the experiments are
shown in Table 9.

D.2 uSIF

Parameters of uSIF used in the experiments are
shown in Table 10.

D.3 Conceptor Negation

Parameters of Conceptor Negation used in the ex-
periments are shown in Table 11.

D.4 ROTS

WE apply the most effective technique,
ROTS+SWC+mean to ROTS. In this context,
SWC+mean denotes a process that implements
dimension-wise (S)caling (Ethayarajh, 2019),
possesses SIF (W)eights, applies (C)onceptor
Negation, and uses the mean in the aggregation of
pair-wise cosine similarities of words. Parameters
of ROTS used in the experiments are shown in
Table 12. Preg means prior regularization, Creg

means cosine regularization, and Ereg means
entropy regularization. C also means interpolation
coefficient. aggregation means how to handle
different scores (mean, max, min, last, no).
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model Hugging Face model

BERT bert-base-uncased
unsup-SimCSE princeton-nlp/unsup-simcse-bert-base-uncased

RoBERTa roberta-base
DistilBERT distilbert-base-uncased
BERTseed0 google/multiberts-seed_0

Table 8: Models of Hugging Face used in the experiments.

parameters values

weight SIF
numSVToRemove 1

Table 9: Parameters of SIF used in the experiments.

parameters values

weight uSIF
numSVToRemove 5

Table 10: Parameters of uSIF used in the experiments.

D.5 OPWD
Parameters of OPWD used in the experiments are

shown in Table 13.

D.6 WMDo
Parameter of ROTS WMDo in the experiments

are shown in Table 14.

D.7 SynWMD
Parameter of SynWMD used in the experiments

are shown in Table 15.

parameters values

weight SIF
αCN 2

Table 11: Parameters of Conceptor Negation used in the
experiments.

parameters values

weight SIF
αCN 2

numSVToRemove 1
parser dependency tree

aggregation mean
normed vectors True

tree depth 5
Preg [10, 10, 10, 10, 10]
Creg 0
Ereg 0
C 1

Table 12: Parameters of ROTS used in the experiments.

parameters values

λ1 10
λ2 0.03
σ 10

Iteration 20

Table 13: Parameters of OPWD used in the experiments.

parameter value

δ 0.2

Table 14: Parameter of WMDo used in the experiments.

parameter value

a 1

Table 15: Parameter of SynWMD used in the experi-
ments.
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E Details of attention variability

We employ attention variability as proposed in (Vig
and Belinkov, 2019). This measures the degree of
attention variability across different inputs. A high
variability implies that the attention head is content-
dependent, while a low variability suggests that
the head is content-independent. Mathematically,
attention variability VA is defined as:

VA =

∑
x∈X

∑|x|
i=1

∑i
j=1 |Aij(x)− Āij |

2 ·∑x∈X
∑|x|

i=1

∑i
j=1Aij(x)

(9)

where A represents the head contained in a given
layer, x represents sentences of length |x| in the
dataset X , A(x) = (Aij(x)) ∈ R|x|×|x| is the spe-
cific SAM for each sentence x, and Āij is the av-
erage of Aij(x) over all x ∈ X . VA is defined for
GPT-2 (Radford et al., 2018), and the summation
from 1 to i for j reflects the unidirectional structure
of GPT-2.

We adapt the attention variability VA to BERT
by defining a bidirectional attention variability
BVA that measures the degree of attention variabil-
ity across different inputs, where the summation
for j ranges from 1 to |x|. It is defined as follows:

BVA =

∑
x∈X

∑|x|
i=1

∑|x|
j=1 |Aij(x)− Āij |

2 ·∑x∈X
∑|x|

i=1

∑|x|
j=1Aij(x)

(10)

F Detail results of experiments in
Section 7

For PAWSQQP, PAWSWiki, and STSB, the scores
from BOWS, [CLS], uniform-weighted and IDF-
weighted SMD, methods that do not require word
embeddings, are shown in Tables 16, 17, and 18,
respectively. The scores for methods that depend
on word embeddings are shown in Tables 19, 20,
and 21. Similar to Fig. 6, the experimental results
for SimCSE and RoBERTa are shown in Figs. 7
and 8.

methods layer weight PAWSQQP (AUC× 100)
BERT SimCSE RoBERTa

BOWS 44.56 44.56 46.16
[CLS] 60.24 62.39 57.76

SMD

top 1
uniform

59.84 59.70 60.95
5-12 58.50 58.04 59.96
1-12 56.23 58.35 57.27
top 1

IDF
60.25 59.77 59.48

5-12 57.99 59.30 57.19
1-12 57.82 57.71 55.62

Table 16: The scores on the PAWSQQP test set for
BOWS, [CLS], uniform-weighted and IDF-weighted
SMD, methods that do not require word embeddings.
Note that BERT and SimCSE have identical scores for
BOWS because they use the same tokenizer.

methods layer weight PAWSWiki (AUC× 100)
BERT SimCSE RoBERTa

BOWS 48.86 48.86 50.59
[CLS] 57.94 58.02 56.29

SMD

top 1
uniform

61.68 58.51 58.18
5-12 62.98 60.91 58.69
1-12 59.66 58.82 57.18
top 1

IDF
62.73 59.22 53.86

5-12 63.30 59.92 53.08
1-12 60.83 58.96 51.89

Table 17: The scores on the PAWSWiki test set for
BOWS, [CLS], uniform-weighted and IDF-weighted
SMD, methods that do not require word embeddings.
Note that BERT and SimCSE have identical scores for
BOWS because they use the same tokenizer.

methods layer weight STSB (Spearman′s ρ× 100)
BERT SimCSE RoBERTa

BOWS 68.82 68.82 67.93
[CLS] 41.17 75.23 40.75

SMD

top 1
uniform

21.30 17.51 23.21
5-12 29.81 35.41 27.71
1-12 30.48 33.78 27.50
top 1

IDF
22.97 19.48 26.11

5-12 33.45 39.18 31.47
1-12 34.32 37.65 31.76

Table 18: The scores on the STSB test set for BOWS,
[CLS], uniform-weighted and IDF-weighted SMD,
methods that do not require word embeddings. Note
that BERT and SimCSE have identical scores for BOWS
because they use the same tokenizer.
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methods layer weight cost PAWSQQP (AUC × 100)
BERT0 BERT12 SimCSE0 SimCSE12 RoBERTa0 RoBERTa12

Avg. Pool. 52.96 64.33 50.96 63.00 45.46 63.04

BERTScore uniform 45.52 54.78 45.41 51.74 41.91 51.61
IDF 45.40 55.29 45.25 51.98 42.71 53.01

DynaMax 53.38 68.47 51.89 66.39 49.82 66.41
SIF 53.23 64.15 51.34 62.83 45.00 62.76
uSIF 53.22 64.05 51.47 62.84 44.75 62.68

Con. Neg. 53.05 64.17 51.21 63.04 44.85 62.83
ROTS 53.07 64.71 56.48 65.00 47.38 64.50

OPWD uniform L2 53.07 66.48 53.01 65.58 48.35 66.69
cosine 54.30 69.98 54.41 67.38 48.40 68.81

WMDo uniform cosine 43.86 56.33 43.71 50.33 44.25 61.49

SMD
top 1

norm
60.31 60.19 58.40 58.08 59.97 58.74

5-12 58.55 56.89 57.78 56.16 59.27 57.44
1-12 58.35 56.55 57.55 56.34 57.39 56.08

WMD

uniform

L2

53.07 66.48 53.01 65.58 48.35 66.69
top 1 62.58 (↑ 9.51) 67.10 (↑ 0.62) 57.87 (↑ 4.86) 65.85 (↑ 0.27) 58.96 (↑ 10.61) 66.74 (↑ 0.05)
5-12 58.74 (↑ 5.67) 66.77 (↑ 0.29) 56.35 (↑ 3.34) 65.94 (↑ 0.36) 59.32 (↑ 10.97) 66.95 (↑ 0.26)
1-12 59.41 (↑ 6.34) 66.71 (↑ 0.23) 57.54 (↑ 4.53) 66.13 (↑ 0.55) 58.33 (↑ 9.98) 66.76 (↑ 0.07)

IDF

52.44 66.08 52.47 65.26 48.28 64.53
top 1 61.54 (↑ 9.10) 66.75 (↑ 0.67) 56.72 (↑ 4.25) 65.58 (↑ 0.32) 57.52 (↑ 9.24) 64.61 (↑ 0.08)
5-12 57.90 (↑ 5.46) 66.36 (↑ 0.28) 55.68 (↑ 3.21) 65.66 (↑ 0.40) 57.78 (↑ 9.50) 64.65 (↑ 0.12)
1-12 58.47 (↑ 6.03) 66.31 (↑ 0.23) 56.83 (↑ 4.36) 65.80 (↑ 0.54) 56.80 (↑ 8.52) 64.39 (↓ -0.14)

WRD

norm

cosine

54.65 69.07 53.71 66.99 48.89 67.45
top 1 66.80 (↑ 12.15) 69.56 (↑ 0.49) 60.38 (↑ 6.67) 67.59 (↑ 0.60) 60.87 (↑ 11.98) 67.59 (↑ 0.14)
5-12 63.84 (↑ 9.19) 69.25 (↑ 0.18) 58.64 (↑ 4.93) 67.32 (↑ 0.33) 62.34 (↑ 13.45) 67.64 (↑ 0.19)
1-12 64.62 (↑ 9.97) 69.36 (↑ 0.29) 60.84 (↑ 7.13) 67.65 (↑ 0.66) 61.18 (↑ 12.29) 67.54 (↑ 0.09)

IDF

53.94 69.73 54.01 67.07 48.88 66.12
top 1 67.43 (↑ 13.49) 70.23 (↑ 0.50) 62.09 (↑ 8.08) 67.60 (↑ 0.53) 60.06 (↑ 11.18) 66.25 (↑ 0.13)
5-12 64.77 (↑ 10.83) 69.91 (↑ 0.18) 61.18 (↑ 7.17) 67.40 (↑ 0.33) 60.71 (↑ 11.83) 66.23 (↑ 0.11)
1-12 65.47 (↑ 11.53) 70.00 (↑ 0.27) 63.66 (↑ 9.65) 67.64 (↑ 0.57) 59.79 (↑ 10.91) 66.15 (↑ 0.03)

SynWMD SWF

cosine

47.60 60.72 47.92 59.17 42.87 66.26
top 1 59.41 (↑ 11.81) 60.73 (↑ 0.01) 54.99 (↑ 7.07) 58.89 (↓ -0.28) 59.73 (↑ 16.86) 66.10 (↓ -0.16)
5-12 56.27 (↑ 8.67) 60.37 (↓ -0.35) 54.78 (↑ 6.86) 59.03 (↓ -0.14) 60.43 (↑ 17.56) 66.36 (↑ 0.10)
1-12 56.57 (↑ 8.97) 60.26 (↓ -0.46) 55.82 (↑ 7.90) 59.17 (–) 58.60 (↑ 15.73) 65.80 (↓ -0.46)

SWD

59.41 64.71 58.47 62.47 57.85 70.14
top 1 62.74 (↑ 3.33) 63.95 (↓ -0.76) 60.15 (↑ 1.68) 62.03 (↓ -0.44) 64.20 (↑ 6.35) 69.97 (↓ -0.17)
5-12 60.63 (↑ 1.22) 63.88 (↓ -0.83) 59.27 (↑ 0.80) 62.10 (↓ -0.37) 63.41 (↑ 5.56) 70.11 (↓ -0.03)
1-12 60.86 (↑ 1.45) 63.78 (↓ -0.93) 59.65 (↑ 1.18) 62.09 (↓ -0.38) 62.94 (↑ 5.09) 69.87 (↓ -0.27)

Table 19: The scores on the PAWSQQP test set for the methods using the embeddings from BERT, SimCSE, and
RoBERTa. For WMD, WRD, and SynWMD, the scores of WSMD and the original method are compared for each
layer selection. Score increases are highlighted in red and score decreases are highlighted in blue. Maximum scores
for each embedding are underlined.
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methods layer weight cost PAWSWiki (AUC × 100)
BERT0 BERT12 SimCSE0 SimCSE12 RoBERTa0 RoBERTa12

Avg. Pool. 49.43 60.06 49.68 56.71 51.11 59.13

BERTScore uniform 51.58 60.60 52.66 57.02 52.99 57.57
IDF 51.58 60.60 52.73 56.92 52.03 55.79

DynaMax 58.88 66.60 51.99 62.37 53.87 65.05
SIF 49.31 59.90 49.62 56.70 51.09 59.23
uSIF 49.29 60.03 49.59 56.75 51.13 59.27

Con. Neg. 49.40 60.31 49.65 56.78 51.18 59.24
ROTS 49.85 60.68 53.74 57.45 52.16 60.48

OPWD uniform L2 56.02 70.40 56.00 64.78 55.36 65.61
cosine 52.00 68.87 52.08 61.87 52.51 64.38

WMDo uniform cosine 48.48 58.56 48.33 54.41 41.28 51.79

SMD
top 1

norm
61.68 61.53 59.28 57.94 58.42 58.32

5-12 62.99 62.82 60.95 60.82 59.07 59.32
1-12 60.17 59.93 59.79 58.91 57.47 58.24

WMD

uniform

L2

56.02 70.40 56.00 64.78 55.36 65.61
top 1 66.44 (↑ 10.42) 71.36 (↑ 0.96) 58.23 (↑ 2.23) 65.51 (↑ 0.73) 59.58 (↑ 4.22) 65.91 (↑ 0.30)
5-12 63.43 (↑ 7.41) 70.51 (↑ 0.11) 57.12 (↑ 1.12) 64.80 (↑ 0.02) 59.43 (↑ 4.07) 65.81 (↑ 0.20)
1-12 62.26 (↑ 6.24) 69.88 (↓ -0.52) 57.78 (↑ 1.78) 64.84 (↑ 0.06) 59.09 (↑ 3.73) 65.62 (↑ 0.01)

IDF

55.44 70.62 55.42 64.48 50.96 60.24
top 1 65.63 (↑ 10.19) 71.72 (↑ 1.10) 57.45 (↑ 2.03) 65.26 (↑ 0.78) 53.80 (↑ 2.84) 60.33 (↑ 0.09)
5-12 62.36 (↑ 6.92) 70.72 (↑ 0.10) 56.37 (↑ 0.95) 64.37 (↓ -0.11) 53.40 (↑ 2.44) 59.93 (↓ -0.31)
1-12 61.24 (↑ 5.80) 70.03 (↓ -0.59) 56.98 (↑ 1.56) 64.40 (↓ -0.08) 52.94 (↑ 1.98) 59.51 (↓ -0.73)

WRD

norm

cosine

52.01 69.06 52.01 62.00 52.44 64.75
top 1 55.04 (↑ 3.03) 69.75 (↑ 0.69) 53.45 (↑ 1.44) 62.62 (↑ 0.62) 54.04 (↑ 1.60) 65.05 (↑ 0.30)
5-12 54.03 (↑ 2.02) 69.26 (↑ 0.20) 52.90 (↑ 0.89) 62.17 (↑ 0.17) 54.12 (↑ 1.68) 65.04 (↑ 0.29)
1-12 54.35 (↑ 2.34) 69.22 (↑ 0.16) 53.50 (↑ 1.49) 62.37 (↑ 0.37) 54.14 (↑ 1.70) 65.01 (↑ 0.26)

IDF

51.60 68.72 51.79 61.08 49.34 58.30
top 1 54.47 (↑ 2.87) 69.43 (↑ 0.71) 53.37 (↑ 1.58) 61.71 (↑ 0.63) 50.35 (↑ 1.01) 58.59 (↑ 0.29)
5-12 53.59 (↑ 1.99) 68.92 (↑ 0.20) 52.83 (↑ 1.04) 61.21 (↑ 0.13) 50.34 (↑ 1.00) 58.44 (↑ 0.14)
1-12 53.90 (↑ 2.30) 68.86 (↑ 0.14) 53.49 (↑ 1.70) 61.39 (↑ 0.31) 50.32 (↑ 0.98) 58.31 (↑ 0.01)

SynWMD SWF

cosine

48.55 59.01 48.80 55.19 51.63 64.98
top 1 51.19 (↑ 2.64) 59.32 (↑ 0.31) 50.47 (↑ 1.67) 55.73 (↑ 0.54) 54.40 (↑ 2.77) 65.80 (↑ 0.82)
5-12 50.24 (↑ 1.69) 58.75 (↓ -0.26) 49.75 (↑ 0.95) 55.02 (↓ -0.17) 54.47 (↑ 2.84) 65.74 (↑ 0.76)
1-12 50.45 (↑ 1.90) 58.35 (↓ -0.66) 50.20 (↑ 1.40) 54.97 (↓ -0.22) 54.48 (↑ 2.85) 65.49 (↑ 0.51)

SWD

49.94 59.08 51.36 56.54 54.40 67.23
top 1 52.11 (↑ 2.17) 59.24 (↑ 0.16) 52.43 (↑ 1.07) 56.75 (↑ 0.21) 56.93 (↑ 2.53) 67.65 (↑ 0.42)
5-12 51.22 (↑ 1.28) 58.73 (↓ -0.35) 51.78 (↑ 0.42) 56.11 (↓ -0.43) 56.93 (↑ 2.53) 67.55 (↑ 0.32)
1-12 51.31 (↑ 1.37) 58.31 (↓ -0.77) 51.95 (↑ 0.59) 55.94 (↓ -0.60) 56.84 (↑ 2.44) 67.25 (↑ 0.02)

Table 20: The scores on the PAWSWiki test set for the methods using the embeddings from BERT, SimCSE, and
RoBERTa. For WMD, WRD, and SynWMD, the scores of WSMD and the original method are compared for each
layer selection. Score increases are highlighted in red and score decreases are highlighted in blue. Maximum scores
for each embedding are underlined.
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methods layer weight cost STSB (Spearman′s ρ × 100)
BERT0 BERT12 SimCSE0 SimCSE12 RoBERTa0 RoBERTa12

Avg. Pool. 69.16 69.07 60.83 77.54 70.25 64.09

BERTScore uniform 63.27 65.13 62.90 70.59 63.38 58.71
IDF 63.99 65.96 63.72 70.96 64.09 59.82

DynaMax 71.02 71.44 68.36 77.67 70.27 66.16
SIF 68.28 69.12 57.66 76.61 68.70 64.82

uSIF 68.02 68.98 57.80 76.55 69.35 64.93
Con. Neg. 68.35 69.09 60.65 77.19 69.68 64.56

ROTS 68.69 69.27 61.86 77.26 69.58 64.94

OPWD uniform L2 60.78 49.62 60.73 64.88 58.79 44.43
cosine 68.19 69.78 63.76 77.00 67.25 63.98

WMDo uniform cosine 67.61 68.74 62.17 76.18 64.63 61.16

SMD
top 1

norm
23.71 22.43 18.28 17.72 27.00 24.15

5-12 34.21 32.22 38.64 37.11 32.29 30.11
1-12 35.18 33.23 37.00 35.57 32.54 29.69

WMD

uniform

L2

60.78 49.62 60.73 64.88 58.79 44.43
top 1 58.50 (↓ -2.28) 46.25 (↓ -3.37) 59.23 (↓ -1.50) 63.17 (↓ -1.71) 57.23 (↓ -1.56) 42.48 (↓ -1.95)
5-12 58.96 (↓ -1.82) 47.16 (↓ -2.46) 59.56 (↓ -1.17) 62.81 (↓ -2.07) 56.89 (↓ -1.90) 42.25 (↓ -2.18)
1-12 58.23 (↓ -2.55) 46.97 (↓ -2.65) 58.99 (↓ -1.74) 62.25 (↓ -2.63) 56.52 (↓ -2.27) 42.07 (↓ -2.36)

IDF

64.35 52.98 64.30 66.27 62.78 46.97
top 1 62.72 (↓ -1.63) 49.86 (↓ -3.12) 63.26 (↓ -1.04) 64.74 (↓ -1.53) 61.49 (↓ -1.29) 45.04 (↓ -1.93)
5-12 63.10 (↓ -1.25) 50.77 (↓ -2.21) 63.71 (↓ -0.59) 64.68 (↓ -1.59) 61.27 (↓ -1.51) 45.00 (↓ -1.97)
1-12 62.56 (↓ -1.79) 50.85 (↓ -2.13) 63.27 (↓ -1.03) 64.40 (↓ -1.87) 61.09 (↓ -1.69) 45.05 (↓ -1.92)

WRD

norm

cosine

70.68 70.30 65.96 76.87 69.82 64.09
top 1 70.60 (↓ -0.08) 70.02 (↓ -0.28) 65.58 (↓ -0.38) 76.83 (↓ -0.04) 69.75 (↓ -0.07) 63.63 (↓ -0.46)
5-12 70.65 (↓ -0.03) 70.15 (↓ -0.15) 65.65 (↓ -0.31) 76.83 (↓ -0.04) 69.71 (↓ -0.11) 63.58 (↓ -0.51)
1-12 70.57 (↓ -0.11) 70.15 (↓ -0.15) 65.40 (↓ -0.56) 76.82 (↓ -0.05) 69.71 (↓ -0.11) 63.56 (↓ -0.53)

IDF

70.55 71.06 67.01 77.07 69.81 65.91
top 1 70.39 (↓ -0.16) 70.92 (↓ -0.14) 66.69 (↓ -0.32) 77.06 (↓ -0.01) 69.64 (↓ -0.17) 65.50 (↓ -0.41)
5-12 70.46 (↓ -0.09) 71.00 (↓ -0.06) 66.76 (↓ -0.25) 77.11 (↑ 0.04) 69.60 (↓ -0.21) 65.47 (↓ -0.44)
1-12 70.33 (↓ -0.22) 71.08 (↑ 0.02) 66.58 (↓ -0.43) 77.15 (↑ 0.08) 69.58 (↓ -0.23) 65.49 (↓ -0.42)

SynWMD SWF

cosine

72.06 72.60 68.00 78.71 71.69 68.95
top 1 71.74 (↓ -0.32) 69.84 (↓ -2.76) 67.61 (↓ -0.39) 77.38 (↓ -1.33) 70.88 (↓ -0.81) 67.06 (↓ -1.89)
5-12 71.94 (↓ -0.12) 70.89 (↓ -1.71) 68.05 (↑ 0.05) 77.30 (↓ -1.41) 70.74 (↓ -0.95) 67.19 (↓ -1.76)
1-12 71.26 (↓ -0.80) 70.73 (↓ -1.87) 67.42 (↓ -0.58) 77.05 (↓ -1.66) 70.30 (↓ -1.39) 67.07 (↓ -1.88)

SWD

72.12 73.25 67.01 79.15 72.68 70.34
top 1 72.13 (↑ 0.01) 71.05 (↓ -2.20) 66.93 (↓ -0.08) 78.19 (↓ -0.96) 72.14 (↓ -0.54) 68.74 (↓ -1.60)
5-12 72.27 (↑ 0.15) 71.93 (↓ -1.32) 67.45 (↑ 0.44) 78.15 (↓ -1.00) 72.11 (↓ -0.57) 68.94 (↓ -1.40)
1-12 71.73 (↓ -0.39) 71.97 (↓ -1.28) 66.96 (↓ -0.05) 78.05 (↓ -1.10) 71.79 (↓ -0.89) 68.98 (↓ -1.36)

Table 21: The scores on the STSB test set for the methods using the embeddings from BERT, SimCSE, and
RoBERTa. For WMD, WRD, and SynWMD, the scores of WSMD and the original method are compared for each
layer selection. Score increases are highlighted in red and score decreases are highlighted in blue. Maximum scores
for each embedding are underlined.
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Figure 7: Performance of WSMD with several WMD-
like methods (SMD, WMD, WRD, SynWMD) for Sim-
CSE. The scores (AUC or Spearman’s ρ) are compared
with the original WMD-like methods. Methods that are
not applicable to WSMD are positioned on the diagonal
line. Values above the diagonal line represent perfor-
mance improvements achieved by WSMD.
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Figure 8: Performance of WSMD with several WMD-
like methods (SMD, WMD, WRD, SynWMD) for
RoBERTa. The scores (AUC or Spearman’s ρ) are com-
pared with the original WMD-like methods. Methods
that are not applicable to WSMD are positioned on the
diagonal line. Values above the diagonal line represent
performance improvements achieved by WSMD.
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Figure 9: The layer-wise BVA for DistilBERT and
BERTseed0 on the PAWSQQP dev set. BVA is high
from the third layer in DistilBERT and from the fifth
layer in BERTseed0.
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Table 22: Top1 layer for DistilBERT and BERTseed0.
The layer was selected from the third onward for Distil-
BERT and the fifth onward for BERTseed0 based on the
AUC of the average WSMD for a single layer using the
PAWSQQP dev set.

G Experiments with other models

To evaluate the generality of our method, we con-
ducted experiments not only with BERT, SimCSE,
and RoBERTa, but also with DistilBERT (Sanh
et al., 2019) and BERT trained with a different
seed (Sellam et al., 2022). DistilBERT is a six-
layer model distilled from BERT using BERT’s
weights as initialization. Since BERT has 12 lay-
ers, this initialization selects one layer from each
corresponding pair of layers. For the model trained
with a different seed, we chose BERT with seed 0,
referred to as BERTseed0.

We used DistilBERT and BERTseed0 from the
Hugging Face transformers library (Wolf et al.,
2020) and see Table 8 in Appendix C for details.

Similar to Fig. 5, Fig. 9 shows the plots of BVA
for each layer of DistilBERT and BERTseed0 on
the PAWSQQP dev set. For DistilBERT, BVA is
high from the third layer, while for BERTseed0 it
is high from the fifth layer, although unlike BERT,
the value decreases at the seventh layer.

Therefore, for DistilBERT, we compare perfor-
mance using WMD on the PAWSQQP dev set with
three layer selection methods: the best single layer

from the third (top1 layer), third to sixth (3-6 lay-
ers), and all layers (1-6 layers). For BERTseed0, we
compare performance using the same three settings
as for BERT on the PAWSQQP dev set.

Table 22 shows the top1 layer for each model.
The scores for methods that depend on word

embeddings are shown in Tables 23, 24, and 25.

H Experiments with SICK-R

In addition to STSB, we also extended our exper-
iments to another dataset, SICK-R (Marelli et al.,
2014), using BERT to measure semantic textual
similarity.

Similar to STSB，SICK-R contains human-
annotated scores for English sentence pairs, reflect-
ing the average similarity on a six-point scale.

Table 26 shows the number of sentence pairs in
the SICK-R test set.

The scores for methods that depend on word
embeddings are shown in Table 27.

I Experiments with PAWSQQP train set

As seen in Section 7.7, the size of the PAWSQQP

test set is small and the dataset contains only
677 sentence pairs. To alleviate this problem, we
present the scores on the PAWSQQP train set using
our method.

Table 28 shows the number of sentence pairs in
the PAWSQQP train set.

The scores for methods that depend on word
embeddings are shown in Table 29.

It should be noted that the top layer was deter-
mined based on the first 1500 sentence pairs, so it
implies a potential bias in the layer selection.

J Correlation between common words
count and gold score in sentence pairs.

For PAWSQQP, PAWSWiki, and STSB, We present
scatter plots of the number of common words in
sentence pairs against their respective gold scores
in Fig. 10. Compared to PAWS, STSB shows a
strong correlation between the number of common
words and the gold score. Therefore, in STSB,
there is no need to worry about a gold score de-
crease for sentence pairs with high word overlap.
This suggests that even when sentences are con-
sidered as sets of words, good performance can be
achieved.
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methods layer weight cost PAWSQQP (AUC × 100)
DistilBERT0 DistilBERT12 BERTseed00 BERTseed012

Avg. Pool. 52.02 63.22 52.80 63.94

BERTScore uniform 45.58 54.74 45.50 52.05
IDF 45.46 55.30 45.41 52.46

DynaMax 52.02 70.00 54.59 66.71
SIF 52.26 63.03 52.79 63.68
uSIF 52.29 63.06 52.85 63.60

Con. Neg. 52.15 63.12 52.64 63.76
ROTS 51.71 64.95 55.25 64.37

OPWD uniform L2 53.03 67.33 53.53 66.99
cosine 54.73 70.93 55.69 68.43

WMDo uniform cosine 44.18 55.42 44.07 58.53

WMD

uniform

L2

53.03 67.33 53.53 66.99
top 1 59.47 (↑ 6.44) 66.99 (↓ -0.34) 71.95 (↑ 18.42) 67.24 (↑ 0.25)
5-12 58.87 (↑ 5.84) 67.52 (↑ 0.19) 66.64 (↑ 13.11) 67.45 (↑ 0.46)
1-12 59.01 (↑ 5.98) 67.38 (↑ 0.05) 65.25 (↑ 11.72) 67.59 (↑ 0.60)

IDF

52.44 66.79 53.06 66.69
top 1 58.41 (↑ 5.97) 66.33 (↓ -0.46) 70.80 (↑ 17.74) 67.35 (↑ 0.66)
5-12 57.97 (↑ 5.53) 66.98 (↑ 0.19) 65.63 (↑ 12.57) 67.23 (↑ 0.54)
1-12 58.07 (↑ 5.63) 66.87 (↑ 0.08) 64.18 (↑ 11.12) 67.29 (↑ 0.60)

WRD

norm

cosine

53.25 70.39 56.00 67.56
top 1 63.02 (↑ 9.77) 70.35 (↓ -0.04) 71.65 (↑ 15.65) 67.93 (↑ 0.37)
5-12 62.88 (↑ 9.63) 70.51 (↑ 0.12) 68.56 (↑ 12.56) 67.79 (↑ 0.23)
1-12 62.95 (↑ 9.70) 70.50 (↑ 0.11) 68.27 (↑ 12.27) 68.00 (↑ 0.44)

IDF

54.46 70.59 55.49 68.32
top 1 64.37 (↑ 9.91) 70.46 (↓ -0.13) 71.83 (↑ 16.34) 68.63 (↑ 0.31)
5-12 65.08 (↑ 10.62) 70.74 (↑ 0.15) 68.85 (↑ 13.36) 68.49 (↑ 0.17)
1-12 64.97 (↑ 10.51) 70.71 (↑ 0.12) 68.71 (↑ 13.22) 68.67 (↑ 0.35)

SynWMD SWF

cosine

47.43 60.98 47.47 60.52
top 1 54.58 (↑ 7.15) 59.40 (↓ -1.58) 64.53 (↑ 17.06) 60.29 (↓ -0.23)
5-12 56.21 (↑ 8.78) 60.47 (↓ -0.51) 60.43 (↑ 12.96) 60.17 (↓ -0.35)
1-12 55.76 (↑ 8.33) 60.17 (↓ -0.81) 59.66 (↑ 12.19) 60.27 (↓ -0.25)

SWD

58.43 64.47 59.51 65.29
top 1 59.73 (↑ 1.30) 62.80 (↓ -1.67) 66.72 (↑ 7.21) 63.38 (↓ -1.91)
5-12 60.09 (↑ 1.66) 63.73 (↓ -0.74) 63.84 (↑ 4.33) 63.94 (↓ -1.35)
1-12 60.06 (↑ 1.63) 63.50 (↓ -0.97) 63.08 (↑ 3.57) 64.18 (↓ -1.11)

Table 23: The scores on the PAWSQQP test set for the methods using the embeddings from DistilBERT and
BERTseed0. For WMD, WRD, and SynWMD, the scores of WSMD and the original method are compared for each
layer selection. Score increases are highlighted in red and score decreases are highlighted in blue. Maximum scores
for each embedding are underlined.

methods layer weight cost PAWSWiki (AUC × 100)
DistilBERT0 DistilBERT12 BERTseed00 BERTseed012

Avg. Pool. 50.17 57.25 49.93 60.22

BERTScore uniform 52.58 56.08 52.60 57.21
IDF 52.73 56.12 52.68 57.32

DynaMax 52.38 59.34 52.50 56.44
SIF 50.10 57.09 49.89 60.00

uSIF 50.05 57.20 49.86 60.16
Con. Neg. 50.11 57.44 49.89 60.55

ROTS 54.93 57.68 54.76 60.62

OPWD uniform L2 55.78 69.95 55.69 70.90
cosine 51.98 66.96 52.33 68.76

WMDo uniform cosine 48.45 57.16 48.62 58.79

WMD

uniform

L2

55.78 69.95 55.69 70.90
top 1 58.64 (↑ 2.86) 64.85 (↓ -5.10) 68.26 (↑ 12.57) 68.56 (↓ -2.34)
5-12 58.15 (↑ 2.37) 69.20 (↓ -0.75) 64.10 (↑ 8.41) 69.16 (↓ -1.74)
1-12 58.63 (↑ 2.85) 68.79 (↓ -1.16) 62.11 (↑ 6.42) 68.30 (↓ -2.60)

IDF

55.20 70.19 55.18 71.15
top 1 57.58 (↑ 2.38) 64.36 (↓ -5.83) 67.10 (↑ 11.92) 69.42 (↓ -1.73)
5-12 57.36 (↑ 2.16) 69.36 (↓ -0.83) 63.00 (↑ 7.82) 69.80 (↓ -1.35)
1-12 57.80 (↑ 2.60) 68.93 (↓ -1.26) 61.06 (↑ 5.88) 68.63 (↓ -2.52)

WRD

norm

cosine

52.21 67.07 52.45 68.79
top 1 54.75 (↑ 2.54) 66.83 (↓ -0.24) 60.15 (↑ 7.70) 69.50 (↑ 0.71)
5-12 53.98 (↑ 1.77) 67.28 (↑ 0.21) 57.44 (↑ 4.99) 69.16 (↑ 0.37)
1-12 54.34 (↑ 2.13) 67.32 (↑ 0.25) 56.62 (↑ 4.17) 68.99 (↑ 0.20)

IDF

51.76 66.69 52.08 68.72
top 1 54.39 (↑ 2.63) 66.28 (↓ -0.41) 59.70 (↑ 7.62) 69.55 (↑ 0.83)
5-12 53.73 (↑ 1.97) 66.89 (↑ 0.20) 57.15 (↑ 5.07) 69.15 (↑ 0.43)
1-12 54.11 (↑ 2.35) 66.92 (↑ 0.23) 56.38 (↑ 4.30) 68.93 (↑ 0.21)

SynWMD SWF

cosine

48.90 57.08 48.69 59.52
top 1 51.00 (↑ 2.10) 55.20 (↓ -1.88) 56.64 (↑ 7.95) 59.07 (↓ -0.45)
5-12 50.81 (↑ 1.91) 56.83 (↓ -0.25) 53.93 (↑ 5.24) 58.82 (↓ -0.70)
1-12 51.09 (↑ 2.19) 56.70 (↓ -0.38) 52.85 (↑ 4.16) 58.47 (↓ -1.05)

SWD

52.28 57.10 52.06 59.11
top 1 52.45 (↑ 0.17) 55.09 (↓ -2.01) 57.08 (↑ 5.02) 58.64 (↓ -0.47)
5-12 53.14 (↑ 0.86) 56.73 (↓ -0.37) 55.11 (↑ 3.05) 58.40 (↓ -0.71)
1-12 53.20 (↑ 0.92) 56.58 (↓ -0.52) 54.18 (↑ 2.12) 58.06 (↓ -1.05)

Table 24: The scores on the PAWSWiki test set for the methods using the embeddings from DistilBERT and
BERTseed0. For WMD, WRD, and SynWMD, the scores of WSMD and the original method are compared for each
layer selection. Score increases are highlighted in red and score decreases are highlighted in blue. Maximum scores
for each embedding are underlined.
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methods layer weight cost STSB (Spearman′s ρ × 100)
DistilBERT0 DistilBERT12 BERTseed00 BERTseed012

Avg. Pool. 66.33 71.83 61.98 51.78

BERTScore uniform 63.30 63.01 63.31 60.15
IDF 64.16 63.92 64.22 60.97

DynaMax 70.61 72.66 69.35 51.05
SIF 65.35 71.76 59.20 47.38

uSIF 65.25 71.64 59.34 47.40
Con. Neg. 65.81 71.86 61.76 52.44

ROTS 66.61 71.98 62.94 52.90

OPWD uniform L2 60.59 52.63 61.05 42.70
cosine 67.29 70.93 64.74 48.08

WMDo uniform cosine 66.59 70.13 63.48 42.52

WMD

uniform

L2

60.59 52.63 61.05 42.70
top 1 52.78 (↓ -7.81) 44.94 (↓ -7.69) 51.13 (↓ -9.92) 34.24 (↓ -8.46)
5-12 58.50 (↓ -2.09) 50.04 (↓ -2.59) 56.31 (↓ -4.74) 40.36 (↓ -2.34)
1-12 58.07 (↓ -2.52) 49.52 (↓ -3.11) 56.69 (↓ -4.36) 41.25 (↓ -1.45)

IDF

64.36 55.98 64.64 45.31
top 1 58.30 (↓ -6.06) 49.73 (↓ -6.25) 56.22 (↓ -8.42) 37.72 (↓ -7.59)
5-12 62.85 (↓ -1.51) 53.83 (↓ -2.15) 61.26 (↓ -3.38) 44.62 (↓ -0.69)
1-12 62.53 (↓ -1.83) 53.38 (↓ -2.60) 61.60 (↓ -3.04) 45.42 (↑ 0.11)

WRD

norm

cosine

69.73 71.30 67.06 47.85
top 1 68.57 (↓ -1.16) 70.23 (↓ -1.07) 64.09 (↓ -2.97) 44.35 (↓ -3.50)
5-12 69.54 (↓ -0.19) 71.13 (↓ -0.17) 65.67 (↓ -1.39) 46.14 (↓ -1.71)
1-12 69.47 (↓ -0.26) 71.09 (↓ -0.21) 65.72 (↓ -1.34) 46.26 (↓ -1.59)

IDF

69.89 72.23 67.85 50.67
top 1 68.65 (↓ -1.24) 71.45 (↓ -0.78) 65.16 (↓ -2.69) 47.34 (↓ -3.33)
5-12 69.65 (↓ -0.24) 72.16 (↓ -0.07) 66.62 (↓ -1.23) 49.08 (↓ -1.59)
1-12 69.56 (↓ -0.33) 72.14 (↓ -0.09) 66.69 (↓ -1.16) 49.18 (↓ -1.49)

SynWMD SWF

cosine

71.56 73.90 69.30 54.21
top 1 67.79 (↓ -3.77) 68.76 (↓ -5.14) 64.20 (↓ -5.10) 44.35 (↓ -9.86)
5-12 71.00 (↓ -0.56) 72.36 (↓ -1.54) 67.03 (↓ -2.27) 49.75 (↓ -4.46)
1-12 70.69 (↓ -0.87) 72.05 (↓ -1.85) 67.10 (↓ -2.20) 50.02 (↓ -4.19)

SWD

70.86 74.67 68.52 57.09
top 1 68.30 (↓ -2.56) 71.23 (↓ -3.44) 65.54 (↓ -2.98) 49.22 (↓ -7.87)
5-12 70.76 (↓ -0.10) 73.52 (↓ -1.15) 67.32 (↓ -1.20) 54.02 (↓ -3.07)
1-12 70.55 (↓ -0.31) 73.31 (↓ -1.36) 67.34 (↓ -1.18) 54.34 (↓ -2.75)

Table 25: The scores on the STSB test set for the methods using the embeddings from DistilBERT and BERTseed0.
For WMD, WRD, and SynWMD, the scores of WSMD and the original method are compared for each layer
selection. Score increases are highlighted in red and score decreases are highlighted in blue. Maximum scores for
each embedding are underlined.

(a) PAWSQQP dev (b) PAWSWiki dev (c) STSB dev

Figure 10: Scatter plots of the number of common words in sentence pairs for each dataset against the corresponding
gold scores. (a) Spearman’s ρ× 100 = −9.31 for the PAWSQQP dev set. (b) Spearman’s ρ× 100 = −0.85 for the
PAWSWiki dev set. (c) Spearman’s ρ× 100 = 59.37 for STSB dev set.
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Test

SICK-R 4927

Table 26: The number of sentence pairs in the SICK-R
test set.

methods layer weight cost SICK-R (Spearman′s ρ × 100)
BERT0 BERT12

Avg. Pool. 44.10 62.19

BERTScore uniform 50.29 58.55
IDF 50.54 58.26

DynaMax 48.38 61.99
SIF 43.02 61.95
uSIF 42.93 61.92

Con. Neg. 44.34 62.30
ROTS 44.46 62.26

OPWD uniform L2 49.97 54.06
cosine 48.49 61.72

WMDo uniform cosine 36.93 60.70

WMD

uniform

L2

49.97 54.06
top 1 50.13 (↑ 0.16) 53.39 (↓ -0.67)
5-12 50.14 (↑ 0.17) 53.41 (↓ -0.65)
1-12 50.07 (↑ 0.10) 53.04 (↓ -1.02)

IDF

49.39 53.55
top 1 49.58 (↑ 0.19) 52.99 (↓ -0.56)
5-12 49.53 (↑ 0.14) 52.94 (↓ -0.61)
1-12 49.48 (↑ 0.09) 52.57 (↓ -0.98)

WRD

norm

cosine

47.78 61.62
top 1 47.77 (↓ -0.01) 61.51 (↓ -0.11)
5-12 47.75 (↓ -0.03) 61.48 (↓ -0.14)
1-12 47.69 (↓ -0.09) 61.34 (↓ -0.28)

IDF

48.13 61.29
top 1 48.08 (↓ -0.05) 61.20 (↓ -0.09)
5-12 48.05 (↓ -0.08) 61.15 (↓ -0.14)
1-12 47.98 (↓ -0.15) 61.02 (↓ -0.27)

SynWMD SWF

cosine

50.52 63.35
top 1 50.65 (↑ 0.13) 62.49 (↓ -0.86)
5-12 50.47 (↓ -0.05) 62.35 (↓ -1.00)
1-12 50.38 (↓ -0.14) 61.97 (↓ -1.38)

SWD

49.59 63.54
top 1 49.92 (↑ 0.33) 62.96 (↓ -0.58)
5-12 49.70 (↑ 0.11) 62.78 (↓ -0.76)
1-12 49.70 (↑ 0.11) 62.52 (↓ -1.02)

Table 27: The scores on the SICK-R test set for the meth-
ods using the BERT embeddings. For WMD, WRD,
and SynWMD, the scores of WSMD and the original
method are compared for each layer selection. Score
increases are highlighted in red and score decreases are
highlighted in blue. Maximum scores for each embed-
ding are underlined.

Train

PAWSQQP 11988 (31.50%)

Table 28: The number of sentence pairs in the
PAWSQQP train set. The percentage of paraphrases
is shown in parentheses.
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methods layer weight cost PAWSQQP train (AUC × 100)
BERT0 BERT12 SimCSE0 SimCSE12 RoBERTa0 RoBERTa12

Avg. Pool. 66.14 75.57 66.84 73.92 61.58 73.73

BERTScore uniform 50.41 58.79 50.61 52.59 45.65 57.97
IDF 50.74 58.51 50.73 52.52 48.21 59.33

DynaMax 67.61 79.25 68.12 73.42 63.56 71.49
SIF 65.80 75.28 66.24 73.34 61.58 73.04
uSIF 65.89 75.28 66.22 73.36 61.67 72.99

Con. Neg. 66.03 75.64 66.48 74.04 61.60 73.69
ROTS 60.46 76.59 61.13 74.55 54.91 74.01

OPWD uniform L2 67.65 77.90 67.77 75.49 64.35 76.98
cosine 68.92 79.73 68.80 75.91 66.21 76.46

WMDo uniform cosine 49.84 61.95 49.85 53.28 59.53 68.86

WMD

uniform

L2

67.65 77.90 67.77 75.49 64.35 76.98
top 1∗ 79.42 (↑ 11.77) 78.43 (↑ 0.53) 74.81 (↑ 7.04) 76.04 (↑ 0.55) 73.61 (↑ 9.26) 77.02 (↑ 0.04)
5-12 76.49 (↑ 8.84) 78.13 (↑ 0.23) 75.11 (↑ 7.34) 75.75 (↑ 0.26) 73.70 (↑ 9.35) 76.98 (–)
1-12 76.49 (↑ 8.84) 78.10 (↑ 0.20) 76.13 (↑ 8.36) 76.04 (↑ 0.55) 73.06 (↑ 8.71) 76.65 (↓ -0.33)

IDF

67.41 77.54 67.53 75.28 64.67 76.12
top 1∗ 78.88 (↑ 11.47) 78.16 (↑ 0.62) 75.22 (↑ 7.69) 75.86 (↑ 0.58) 73.03 (↑ 8.36) 76.26 (↑ 0.14)
5-12 75.88 (↑ 8.47) 77.80 (↑ 0.26) 74.66 (↑ 7.13) 75.53 (↑ 0.25) 73.05 (↑ 8.38) 76.08 (↓ -0.04)
1-12 75.99 (↑ 8.58) 77.79 (↑ 0.25) 75.85 (↑ 8.32) 75.84 (↑ 0.56) 72.43 (↑ 7.76) 75.70 (↓ -0.42)

Table 29: The scores on the PAWSQQP train set for the methods using the embeddings from BERT, SimCSE, and
RoBERTa. For WMD, the scores of WSMD and the original method are compared for each layer selection. Score
increases are highlighted in red and score decreases are highlighted in blue. Maximum scores for each embedding
are underlined. Note that the top layer was determined based on the first 1500 sentence pairs. For this reason, top1
is marked with an asterisk.
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