
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11052–11067
December 6-10, 2023 ©2023 Association for Computational Linguistics

Boosting Inference Efficiency: Unleashing the Power of
Parameter-Shared Pre-trained Language Models

Weize Chen1∗, Xiaoyue Xu1∗, Xu Han1†, Yankai Lin2,
Ruobing Xie2, Zhiyuan Liu1†, Maosong Sun1, Jie Zhou3

1NLP Group, DCST, IAI, BNRIST, Tsinghua University, Beijing
2Gaoling School of Artificial Intelligence, Renmin University of China, Beijing

3Pattern Recognition Center, WeChat AI, Tencent Inc.
chenwz21@mails.tsinghua.edu.cn

hanxu2022@tsinghua.edu.cn

Abstract

Parameter-shared pre-trained language mod-
els (PLMs) have emerged as a successful ap-
proach in resource-constrained environments,
enabling substantial reductions in model stor-
age and memory costs without significant per-
formance compromise. However, it is impor-
tant to note that parameter sharing does not al-
leviate computational burdens associated with
inference, thus impeding its practicality in sit-
uations characterized by limited stringent la-
tency requirements or computational resources.
Building upon neural ordinary differential equa-
tions (ODEs), we introduce a straightforward
technique to enhance the inference efficiency
of parameter-shared PLMs. Additionally, we
propose a simple pre-training technique that
leads to fully or partially shared models capa-
ble of achieving even greater inference accel-
eration. The experimental results demonstrate
the effectiveness of our methods on both au-
toregressive and autoencoding PLMs, provid-
ing novel insights into more efficient utiliza-
tion of parameter-shared models in resource-
constrained settings.

1 Introduction

In recent years, there has been a significant increase
in the number of parameters of PLMs. This be-
gan with the advent of BERT (Devlin et al., 2019),
containing 340 million parameters, and has esca-
lated to models like T5 (Raffel et al., 2020), GPT-
3 (Brown et al., 2020), and PALM (Chowdhery
et al., 2022), with the latter reaching an astounding
540 billion parameters. The trend of PLM expan-
sion has, undeniably, improved performance across
numerous tasks. Nonetheless, the corresponding in-
crease in computation and storage requirements has
raised substantial barriers for scenarios character-
ized by stringent latency requirements or resource
limitations. While PLMs encompassing merely a

∗Equal Contribution
†Corresponding author.

few billion parameters such as LLaMA (Touvron
et al., 2023), Vicuna (Chiang et al., 2023), and Al-
paca (Taori et al., 2023) have exhibited remarkable
capabilities, their application remains constricted
in numerous resource-constrained environments.

In contrast to the monumental advances in PLMs,
the real-world applications often still favor more
established models such as BERT and GPT-2 (Rad-
ford et al., 2019). These models, despite their rela-
tively fewer parameters, deliver satisfactory perfor-
mance across many tasks while requiring signifi-
cantly less resources. This balance offers an appeal-
ing trade-off between performance and cost. More-
over, parameter sharing techniques have success-
fully demonstrated that model size can be greatly
reduced without significant performance degrada-
tion, mitigating the storage burden and yielding
better cost-effectiveness. This has sparked an inter-
est in parameter-shared PLMs (PSPLMs) like AL-
BERT (Lan et al., 2020), a derivative of the BERT
architecture that shares parameters across all lay-
ers, effectively reducing model size and memory
requirements. Still, it’s critical to recognize that
parameter sharing alone doesn’t guarantee reduced
inference time since the number of layers processed
during each forward pass remains unchanged. In
other words, while it resolves the storage issue, it
does not address the computational challenge.

Early exit techniques promise to reduce the num-
ber of layers processed during inference by halt-
ing computation at early layers (Zhou et al., 2020;
Wang et al., 2022; Schuster et al., 2022). While ef-
fective, these methods typically require additional
trained classifiers or computationally expensive dot
products between the vocabulary matrix and the
hidden states at each layer. This circumstance
prompts the question: Can a method be proposed
to reduce the inference cost without introducing
extra modules or computations, and could it be
complementary to early exit techniques, allowing
their combined use for further acceleration?

11052

In this study, we show that the problem can be
well addressed in PSPLMs. Specifically, we illus-
trate how significant acceleration in PSPLM infer-
ence can be achieved through our straightforward
yet effective technique. This technique, inspired by
the principles of neural ODEs, accelerate the infer-
ence without necessitating the addition of modules
or calculations to the model. Hence, in addition to
the inherent storage efficiency, our method notably
makes PSPLMs to be computational efficient. We
also introduce a pre-training method for PSPLMs
with a slightly altered forward propagation rule.
Experiments reveal that our proposed pre-training
method prepares the model for even greater accel-
eration during inference, and we give theoretical
explanation to aptly support our method.

We further extend the application of our method
beyond the domain of fully shared PSPLMs. Our
research demonstrates the potential of our acceler-
ation strategy in the context of more complex and
capable partially-shared PLMs, and even hints at
its applicability to unshared models. This broader
applicability shows the flexibility and robustness
of our approach. Additionally, our method is not in
competition with other acceleration strategies. We
demonstrate that our method can be combined or-
thogonally with early exit techniques, thereby facil-
itating further acceleration. Remarkably, this syn-
ergy of methods makes the partially-shared model
surpass its unshared equivalent within an equiva-
lent computational budget.

In essence, our work offers a novel route to
accelerate the inference for PSPLMs, and lay a
novel foundation for unleashing the PSPLMs’ po-
tential, offering critical insights for deployment of
PSPLMs in resource-constrained settings.

2 ODE Perspective on Residual Networks

We begin by providing a brief overview of the re-
lationship between residual networks and ODEs,
which forms the fundamental basis of our research.

In a T -layer residual network, we denote the
layer t as fθt . The update formulation for the hid-
den state h can be expressed as:

ht+1 = ht + fθt(ht). (1)

Remarkably, this update scheme aligns with Euler’s
method for solving ODEs. Consider an ODE:

y(0) = y0, y′(t) = ft
(
y(t)

)
, (2)

Area of Correct Prediction<latexit sha1_base64="y5/tWokyC64YmaqezoWRWpYL2mg=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0GwkLAr8VEGbCwjmAckS5idzCZDZmaXmVkhLFv4C7ba24mtn2LrlzhJtjCJBy4czrmXe+8JYs60cd1vp7C2vrG5Vdwu7ezu7R+UD49aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfju6nffqJKs0g+mklMfYGHkoWMYGOlTi8Q6Sjru/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE06zUSzSNMRnjIe1aKrGg2k9n92bozCoDFEbKljRopv6dSLHQeiIC2ymwGellbyr+53UTE976KZNxYqgk80VhwpGJ0PR5NGCKEsMnlmCimL0VkRFWmBgb0cKWQGQlG4q3HMEqaV1Wvevq1UOtUr/I4ynCCZzCOXhwA3W4hwY0gQCHF3iFN+fZeXc+nM95a8HJZ45hAc7XL0dtln4=</latexit>

h0

<latexit sha1_base64="Y/bWdmKMBd4IliztuRYk7dGiHpk=">AAACCXicdVDLSgMxFM3UV62vUZdugkUQF0Om7Wi7K7hxWaEvaEvJpGkbmswMSaZQhvkCf8Gt7t2JW7/CrV9i+hCs6IELh3Pu5d57/IgzpRH6sDIbm1vbO9nd3N7+weGRfXzSVGEsCW2QkIey7WNFOQtoQzPNaTuSFAuf05Y/uZ37rSmVioVBXc8i2hN4FLAhI1gbqW/bXc34gCZdXyTjNO3X+3YeOZUK8koeRI7nFiulgiFF5JZREboOWiAPVqj17c/uICSxoIEmHCvVcVGkewmWmhFO01w3VjTCZIJHtGNogAVVvWRxeQovjDKAw1CaCjRcqD8nEiyUmgnfdAqsx+q3Nxf/8jqxHpZ7CQuiWNOALBcNYw51COcxwAGTlGg+MwQTycytkIyxxESbsNa2+CLNmVC+P4f/k2bBca8d776Ur16t4smCM3AOLoELbkAV3IEaaAACpuARPIFn68F6sV6tt2VrxlrNnII1WO9fESyazg==</latexit>

h̃T

<latexit sha1_base64="dm7+KE7YqW+IYtQomE9BeJG8COo=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0EQi7ArvsqAjWWEvCBZwuxkNhkyM7vMzAph2cJfsNXeTmz9FFu/xEmyhUk8cOFwzr3ce08Qc6aN6347hbX1jc2t4nZpZ3dv/6B8eNTSUaIIbZKIR6oTYE05k7RpmOG0EyuKRcBpOxjfT/32E1WaRbJhJjH1BR5KFjKCjZU6vUCko6zf6JcrbtWdAa0SLycVyFHvl396g4gkgkpDONa667mx8VOsDCOcZqVeommMyRgPaddSiQXVfjq7N0NnVhmgMFK2pEEz9e9EioXWExHYToHNSC97U/E/r5uY8M5PmYwTQyWZLwoTjkyEps+jAVOUGD6xBBPF7K2IjLDCxNiIFrYEIivZULzlCFZJ67Lq3VSvH68qtYs8niKcwCmcgwe3UIMHqEMTCHB4gVd4c56dd+fD+Zy3Fpx85hgW4Hz9An+jlqA=</latexit>

hT

Large step inference

Figure 1: An illustration of reducing the iteration count
during inference by enlarging the step size.

Euler’s method approximates the solution of this
ODE from t = 0 to T by dividing the interval
into n steps, each with step size si, such that∑n−1

i=0 si = T . The method iteratively computes
the following formula from i = 0 to n− 1:

yi+1 = yi + si · ft(yi). (3)

The final value yn serves as an approximation of
the solution to Eq. 2 at time T . The correspondence
between Eq. 1 and Eq. 3 is evident. A T -layer resid-
ual network can be interpreted as parameterizing
the vector field f that characterizes the derivative
along the path from the input space to the final out-
put space. The ODE perspective generalizes the
concept of depth in residual networks to the con-
tinuous domain, where the notion of progression
from input to output is captured by the continuous
time rather than discrete depth or layer index.

During the inference process of a trained model,
the vector field remains fixed because the param-
eters are frozen. As a result, the model’s infer-
ence can be seen as solving an ODE within this
vector field using Euler’s method, where the ini-
tial value corresponds to the input embedding, and
the solution time is T . Furthermore, the pre-norm
Transformer architecture is also a type of residual
network (see Appendix A). Therefore, the ODE
perspective we have presented can be applied to
the pre-norm Transformer architecture as well.

3 Method

3.1 Enlarging the Step Size

In the process of solving the ODE, the choice of
the step size si in Eq. 3 has a significant impact on
the speed and accuracy of the solution. Given the
final time T , a larger step size reduces the number
of iterations, resulting in faster computation but
decreased accuracy. This trade-off allows us to

11053

Area of Correct Prediction
<latexit sha1_base64="y5/tWokyC64YmaqezoWRWpYL2mg=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0GwkLAr8VEGbCwjmAckS5idzCZDZmaXmVkhLFv4C7ba24mtn2LrlzhJtjCJBy4czrmXe+8JYs60cd1vp7C2vrG5Vdwu7ezu7R+UD49aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfju6nffqJKs0g+mklMfYGHkoWMYGOlTi8Q6Sjru/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE06zUSzSNMRnjIe1aKrGg2k9n92bozCoDFEbKljRopv6dSLHQeiIC2ymwGellbyr+53UTE976KZNxYqgk80VhwpGJ0PR5NGCKEsMnlmCimL0VkRFWmBgb0cKWQGQlG4q3HMEqaV1Wvevq1UOtUr/I4ynCCZzCOXhwA3W4hwY0gQCHF3iFN+fZeXc+nM95a8HJZ45hAc7XL0dtln4=</latexit>

h0

Small step pre-trained model

Step=1 pre-trained model

<latexit sha1_base64="lyoGHanHaOyAneBVfLFGbvfK+0M=">AAACFHicdVDLSgMxFM3UV62vqstugkUQwWHG6ctdwY3LCn1BZyiZNG1Dk5khyQhl2oU/4S+41b07ceverV9i+hCs6IHAuefcy809fsSoVJb1YaTW1jc2t9LbmZ3dvf2D7OFRU4axwKSBQxaKto8kYTQgDUUVI+1IEMR9Rlr+6Hrmt+6IkDQM6mocEY+jQUD7FCOlpW42N3F9ngyn3fqFqyjrkWRRa2HSzeYts+hUymUbWqZTKjqFoia2U3AqV9A2rTnyYIlaN/vp9kIccxIozJCUHduKlJcgoShmZJpxY0kihEdoQDqaBogT6SXzI6bwVCs92A+FfoGCc/XnRIK4lGPu606O1FD+9mbiX14nVv2Kl9AgihUJ8GJRP2ZQhXCWCOxRQbBiY00QFlT/FeIhEggrndvKFp9PMzqU78vh/6R5adols3hbyFfPl/GkQQ6cgDNggzKoghtQAw2AwT14BE/g2XgwXoxX423RmjKWM8dgBcb7Fwf9n60=</latexit>

|hT � h̃T |

<latexit sha1_base64="Y/bWdmKMBd4IliztuRYk7dGiHpk=">AAACCXicdVDLSgMxFM3UV62vUZdugkUQF0Om7Wi7K7hxWaEvaEvJpGkbmswMSaZQhvkCf8Gt7t2JW7/CrV9i+hCs6IELh3Pu5d57/IgzpRH6sDIbm1vbO9nd3N7+weGRfXzSVGEsCW2QkIey7WNFOQtoQzPNaTuSFAuf05Y/uZ37rSmVioVBXc8i2hN4FLAhI1gbqW/bXc34gCZdXyTjNO3X+3YeOZUK8koeRI7nFiulgiFF5JZREboOWiAPVqj17c/uICSxoIEmHCvVcVGkewmWmhFO01w3VjTCZIJHtGNogAVVvWRxeQovjDKAw1CaCjRcqD8nEiyUmgnfdAqsx+q3Nxf/8jqxHpZ7CQuiWNOALBcNYw51COcxwAGTlGg+MwQTycytkIyxxESbsNa2+CLNmVC+P4f/k2bBca8d776Ur16t4smCM3AOLoELbkAV3IEaaAACpuARPIFn68F6sV6tt2VrxlrNnII1WO9fESyazg==</latexit>

h̃T

<latexit sha1_base64="dm7+KE7YqW+IYtQomE9BeJG8COo=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0EQi7ArvsqAjWWEvCBZwuxkNhkyM7vMzAph2cJfsNXeTmz9FFu/xEmyhUk8cOFwzr3ce08Qc6aN6347hbX1jc2t4nZpZ3dv/6B8eNTSUaIIbZKIR6oTYE05k7RpmOG0EyuKRcBpOxjfT/32E1WaRbJhJjH1BR5KFjKCjZU6vUCko6zf6JcrbtWdAa0SLycVyFHvl396g4gkgkpDONa667mx8VOsDCOcZqVeommMyRgPaddSiQXVfjq7N0NnVhmgMFK2pEEz9e9EioXWExHYToHNSC97U/E/r5uY8M5PmYwTQyWZLwoTjkyEps+jAVOUGD6xBBPF7K2IjLDCxNiIFrYEIivZULzlCFZJ67Lq3VSvH68qtYs8niKcwCmcgwe3UIMHqEMTCHB4gVd4c56dd+fD+Zy3Fpx85hgW4Hz9An+jlqA=</latexit>

hT

<latexit sha1_base64="lcggcKULOZ87ghWr55gYlJagFnc=">AAACAHicbVC7SgNBFL3rM8ZX1NJmMIhiEXbFVxmwsYxgHpIsYXYymwyZmV1mZoWwbOMv2GpvJ7b+ia1f4iTZwiQeuHA4517uvSeIOdPGdb+dpeWV1bX1wkZxc2t7Z7e0t9/QUaIIrZOIR6oVYE05k7RumOG0FSuKRcBpMxjejv3mE1WaRfLBjGLqC9yXLGQEGys9dgKRDrKTrtstld2KOwFaJF5OypCj1i39dHoRSQSVhnCsddtzY+OnWBlGOM2KnUTTGJMh7tO2pRILqv10cnCGjq3SQ2GkbEmDJurfiRQLrUcisJ0Cm4Ge98bif147MeGNnzIZJ4ZKMl0UJhyZCI2/Rz2mKDF8ZAkmitlbERlghYmxGc1sCURWtKF48xEsksZ5xbuqXN5flKtneTwFOIQjOAUPrqEKd1CDOhAQ8AKv8OY8O+/Oh/M5bV1y8pkDmIHz9QusOpat</latexit>

h0
0

<latexit sha1_base64="EyOg//W61jRwS2UqKYaFc57T85U=">AAACAHicbVC7SgNBFL0bXzG+opY2g0EUi7ArvsqAjWWEvCRZwuxkNhkyM7vMzAph2cZfsNXeTmz9E1u/xMmjMIkHLhzOuZd77wlizrRx3W8nt7K6tr6R3yxsbe/s7hX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsO7sd98okqzSNbMKKa+wH3JQkawsdJjJxDpIDvt1rrFklt2J0DLxJuREsxQ7RZ/Or2IJIJKQzjWuu25sfFTrAwjnGaFTqJpjMkQ92nbUokF1X46OThDJ1bpoTBStqRBE/XvRIqF1iMR2E6BzUAvemPxP6+dmPDWT5mME0MlmS4KE45MhMbfox5TlBg+sgQTxeytiAywwsTYjOa2BCIr2FC8xQiWSeOi7F2Xrx4uS5XzWTx5OIJjOAMPbqAC91CFOhAQ8AKv8OY8O+/Oh/M5bc05s5lDmIPz9QvlCpbR</latexit>

h0
T

<latexit sha1_base64="1icFhAEd0nklBU/EyH9Ay66zsjY=">AAACCnicdVDLSgMxFM3UV62vqS7dBIsoLoZMH9ruCm5cVugL2lIyadqGJjNDklHKMH/gL7jVvTtx60+49UtMH4IVPXDhcM693HuPF3KmNEIfVmptfWNzK72d2dnd2z+ws4dNFUSS0AYJeCDbHlaUM582NNOctkNJsfA4bXmT65nfuqNSscCv62lIewKPfDZkBGsj9e1sVzM+oHHXE/E4Sc769b6dQ06lgkrFEkROyS1UinlDCsgtowJ0HTRHDixR69uf3UFAIkF9TThWquOiUPdiLDUjnCaZbqRoiMkEj2jHUB8Lqnrx/PQEnhplAIeBNOVrOFd/TsRYKDUVnukUWI/Vb28m/uV1Ij0s92Lmh5GmPlksGkYc6gDOcoADJinRfGoIJpKZWyEZY4mJNmmtbPFEkjGhfH8O/yfNvONeOqXbYq56sYwnDY7BCTgHLrgCVXADaqABCLgHj+AJPFsP1ov1ar0tWlPWcuYIrMB6/wJ6KJr/</latexit>

h̃0
T

<latexit sha1_base64="5HMmtLQv6lOA5LAPhdJ7Qnuigf4=">AAAB+HicdVDLSgMxFM3UV62vqks3wSKIi2HG6bR1IwU3LluwD2iHkknTNjTJDElGqEO/wK3u3Ylb/8atX2L6EKzogQuHc+7l3nvCmFGlHefDyqytb2xuZbdzO7t7+wf5w6OmihKJSQNHLJLtECnCqCANTTUj7VgSxENGWuH4Zua37olUNBJ3ehKTgKOhoAOKkTZS/bqXLzi271XKZRc6tlfyvaJviOsVvcoVdG1njgJYotbLf3b7EU44ERozpFTHdWIdpEhqihmZ5rqJIjHCYzQkHUMF4kQF6fzQKTwzSh8OImlKaDhXf06kiCs14aHp5EiP1G9vJv7ldRI9qAQpFXGiicCLRYOEQR3B2dewTyXBmk0MQVhScyvEIyQR1iablS0hn+ZMKN+fw/9J89J2S7ZfLxaqF8t4suAEnIJz4IIyqIJbUAMNgAEBj+AJPFsP1ov1ar0tWjPWcuYYrMB6/wI1bJOv</latexit>

>
<latexit sha1_base64="B3mN97xIH5mcCZm2rrX/PAMoS44=">AAACFnicdZDLSgMxFIYz9VbrrepShGARRXCYcXpzV3DjskJv0JaSSVMbmswMSUYo01n5Er6CW927E7du3fokZtoKVvSHwM93zuHk/G7AqFSW9WGklpZXVtfS65mNza3tnezuXkP6ocCkjn3mi5aLJGHUI3VFFSOtQBDEXUaa7ugqqTfviJDU92pqHJAuR7ceHVCMlEa97OGk4/JoGJ/0aucdRVmfRDOQkEkvm7PMglMulWxomU6x4OQL2thO3ilfQtu0psqBuaq97Gen7+OQE09hhqRs21aguhESimJG4kwnlCRAeIRuSVtbD3Eiu9H0jBgea9KHA1/o5yk4pT8nIsSlHHNXd3KkhvJ3LYF/1dqhGpS7EfWCUBEPzxYNQgaVD5NMYJ8KghUba4OwoPqvEA+RQFjp5Ba2uDzO6FC+L4f/m8aFaRfNwk0+Vzmbx5MGB+AInAIblEAFXIMqqAMM7sEjeALPxoPxYrwab7PWlDGf2QcLMt6/AN4soA8=</latexit>

|h0
T � h̃0

T |

Figure 2: An illustration of the difference between the
models pre-trained with different step size.

sacrifice a certain degree of solution accuracy in
exchange for inference speed. To expedite model
inference, we propose employing a larger step size
during inference compared to training (Fig. 1).

Specifically, for PSPLMs, the vector field f at
any given time t is parameterized by exactly the
same set of parameters. Consequently, the time de-
pendence in θt (as shown in Eq. 1) can be omitted,
leading to the forward rule ht+1 = ht + fθ(ht),
where θ now represents the shared layer parame-
ters. By applying different scaling factors βt > 1
to the original step size s = 1 at different lay-
ers, and reducing the number of layers such that∑

t βt ≈ T , the model still mathematically solves
the ODE from t = 0 to T , albeit using larger step
sizes βts = βt at each layer. The updated forward
rule can be written as:

h̃t+βt = h̃t + βt · fθ(h̃t), βt > 1. (4)

In practice, we perform minimal search to deter-
mine a set of suitable {βt} values. In Section 4.2,
we will demonstrate that by simply changing the
forward rule to Eq. 4, the inference of existing
PSPLMs can already be accelerated while main-
taining overall performance to a satisfactory extent.

3.2 Pre-Training with Smaller Step Size

Ideally, if the approximate result h̃T obtained us-
ing scaled-up step sizes is close to the result hT

obtained with the original step size, the overall
performance can be greatly preserved. Convention-
ally, pre-training of PSPLMs is conducted with a
step size of s = 1. However, from a theoretical
standpoint, the error analysis of Euler’s method
suggests that selecting a smaller step size s during
pre-training may enable better acceleration during
inference. Under certain mild conditions, we prove
in Appendix B the following inequality:

0

11.5

…23

(2) L=24, s=1, 3 sets of parameters

<latexit sha1_base64="y5/tWokyC64YmaqezoWRWpYL2mg=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0GwkLAr8VEGbCwjmAckS5idzCZDZmaXmVkhLFv4C7ba24mtn2LrlzhJtjCJBy4czrmXe+8JYs60cd1vp7C2vrG5Vdwu7ezu7R+UD49aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfju6nffqJKs0g+mklMfYGHkoWMYGOlTi8Q6Sjru/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE06zUSzSNMRnjIe1aKrGg2k9n92bozCoDFEbKljRopv6dSLHQeiIC2ymwGellbyr+53UTE976KZNxYqgk80VhwpGJ0PR5NGCKEsMnlmCimL0VkRFWmBgb0cKWQGQlG4q3HMEqaV1Wvevq1UOtUr/I4ynCCZzCOXhwA3W4hwY0gQCHF3iFN+fZeXc+nM95a8HJZ45hAc7XL0dtln4=</latexit>

h0

?

<latexit sha1_base64="fux+DswGhntjMLzKLL3kqU0Jo/Q=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0EQi7Ar8VEGbCwjmAckS5idzCZDZmaXmVkhLFv4C7ba24mtn2LrlzhJtjCJBy4czrmXe+8JYs60cd1vp7C2vrG5Vdwu7ezu7R+UD49aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfju6nffqJKs0g+mklMfYGHkoWMYGOlTi8Q6Sjre/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE06zUSzSNMRnjIe1aKrGg2k9n92bozCoDFEbKljRopv6dSLHQeiIC2ymwGellbyr+53UTE976KZNxYqgk80VhwpGJ0PR5NGCKEsMnlmCimL0VkRFWmBgb0cKWQGQlG4q3HMEqaV1Wvevq1UOtUr/I4ynCCZzCOXhwA3W4hwY0gQCHF3iFN+fZeXc+nM95a8HJZ45hAc7XL0hnln0=</latexit>

h1

<latexit sha1_base64="camsJzky3xcH48qnOfWX07RbMXo=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0EQi7AbfJUBG8sI5gHJEmYns8mQmdllZlYIyxb+gq32dmLrp9j6JU6SLUzigQuHc+7l3nuCmDNtXPfbKaytb2xuFbdLO7t7+wflw6OWjhJFaJNEPFKdAGvKmaRNwwynnVhRLAJO28H4buq3n6jSLJKPZhJTX+ChZCEj2Fip0wtEOsr6tX654lbdGdAq8XJSgRyNfvmnN4hIIqg0hGOtu54bGz/FyjDCaVbqJZrGmIzxkHYtlVhQ7aezezN0ZpUBCiNlSxo0U/9OpFhoPRGB7RTYjPSyNxX/87qJCW/9lMk4MVSS+aIw4chEaPo8GjBFieETSzBRzN6KyAgrTIyNaGFLILKSDcVbjmCVtGpV77p69XBZqV/k8RThBE7hHDy4gTrcQwOaQIDDC7zCm/PsvDsfzue8teDkM8ewAOfrF0n7ln4=</latexit>

h2

t=2

Layer Parameters at t=23

…
Layer Parameters at t=11.5

…
Layer Parameters at t=0

<latexit sha1_base64="y5/tWokyC64YmaqezoWRWpYL2mg=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0GwkLAr8VEGbCwjmAckS5idzCZDZmaXmVkhLFv4C7ba24mtn2LrlzhJtjCJBy4czrmXe+8JYs60cd1vp7C2vrG5Vdwu7ezu7R+UD49aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfju6nffqJKs0g+mklMfYGHkoWMYGOlTi8Q6Sjru/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE06zUSzSNMRnjIe1aKrGg2k9n92bozCoDFEbKljRopv6dSLHQeiIC2ymwGellbyr+53UTE976KZNxYqgk80VhwpGJ0PR5NGCKEsMnlmCimL0VkRFWmBgb0cKWQGQlG4q3HMEqaV1Wvevq1UOtUr/I4ynCCZzCOXhwA3W4hwY0gQCHF3iFN+fZeXc+nM95a8HJZ45hAc7XL0dtln4=</latexit>

h0

<latexit sha1_base64="fux+DswGhntjMLzKLL3kqU0Jo/Q=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0EQi7Ar8VEGbCwjmAckS5idzCZDZmaXmVkhLFv4C7ba24mtn2LrlzhJtjCJBy4czrmXe+8JYs60cd1vp7C2vrG5Vdwu7ezu7R+UD49aOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfju6nffqJKs0g+mklMfYGHkoWMYGOlTi8Q6Sjre/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE06zUSzSNMRnjIe1aKrGg2k9n92bozCoDFEbKljRopv6dSLHQeiIC2ymwGellbyr+53UTE976KZNxYqgk80VhwpGJ0PR5NGCKEsMnlmCimL0VkRFWmBgb0cKWQGQlG4q3HMEqaV1Wvevq1UOtUr/I4ynCCZzCOXhwA3W4hwY0gQCHF3iFN+fZeXc+nM95a8HJZ45hAc7XL0hnln0=</latexit>

h1

<latexit sha1_base64="camsJzky3xcH48qnOfWX07RbMXo=">AAAB/3icbVC7SgNBFL0bXzG+opY2g0EQi7AbfJUBG8sI5gHJEmYns8mQmdllZlYIyxb+gq32dmLrp9j6JU6SLUzigQuHc+7l3nuCmDNtXPfbKaytb2xuFbdLO7t7+wflw6OWjhJFaJNEPFKdAGvKmaRNwwynnVhRLAJO28H4buq3n6jSLJKPZhJTX+ChZCEj2Fip0wtEOsr6tX654lbdGdAq8XJSgRyNfvmnN4hIIqg0hGOtu54bGz/FyjDCaVbqJZrGmIzxkHYtlVhQ7aezezN0ZpUBCiNlSxo0U/9OpFhoPRGB7RTYjPSyNxX/87qJCW/9lMk4MVSS+aIw4chEaPo8GjBFieETSzBRzN6KyAgrTIyNaGFLILKSDcVbjmCVtGpV77p69XBZqV/k8RThBE7hHDy4gTrcQwOaQIDDC7zCm/PsvDsfzue8teDkM8ewAOfrF0n7ln4=</latexit>

h2

…
Layer Parameters at t=11.5

…
Layer Parameters at t=0

…
Layer Parameters at t=2

=

(3) Linear Interpolation

<latexit sha1_base64="59uatFpV0OITdnb39ETudipALAk=">AAACDHicbVDLSsNAFJ3UV62vaJduBoviqiT1vSu4cVnB2kITymQ6aYfOTMLMRAghv+AvuNW9O3HrP7j1S5y2WdjWAxcO59zLuZwgZlRpx/m2Siura+sb5c3K1vbO7p69f/CookRi0sYRi2Q3QIowKkhbU81IN5YE8YCRTjC+nfidJyIVjcSDTmPiczQUNKQYaSP17aoXSoQz9ybPGme5pyknqm/XnLozBVwmbkFqoECrb/94gwgnnAiNGVKq5zqx9jMkNcWM5BUvUSRGeIyGpGeoQCbEz6bP5/DYKAMYRtKM0HCq/r3IEFcq5YHZ5EiP1KI3Ef/zeokOr/2MijjRROBZUJgwqCM4aQIOqCRYs9QQhCU1v0I8QqYNbfqaSwl4XjGluIsVLJPHRt29rF/cn9eaJ0U9ZXAIjsApcMEVaII70AJtgEEKXsAreLOerXfrw/qcrZas4qYK5mB9/QIGnJsy</latexit>

19

23
⇥

<latexit sha1_base64="2vRVkxXImfj9IleaB1smm1WH2zQ=">AAAB/HicbVA9SwNBEJ2LXzF+RS1tFoMSm3AX/GqEgI1lBM8EkiPsbfaSJbt7x+6eEEL8C7ba24mt/8XWX+ImucIkPhh4vDfDzLww4Uwb1/12ciura+sb+c3C1vbO7l5x/+BRx6ki1Ccxj1UzxJpyJqlvmOG0mSiKRchpIxzcTvzGE1WaxfLBDBMaCNyTLGIEGyv59XL17KZTLLkVdwq0TLyMlCBDvVP8aXdjkgoqDeFY65bnJiYYYWUY4XRcaKeaJpgMcI+2LJVYUB2MpseO0YlVuiiKlS1p0FT9OzHCQuuhCG2nwKavF72J+J/XSk10HYyYTFJDJZktilKOTIwmn6MuU5QYPrQEE8XsrYj0scLE2HzmtoRiXLCheIsRLJPHasW7rFzcn5dqp1k8eTiCYyiDB1dQgzuogw8EGLzAK7w5z8678+F8zlpzTjZzCHNwvn4BlXiUUA==</latexit>

P (2) =

<latexit sha1_base64="NYQ8Mx9Qcx3XmG3b7bJWFjo5IPc=">AAACC3icbVC7TsMwFHXKq5RXKCOLRQViqpJSHmMlFsYi0YfURJXjOq1V24lsB1FF+QR+gRV2NsTKR7DyJbhtBtpypCsdnXOvztUJYkaVdpxvq7C2vrG5Vdwu7ezu7R/Yh+W2ihKJSQtHLJLdACnCqCAtTTUj3VgSxANGOsH4dup3HolUNBIPehITn6OhoCHFSBupb5e9UCKc1rO0dpF5mnKi+nbFqTozwFXi5qQCcjT79o83iHDCidCYIaV6rhNrP0VSU8xIVvISRWKEx2hIeoYKZEL8dPZ7Bk+NMoBhJM0IDWfq34sUcaUmPDCbHOmRWvam4n9eL9HhjZ9SESeaCDwPChMGdQSnRcABlQRrNjEEYUnNrxCPkClDm7oWUgKelUwp7nIFq6Rdq7pX1cv7eqVxltdTBMfgBJwDF1yDBrgDTdACGDyBF/AK3qxn6936sD7nqwUrvzkCC7C+fgGHKpry</latexit>

4

23
⇥

+t=2

<latexit sha1_base64="tUNsxLj8q+Tzl20EFVUKJwXrhGo=">AAAB+3icdVDLSsNAFJ3UV62vqks3g0WoLkLSNG3dFdy4rGAf0IYymU7boTNJmJkIJeQX3Orenbj1Y9z6JU7aClb0wIXDOfdy7z1+xKhUlvVh5DY2t7Z38ruFvf2Dw6Pi8UlHhrHApI1DFoqejyRhNCBtRRUjvUgQxH1Guv7sJvO7D0RIGgb3ah4Rj6NJQMcUI5VJrXLlclgsWabrNOp1G1qmU3OdqquJ7VSdxjW0TWuBElihNSx+DkYhjjkJFGZIyr5tRcpLkFAUM5IWBrEkEcIzNCF9TQPEifSSxa0pvNDKCI5DoStQcKH+nEgQl3LOfd3JkZrK314m/uX1YzVueAkNoliRAC8XjWMGVQizx+GICoIVm2uCsKD6VoinSCCsdDxrW3yeFnQo35/D/0mnYto1072rlppXq3jy4AycgzKwQR00wS1ogTbAYAoewRN4NlLjxXg13patOWM1cwrWYLx/AZDzlGI=</latexit>

P (2)

(1) (4)

<latexit sha1_base64="B5H2+xy8IrBvg5zfKcfT91zlMWE=">AAAB/3icdVDLSsNAFJ3UV62vqks3g0UQF2HSNo3LghuXFWwttKFMppN26EwSZiZCCVn4C251707c+ilu/RKnD8GKHrhwOOde7r0nSDhTGqEPq7C2vrG5Vdwu7ezu7R+UD486Kk4loW0S81h2A6woZxFta6Y57SaSYhFwehdMrmb+3T2VisXRrZ4m1Bd4FLGQEayN1O0HIhvng9qgXEG213Bc5EJkV5Hn1ZEhqOrWnBp0bDRHBSzRGpQ/+8OYpIJGmnCsVM9BifYzLDUjnOalfqpogskEj2jP0AgLqvxsfm8Oz4wyhGEsTUUaztWfExkWSk1FYDoF1mP125uJf3m9VIeXfsaiJNU0IotFYcqhjuHseThkkhLNp4ZgIpm5FZIxlphoE9HKlkDkJRPK9+fwf9Kp2k7Ddm/qlebFMp4iOAGn4Bw4wANNcA1aoA0I4OARPIFn68F6sV6tt0VrwVrOHIMVWO9fo4CWuQ==</latexit>

h3

Figure 3: An illustration of our partially-shared model.
The example shows how a model with number of layers
L = 24, step size s = 1 and n = 3 sets of parameters
determines the layer parameters for t = 2.

∥h̃T − hT ∥ ≤ K(1 + β∗)s, (5)

where β∗ is the largest scaling factor used across
all the layers, and K is a constant determined by
the model parameters. This inequality indicates
that the difference between h̃T and hT is bounded
to the magnitude of the largest scaled-up step size
β∗s employed during inference. Assuming that the
value of K is approximately the same for models
pre-trained with different step scales, then when
the step sizes are scaled up by the same factors,
the model pre-trained with a smaller s produces a
final approximated hidden state that is closer to the
hidden state obtained using its original step size.

Empirically, we will show in Section 4.3 that
PSPLMs pre-trained with a reasonably small step
size can achieve improved performance when re-
ducing the number of iterations during inference.

3.3 Generalizing to Partially-Shared PLMs
Shared-parameter models employ the same set of
parameters to parameterize the derivative at differ-
ent discrete time steps during training. This prop-
erty offers the models the ability to generalize from
discrete time to continuous time during inference
(Eq. 4). On the other hand, unshared models use
distinct parameters to parameterize the derivative
at each discrete time step, making it challenging to
apply a continuous scaling factor β to the step size
during inference. For instance, if we use β0 = 1.3
and s = 1, the model would need to provide the
derivative at t = 1.3 at the next iteration, which is
unattainable as the unshared model can only pro-
vide the derivative at t = 1 using layer 2 or at t = 2
using layer 3, but not at any intermediate time.

However, we will demonstrate that pre-training a
partially-shared PLM with time-dependent parame-

11054

ters represented by a piece-wise linear function can
enhance the model’s capabilities while benefiting
from the accleration method we introduce in Sec-
tion 3.1. Given a language model with L layers
and step size s, and n (2 ≤ n ≤ L) sets of layer
parameters, denoted as θ = {θ0, θ1, ..., θn−1}, we
uniformly position the n sets of parameters within
the range from 0 to (L − 1)s, with each interval
spanning ∆ = (L− 1)s/(n− 1).

To determine the parameters at a specific time,
denoted as t, we define the function P (t) that re-
turns the parameters at time t. We first identify the
left and right boundary indices of the interval in
which t resides, denoted as l and r, respectively.
Subsequently, we perform linear interpolation be-
tween θl and θr to obtain the parameters at time t.
P (t) can be formally written as:

∆ =
(L− 1)s

n− 1
, l = ⌊ t

∆
⌋, r = ⌈ t

∆
⌉,

P (t) = θl +
t− l∆

∆
(θr − θl). (6)

Fig. 3 shows an example of this process. The model
is referred to as partially-shared since it does not
share all layer parameters; instead, it shares a set
of parameters and uses interpolation to obtain the
parameters at different time. Notably, when n =
L, it becomes the unshared model, and the fully-
shared model is a special case if we allow n = 1.

By learning to use linear interpolation to derive
parameters for different time steps during training,
the model can naturally generalize to the continu-
ous domain and provide derivatives for any time
step during inference. We will demonstrate at Sec-
tion 4.4 that these partially-shared PLMs exhibit
notable advantages, including better or compara-
ble performance to their unshared counterparts, as
well as the ability to enable accelerated inference
through a scaled-up step size.

4 Experiments and Analyses

4.1 Experimental Setups
We investigate the effectiveness of our suggested in-
ference acceleration technique on both autoregres-
sive and autoencoding models. Specifically, we pre-
train GPT-2large models and pre-norm BERTlarge
models both with shared parameters under diverse
settings, as elucidated in the subsequent sections.
All GPT-2 models are pre-trained on the OpenWeb-
Text dataset (Radford et al., 2019), and all BERT
models are pre-trained on the Pile dataset (Gao

et al., 2021). Detailed information on hyper-
parameters and pre-training configurations can be
found in Appendix D. It is important to mention
that while we exclusively focus on parameter shar-
ing among layers, our proposed method can be
seamlessly incorporated alongside other parameter-
reduction techniques such as embedding factoriza-
tion used in ALBERT.

For downstream task evaluation, we measure the
zero-shot perplexity (PPL) on Wikitext-103 (Mer-
ity et al., 2017), and zero-shot accuracy on LAM-
BADA (Paperno et al., 2016) for GPT-2 models.
And as for BERT models, they are fine-tuned
on different tasks including MNLI, SST-2 (Wang
et al., 2019), RACE (Lai et al., 2017), SQuAD
and SQuAD2.0 (Rajpurkar et al., 2016) separately.
Configuration details and metrics for these down-
stream tasks can be found in Appendix E. Dur-
ing the inference, we experiment with different
iteration counts and for each count, we perform a
minimal search on the β for each layer within the
set {1.0, 1.1, . . . , 3.0} using Optuna (Akiba et al.,
2019), and report the best results. Unless explicitly
stated otherwise, both BERT and GPT-2 models
mentioned hereafter are parameter-shared.

4.2 Inherent Highways: Scaling Up Step Sizes

As described in Section 3.1, from the perspective
of ODEs, we can naturally accelerate PSPLMs by
increasing the step sizes. In other words, there
may be inherent highways in PSPLMs, and we
may utilize them by increasing the step size and
decreasing the number of iterations.

To validate the presence of these inherent high-
ways in PSPLMs, we pre-train GPT-2large and
BERTlarge models under the conventional setting
(i.e., s = 1), and evaluate their inference perfor-
mance on a variety of downstream tasks with differ-
ent iteration counts and step sizes. The results are
shown in Table 1. Additionally, we compute rela-
tive changes in performances for reduced iterations
as preduced−porig

porig
, where p represents the performance,

and we report these values in parentheses.
Our experimental results reveal that a clever re-

duction in the iteration count presents an oppor-
tunity for substantial computational savings while
maintaining most of the model performance. When
the iteration count decreases from 24 to 20, the
performance impact across all datasets is virtually
negligible. For BERT, variations in performance
are consistently contained within a margin of ±

11055

BERT GPT-2
#Iters Speed MNLI↑ SST-2↑ RACE↑ SQuAD↑ SQuAD2↑ Speed Wiki-103↓ LAMBADA↑
24 1.00x 83.6 91.1 64.3 90.2 81.5 1.00x 33.0 31.1
20 1.20x 83.6 (+0.0%) 90.8 (-0.3%) 64.1 (-0.3%) 90.0 (-0.2%) 81.5 (+0.0%) 1.16x 33.5 (+1.4%) 29.6 (-5.0%)
16 1.47x 83.3 (-0.4%) 90.9 (-0.1%) 62.9 (-2.2%) 89.3 (-1.0%) 80.3 (-1.5%) 1.40x 35.3 (+7.0%) 30.9 (-0.8%)
12 1.92x 81.1 (-3.0%) 90.4 (-0.8%) 59.4 (-7.7%) 83.0 (-8.0%) 65.0 (-20.2%) 1.77x 105.1 (+218.4%) 5.3 (-83.1%)

Table 1: Inference performance of PSPLMs pre-trained with step size 1. Values in parentheses indicates relative
change from non-reduced iteration counts. Speed reflects the acceleration of the forward pass wallclock time.

0.3% across all tasks. Simultaneously, the GPT-2
model shows only a slight increase in perplexity
on Wikitext-103 from 33.0 to 33.5. Even with a
further reduction in iteration count to 16, the mod-
els continue to deliver respectable performance.
For BERT, the majority of tasks report a minimal
performance decrease, with the highest decrease
appearing in the RACE task at -2.2%. For GPT-2
model, although the perplexity on Wikitext-103 in-
creases to 35.3 and the accuracy on LAMBADA
decreases to 30.9, the performance still stays within
an acceptable range.

Overall, these results suggest that the step size
per iteration can be scaled up and leads to a re-
duction in the number of iterations in conventional
PSPLMs without a significant compromise on per-
formance. In essence, our approach enables a com-
putational reduction by approximately 1/3 to 1/6.
However, further reductions in iteration does result
in performance degration, which can be addressed
in the subsequent section.

4.3 Acceleration Boost: Mini-Step Pretraining

In Section 3.2, we posited that pre-training
PSPLMs with small step sizes may make the mod-
els more conducive to acceleration during the infer-
ence. This section provides empirical validation of
these theoretical insights.

4.3.1 Performance Across Downstream Tasks
For a fair comparison, we maintain identical pre-
training configurations and data and train 4 models
with step size 1, 0.1, 0.05, and 0.01 respectively.
The performance is presented in Fig. 4, where we
have several noteworthy observations:

Small step sizes do not detrimentally affect
performance within a reasonable range. We first
look at the performances when the iteration count
is not reduced (24 in the figures). BERT mod-
els pretrained with smaller step sizes demonstrate
comparable, and in some instances superior, perfor-
mance on various downstream tasks in comparison
to the conventionally pretrained BERT. The only
exception is the MNLI task, where the latter model

performs marginally better. However, it should still
be noted that extremely small step size of 0.01 still
negatively impacts the model’s performance across
all tasks. But overall, a reasonably small step size
does not impact the model’s capacity.

Small step sizes enhance performance reten-
tion when reducing the iteration count. Looking
at the performance at 12 iterations across models
with varying step sizes, as expected, we generally
observed a decline in comparison to the perfor-
mance attained at 24 iterations. However, models
with smaller step sizes exhibit remarkably better
performance retention. Particularly noteworthy is
GPT models pretrained with small step sizes, as
they exhibit a significantly better zero-shot per-
formance retention on both the LAMBADA and
Wikitext-103 tasks. Notably, as we do not inro-
duce any additional computational overhead, the
speedups of BERT and GPT are the same as those
reported in Table 1, which is almost linear to the
reduced number of iteration, while the performance
retention is significantly improved.

Reducing iteration count enhances perfor-
mance on certain datasets. This finding aligns
with observations made in earlier studies on early
exits, suggesting that preventing models from over-
thinking can enhance both accuracy and robust-
ness (Zhou et al., 2020; Balagansky and Gavrilov,
2022). However, unlike these previous studies, our
approach demonstrates that we can effectively and
easily prevent overthinking for models pretrained
with smaller step sizes without auxiliary modules.

4.3.2 Analyzing the Possible Mechanism
We further explore why models pretrained with a
small step size result in PSPLMs that are more effi-
ciently accelerated during inference. Our analysis
reveals two main advantages for models pretrained
with smaller step sizes:

Reduced absolute and relative difference
when the iteration count is decreased. We de-
crease the iteration count for all models to 20, 16,
and 12, use the searched step scales and calculate
the absolute difference, denoted as ∥hT − h̃T ∥,

11056

12 14 16 18 20 22 24
#Interations in Inference

81.0

81.5

82.0

82.5

83.0

83.5

84.0

Pe
rp

le
xi

ty

Step Size
1
0.1
0.05
0.01

(a) MNLI

12 14 16 18 20 22 24
#Interations in Inference

90.0

90.5

91.0

91.5

92.0

92.5

Pe
rp

le
xi

ty

Step Size
1
0.1
0.05
0.01

(b) SST-2

12 14 16 18 20 22 24
#Interations in Inference

60

62

64

66

68

70

Pe
rp

le
xi

ty

Step Size
1
0.1
0.05
0.01

(c) RACE

12 14 16 18 20 22 24
#Interations in Inference

83

84

85

86

87

88

89

90

F1
 S

co
re

Step Size
1
0.1
0.05
0.01

(d) SQuAD

12 14 16 18 20 22 24
#Interations in Inference

65.0

67.5

70.0

72.5

75.0

77.5

80.0

F1
 S

co
re

Step Size
1
0.1
0.05
0.01

(e) SQuAD2.0

12 14 16 18 20 22 24
#Interations in Inference

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

 (%
)

Step Size
1
0.1
0.05
0.01

(f) LAMBADA

12 14 16 18 20 22 24
#Interations in Inference

30

40

50

60

70

80

90

100

Pe
rp

le
xi

ty

Step Size
1
0.1
0.05
0.01

(g) Wikitext-103

Figure 4: The inference performance of parameter-shared models pre-trained with different step size. (a-e) The
accuracy of BERT on MNLI, SST-2 and RACE, and F1 score on SQuAD and SQuAD2.0. (f-g) The zero-shot
accuracy of GPT-2 on LAMBADA, and the zero-shot perplexity of GPT-2 on Wikitext-103.

and the relative difference, expressed as ∥hT −
h̃T ∥/∥hT ∥. Here we keep the notations consistant
with Eq. 5. These values represent the difference
between the approximated and the original final
hidden states.

As demonstrated in Fig. 10, the final hidden state
approximation from a model pre-trained with a
smaller step size presents a closer resemblance to
the original final hidden state, both in terms of ab-
solute and relative difference. These observations
suggest that when the number of iterations is de-
creased, models pre-trained with smaller step sizes
could yield results that align more closely with
those from models with unreduced iterations on
most tasks, thereby better preserving performance.

Enhanced smoothness in the vector field. To
further our analysis, we compute the cosine sim-
ilarity between the derivatives f(x) produced by
the model at two consecutive iterations, denoted as
CosSim (f(hi), f(hi−1)) , i ∈ 1, 2, . . . , 23. The
results are plotted in Fig. 5.

Figs. 5 and 8 reveal an increasing trend of co-
sine similarity as the layer index increases, with
smaller step size generally resulting in higher co-
sine similarity in the early layers. Although a step
size of 0.1 also appears to have lower similarities
for the first few layers, there is a swift increase as
the layer index increases. The cosine similarities
for step sizes of 0.01 and 0.05 consistently remain

over 0.8 across all layers, suggesting an almost par-
allel alignment of the derivatives at different time,
that is, a smoother vector field. In other words,
the paths from the input embedding to the final
output are more "straight" for models pre-trained
with small step size, thus allowing us to reduce the
number of iteration and enlarge the step size during
inference.

4.4 Expanding Horizons: Partial Sharing

In this section, we pre-train partially-shared PLMs,
and apply our method described in Section 3.3 to
them. This experimental validation substantiates
the possibility of inference acceleration in more
complex, partially-shared, and even unshared mod-
els.

For BERTlarge and GPT-2large, we conduct pre-
training with n = 12 sets of parameters and step
sizes of 0.1 and 0.05, respectively. We establish
baselines by pre-training unshared BERT and GPT
models using the equivalent configurations, except
that the total number of layers is set to 12. This en-
sured the same number of parameters between our
partially-shared models and the baseline models.

The results of downstream tasks are illustrated
in Figs. 6 and 9. The unshared model performance
is represented by the red dashed line in each figure.
As anticipated, partially-shared models, benefiting
from the increased number of parameters, signifi-

11057

0 5 10 15 20
Layer Index

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e

Si
m

ila
rit

y

Step Size
1.0
0.1
0.05
0.01

(a) MNLI

0 5 10 15 20
Layer Index

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Step Size
1.0
0.1
0.05
0.01

(b) RACE

0 5 10 15 20
Layer Index

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Step Size
1.0
0.1
0.05
0.01

(c) LAMBADA

0 5 10 15 20
Layer Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

Step Size
1.0
0.1
0.05
0.01

(d) Wikitext-103

Figure 5: The cosine similarity between the derivatives given by the model at two consecutive iterations.

12 14 16 18 20 22 24
#Interations in Inference

83.0

83.5

84.0

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

 (%
)

Step Size
0.1
0.05

(a) MNLI

12 14 16 18 20 22 24
#Interations in Inference

65

66

67

68

69

70

71

72

Ac
cu

ra
cy

 (%
)

Step Size
0.1
0.05

(b) RACE

12 14 16 18 20 22 24
#Interations in Inference

0.30

0.32

0.34

0.36

0.38

0.40

Ac
cu

ra
cy

 (%
)

Step Size
0.1
0.05

(c) LAMBADA

12 14 16 18 20 22 24
#Interations in Inference

22

24

26

28

30

32

34

36

38

Pe
rp

le
xi

ty

Step Size
0.1
0.05

(d) Wikitext-103

Figure 6: The inference performance of partially parameter-shared models with n = 12 sets parameters. The red
dashed line represents the performance of the unshared 12 layer model.

cantly outperform those fully-shared counterparts
in Section 4.3. Furthermore, because they have a
larger iteration count, they outperform unshared
models with the same parameter count. The results
show the feasibility of pre-training partially-shared
PLMs via linear parameter interpolation.

Our focus, however, is on the performance post
reduction in iteration count. At 14 iterations, BERT
pre-trained with a step size of 0.1 either surpasses
or matches the unshared 12-layer baseline across
all tasks. However, when the iteration count is
further decreased to 12, a performance drop is
observed, making it marginally underperform the
baseline. Nonetheless, it still achieves over 98%
of the baseline performance in most tasks. As for
GPT, the model pre-trained with a step size of 0.05
exhibits impressive performance retention on LAM-
BADA across all iteration counts, consistently beat-
ing the unshared baseline. Although perplexity
on Wikitext-103 rises with reduced iterations, it
remains at an acceptable level.

It is crucial to underline that this iteration reduc-
tion is achieved without additional training post
pre-training and fine-tuning. While the partially-
shared model may lag behind the unshared baseline
in some tasks post-reduction, it stays competitive,
which is a non-trivial achievement considering that
we merely increased the step size during inference.

10 12 14 16 18 20 22 24
Average Inference #Iterations

83.5

84.0

84.5

85.0

85.5

86.0

Ac
cu

ra
cy

Total Iterations
 24
 20
 16

Figure 7: Performance of early-exit BERT on MNLI.
The black dashed line represents partially-shared BERT
pre-trained with s = 0.1, while the red dashed line
denotes the unshared 12-layer BERT.

We have also tried the n = 24 setting, which
is equivalent to the unshared 24-layer model, the
performance retention is satisfactory when the scal-
ing factors are integers. We place the results and
analysis in Appendix G.

4.5 Rapid Inference: Early Exit Integration
This section aims to demonstrate the potential for
combining our approach with the early exit tech-
nique to further enhance model performance under
reduced iteration counts. We adopt the strategy em-
ployed by DeeBERT (Xin et al., 2020), in which
internal classifiers are trained at every layer of a
frozen, fine-tuned BERT model to predict the fi-
nal label. Similarily, we train classifiers on the
partially-shared BERT that has been pre-trained

11058

with s = 0.1. See Appendix F for more details.
Initially, we conduct a step scale search for the

model at 24, 20, and 16 iterations, as we have
done in Section 4.4. Subsequently, classifiers are
trained on these models with their respective it-
eration counts and searched step scales. During
inference, the entropy of the prediction distribu-
tion at each layer guide the decision to halt. By
adjusting the entropy thresholds, we can manage
the trade-off between performance and efficiency.

The results are presented in Fig. 7. Evidently,
when the DeeBERT technique is applied to mod-
els with reduced iteration counts of 16 and 20, it
succeeds in outperforming the unshared 12-layer
model under the equivalent computational budget.
This finding indicates that the early exit strategy
and reduction of iteration count using large step
scales are indeed synergistic. Their integration ef-
fectively bolsters performance retention, yielding a
remarkable inference acceleration.

5 Related Work

PSPLMs. The increasing size and memory us-
age of PLMs have prompted research efforts fo-
cused on parameter sharing in these models. Sev-
eral approaches have been proposed, demonstrating
the potential to maintain comparable performance
while significantly reducing the model size. Uni-
versal Transformers (Dehghani et al., 2019) and
ALBERT (Lan et al., 2020) share parameters across
all layers. Takase and Kiyono (2021) propose to
share parameters for every two consecutive lay-
ers or share layer parameters cyclically, while Xue
et al. (2022) propose to share all layer parameters
except bias terms and layer normalization mod-
ules. These advanced strategies enhance model
capacity at the cost of increased parameter number.
However, none of these methods reduce the com-
putational cost during inference: the computations
required for the inference of shared and unshared
PLMs are still identical.

Early Exit. The efficiency of inference in PLMs
has become a significant concern for deployment,
leading to extensive research efforts focused on in-
ference acceleration. Early exit techniques aim to
terminate the inference process in early layers and
bear close relevance to our work. Many early exit
methods necessitate an internal classifier to be ap-
plied to the intermediate hidden states of the early
layers, thus requiring joint training with the PLMs
themselves (Zhou et al., 2020; Wang et al., 2022),

or training as a separate stage with the PLMs held
frozen (Xin et al., 2020; Liu et al., 2020). Our
method distinguishes itself by reducing the number
of layers during inference without the need for an
additional classifier that requires training. Also,
our method is complementary to early exit tech-
nique, and can be jointly leveraged to accelerate
the inference.

Neural ODEs. The connection between resid-
ual networks and ordinary differential equations
has been extensively explored in prior research (E,
2017), where different designs of residual networks
can be linked to diverse numerical discretizations
of ODEs (Chen et al., 2018; Lu et al., 2018). Neu-
ral ODEs extend the concept of residual networks
to continuous-depth architectures. In our work, we
build upon the ODE perspective of residual net-
works and propose to accelerate the PSPLMs by
increasing step size, and from the error analysis of
Euler’s method, we propose a simple pre-training
technique to enable further inference acceleration.

Hyper-Networks. We adopt the linear interpola-
tion of a piece-wise linear function as parameters
for different layers to build partially-shared PLMs.
This bears resemblance to hypernetworks (Ha et al.,
2017), where the parameters of a neural network
are generated by a specific function or another
neural network. The parameterization of model
parameters in a hypernetwork style has found
wide application in various domains, including
neural architecture search (Brock et al., 2018),
meta-learning (Requeima et al., 2019), and neu-
ral ODEs (Chen et al., 2018).

6 Conclusion

In this study, we draw inspiration from the ODE
perspective on residual networks. Our research pro-
poses straightforward strategies to expedite the in-
ference process for both fully and partially-shared
PLMs. The results of our work reveal that PSPLMs
can not only reduce the storage and memory costs,
but also reduce the time costs. Furthermore, when
our approach is coupled with the early exit tech-
nique, the partially-shared PLMs demonstrate su-
perior performance compared to unshared models
under the same computational budget. We believe
that our methodology harbors substantial poten-
tial, particularly in the acceleration of inference in
unshared PLMs - a promising avenue for future
research. We anticipate the extension of our tech-

11059

niques to the acceleration of large language models
encompassing billions of parameters, and look for-
ward to further explorations in this field.

Acknowledgements

This work is supported by the National Key
R&D Program of China (No.2022ZD0116312), Na-
tional Natural Science Foundation of China (No.
62236004) and Institute Guo Qiang at Tsinghua
University.

Author Contribution

In the preparation and discussion of the project,
Weize Chen, Xiaoyue Xu, Yankai Lin designed the
algorithm. Weize Chen and Xiaoyue Xu wrote the
code and conducted the experiments. Weize Chen
and Xiaoyue Xu wrote the initial draft. Xu Han,
Yankai Lin, Ruobing Xie, and Zhiyuan Liu signif-
icantly edited and improved the paper. Maosong
Sun and Jie Zhou provided valuable advice to the
research.

Limitations

The effect of a larger step size on model’s infer-
ence performance could vary across different mod-
els and tasks. Although we have tried to include
different types of downstream tasks and different
types of models to show the generalizability of our
method, it could still fail on some certain situations.
Morevoer, while we show that our method can be
applied to partially-shared PLMs, its effectiveness
in accelerating unshared PLMs remains to be fur-
ther explored. We have only conducted some basic
experiments on the unshared model to show the
potential of the method. Further research is needed
to determine if and how our method can be adapted
for unshared models.

Ethics Statement

This work focuses on the acceleration of inference
in PSPLMs. While our research does not directly
involve human subjects or sensitive data, it does
have implications for the broader use of these mod-
els in society. The primary potential ethical impact
of our work involves the expanded use of PLMs.
By providing methods for accelerating PSPLMs,
we may enable wider deployment of these models,
including in contexts with limited computational
resources. While this has potential benefits, such as
increased accessibility to advanced language pro-
cessing technology, it may also have unintended

consequences. For example, accelerated PLMs
may be used to produce fake text more efficiently,
potentially contributing to misinformation or fraud.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 2623–2631. ACM.

Nikita Balagansky and Daniil Gavrilov. 2022. PAL-
BERT: teaching ALBERT to ponder. In NeurIPS.

Andrew Brock, Theodore Lim, James M. Ritchie, and
Nick Weston. 2018. SMASH: one-shot model archi-
tecture search through hypernetworks. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David Duvenaud. 2018. Neural ordinary differen-
tial equations. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages
6572–6583.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben

11060

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
http://papers.nips.cc/paper_files/paper/2022/hash/5a9c1af5f76da0bd37903b6f23e96c74-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5a9c1af5f76da0bd37903b6f23e96c74-Abstract-Conference.html
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Weinan E. 2017. A proposal on machine learning via
dynamical systems. Communications in Mathemat-
ics and Statistics, 5(1):1–11.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017.
Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard H. Hovy. 2017. RACE: large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017,
pages 785–794. Association for Computational Lin-
guistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 6035–6044. Associa-
tion for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong.
2018. Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equa-
tions. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Re-
search, pages 3282–3291. PMLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale
language model training on GPU clusters using
megatron-lm. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2021, St. Louis, Missouri, USA, Novem-
ber 14-19, 2021, page 58. ACM.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. The Association for Computer Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

11061

https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s40304-017-0103-z
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.18653/v1/d17-1082
https://doi.org/10.18653/v1/d17-1082
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://proceedings.mlr.press/v80/lu18d.html
http://proceedings.mlr.press/v80/lu18d.html
http://proceedings.mlr.press/v80/lu18d.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.18653/v1/p16-1144
https://doi.org/10.18653/v1/p16-1144
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

James Requeima, Jonathan Gordon, John Bronskill,
Sebastian Nowozin, and Richard E. Turner. 2019.
Fast and flexible multi-task classification using con-
ditional neural adaptive processes. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 7957–7968.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. In
NeurIPS.

Sho Takase and Shun Kiyono. 2021. Lessons on pa-
rameter sharing across layers in transformers. CoRR,
abs/2104.06022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and Ju-
lian J. McAuley. 2022. Skipbert: Efficient inference
with shallow layer skipping. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 7287–
7301. Association for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating BERT inference. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2246–2251. Association for Computa-
tional Linguistics.

Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong
Liu, and Yang You. 2022. Go wider instead of deeper.
In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pages 8779–
8787. AAAI Press.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J.
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

A Proof on Pre-Norm Transformer
Architecture as a Residual Network

To demonstrate that the pre-norm Transformer ar-
chitecture can be considered a residual network,
we will analyze the computation within each layer.
Let us consider the hidden state ht, and examine
the computation in the t-th layer of the pre-norm
transformer, which can be represented as follows:

xt = ATTt

(
LN1

t (ht)
)
+ ht, (7)

ht+1 = FFNt

(
LN2

t (xt)
)
+ xt. (8)

By substituting Eq. 7 into Eq. 8, we obtain:

ht+1 = ht + FFNt

(
LN2

t (xt)
)
+ ATTt

(
LN1

t (ht)
)

= ht + ft(ht).

Hence, we observe that the pre-norm Transformer
architecture functions as a residual network, where
each layer parameterizes the derivatives of the hid-
den states and updates the hidden states utilizing
Euler’s method.

B Proof on the Errors of Euler’s Method

Here we provide the proof in the case where the
dimension of state is 1 for simplicity. It can be
easily generalized to high-dimensional setting. At
time t0, we denote the real state of the ODE as
h(t0). The Euler’s method (or residual network)
approximates the real state at t1 = t0 + s as

ht1 = h(t0) + s · f (h(t0), t0) , (9)

here we move the notation of time t from the sub-
script (Eq. 3) into the parentheses to explicitly de-
note the dependency on time t.

The real state h(t1) can be expanded by using
the Taylor series expansion around t0:

11062

https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://proceedings.neurips.cc/paper/2019/hash/1138d90ef0a0848a542e57d1595f58ea-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1138d90ef0a0848a542e57d1595f58ea-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://arxiv.org/abs/2104.06022
http://arxiv.org/abs/2104.06022
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2022.acl-long.503
https://doi.org/10.18653/v1/2022.acl-long.503
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://ojs.aaai.org/index.php/AAAI/article/view/20858
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html

h(t1) = h(t0) + sh′(t0) +
s2

2
h′′(t̃0), (10)

where t̃0 is some number between t0 and t0 + s,
and h′(t0) = f(h(t0), t0).

Local Truncation Error. Now we derive the lo-
cal truncation error T of Euler’s method, which is
essentially the discrepancy between the real state
h(t1) and the one-step approximated state ht1 start
from h(t0). It is formally written as:

Tt1 = h(t1)− (h(t0) + s · f(h(t0), t0))

=
s2

2
h′′(t̃0). (11)

We can further derive the h′′(t0) by differentiating
h′(t0) = f(h(t0), t0):

h′′(t0) = fh(h(t0), t0)h
′(t0) + ft(h(t0), t0)

= fh(h(t0), t0)f(h(t0), t0) + ft(h(t0), t0).
(12)

Assume that f and its derivatives fh(h(t0), t0) and
ft(h(t0), t0) are all continuous and bounded, then
there exists a constant M so that

|h′′(t0)| ≤ M. (13)

Taking Eq. 13 into Eq. 11, then we can establish
the local truncation error of Euler’s method:

Tt1 ≤ M

2
s2. (14)

Since M is a constant, the local truncation error of
Euler’s method is of order O(s2), i.e., the square
of the step size.

Global Truncation Error. The global truncation
error is the accumulated error from initial time t0 to
final time T . To derive the global truncation error,
we first define eti = h(ti) − hti as the difference
between the real state h(ti) and approximated state
hti at time ti. Recall that we have

h(ti+1) = h(ti) + s · f(h(ti), ti) + Tti , (15)

hti+1 = hti + s · f(hti , ti), (16)

where Eq. 16 is the Euler’s method, and Eq. 15 is
the Euler’s method with local truncation error term.
Substracting Eq. 16 from Eq. 15, we have

eti+1 = eti + s(f(h(ti), ti)− f(hti , ti)) + Ti.
(17)

From Eq. 14, we have |Tti | ≤ M
2 s

2. By substitut-
ing it into Eq. 17 and applying the absolute value
inequality, we can see that

|eti+1 | ≤ |eti |+ s|f(h(ti), ti)− f(hti , ti)|

+
M

2
s2. (18)

Because the assumption of f and its derivative be-
ing continuous and bounded, according to the mean
value theorem, we have

f(h(ti), ti)− f(hti , ti) = fh(h
∗
ti , ti)eti , (19)

where h∗ti is some number between h(ti) and hti .
Since fh is bounded, we have

|f(h(ti), ti)− f(hti , ti)| ≤ R|eti |, (20)

where R is some constant. By substituting Eq. 20
into Eq. 18, we obtain the relation between the
errors of two consecutive steps:

|eti+1 | ≤ (1 + sR)|eti |+
M

2
s2. (21)

For simplicity, let C = (1 + sR). We can then
iterative apply the inequality starting from t = t0
and et0 = h(t0)− ht0 = 0 as

|et1 | ≤
M

2
s2,

|et2 | ≤ (1 + C)
M

2
s2,

...

|etn | ≤ (1 + C + · · ·+ Cn−1)
M

2
s2, (22)

and since (1 + C + · · · + Cn−1) = 1−Cn

1−C =
(1+Rs)n−1

Rs , we then obtain the error bound of the
approximated final result

|etn | ≤
(1 +Rs)n − 1

R

M

2
s

≤ eRns − 1

R

M

2
s

≤ eRT − 1

R

M

2
s (ns = T). (23)

Denoting K = eRT−1
R

M
2 , then the global trunca-

tion error is

|etn | ≤ Ks, (24)

which is of order O(s), i.e., linear to the step size.

11063

Hyper-Parameter Value

lr 1e-4
lr decay style linear
min lr 1e-5
iterations 300,000
batch size 1024
weight decay 0.01
warmup ratio 0.01
gradient norm 1.0
dropout 0.0

Table 2: Hyper-parameters for pre-training all the BERT
models in this work.

As for the difference between the final approx-
imated state h̃T obtained using larger step size β
and the state hT obtained using the original step
size s, since |eT | = |hT − h(T)| ≤ Ks and
|ẽT | = |h̃T − h(T)| ≤ Kβs, therefore we have

|h̃T − hT | =
∣∣∣
(
h̃T − h(T)

)
− (hT − h(T))

∣∣∣

=
∣∣∣h̃T − h(T)

∣∣∣+ |hT − h(T)| (25)

≤ K(1 + β)s. (26)

Therefore the difference between hT and h̃T is also
bounded, and is linear to step size s. When the step
size at different time is different, one can easily
derive that the global truncated error is bounded by
the largest step size β∗

|h̃T − hT | ≤ K(1 + β∗)s (27)

C Additional Figures for Section 4.3
and Section 4.4

Due to the length constraint, we place the addi-
tional plots for Section 4.3 at Figs. 8 and 10, and
plots for Section 4.4 at Fig. 9.

D Configurations for the Pre-training

We use Megatron-LM (Narayanan et al., 2021)
as the framework to pre-train our parameter-
shared BERT and GPT-2. The OpenWebText
dataset for pre-training GPT-2 is prepared fol-
lowing the instructions in Megatron-LM repos-
itory1, and the preparation of the Pile dataset
for pre-training BERT follows the instructions
in the Megatron-Deepspeed repository2. We use

1https://github.com/NVIDIA/Megatron-LM
2https://github.com/microsoft/

Megatron-DeepSpeed

Hyper-Parameter Value

lr 1e-4
lr decay style cosine
min lr 1e-5
iterations 300,000
batch size 512
weight decay 0.01
warmup ratio 0.01
gradient norm 1.0
dropout 0.1

Table 3: Hyper-parameters for pre-training all the GPT-
2 models in this work.

AdamW (Loshchilov and Hutter, 2019) as the opti-
mizer. The model configurations for our BERT and
GPT-2 are kept the same as BERTlarge and GPT-
2large respectively.

E Configurations for the Downstream
Tasks

We adopt the approach employed by Megatron-LM
framework for handling MNLI and RACE tasks.
For the classification tasks MNLI and SST-2, we
utilize the hidden state of the [CLS] token for clas-
sification and report accuracy on the development
set. In the RACE task, we predict the probability
of each answer using the [CLS] token’s representa-
tion and report test set accuracies. Regarding the
SQuAD v1.1 and v2.0 tasks, we adhere to BERT’s
training procedure, applying a span extraction loss,
and record the F1 score on the development set
using the official evaluation script3.

During fine-tuning BERT on all the downstream
tasks, we use the linear learning rate warmup and
decay schedule. The gradient norm is constrained
to 1.0. We apply a dropout rate of 0.1 and a weight
decay of 0.01. Further hyperparameter details are
documented in Table 4.

For GPT tasks, we adopt a zero-shot approach.
The performance on the LAMBADA task is as-
sessed using cloze accuracy, which involves pre-
dicting the last word (not the last token) based on
the preceding tokens. Performance on Wikitext-
103 is measured using the perplexity metric on the
test set.

3https://github.com/rajpurkar/SQuAD-explorer

11064

https://github.com/NVIDIA/Megatron-LM
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/rajpurkar/SQuAD-explorer

0 5 10 15 20
Layer Index

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Step Size
1.0
0.1
0.05
0.01

(a) SST-2

0 5 10 15 20
Layer Index

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Step Size
1.0
0.1
0.05
0.01

(b) SQuAD

0 5 10 15 20
Layer Index

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Step Size
1.0
0.1
0.05
0.01

(c) SQuAD2.0

Figure 8: The cosine similarity between the derivatives given by the model at two consecutive iterations.

12 14 16 18 20 22 24
#Interations in Inference

92.50

92.75

93.00

93.25

93.50

93.75

94.00

94.25

Ac
cu

ra
cy

 (%
)

Step Size
0.1
0.05

(a) SST-2

12 14 16 18 20 22 24
#Interations in Inference

87.5

88.0

88.5

89.0

89.5

90.0

90.5

91.0
F1

 S
co

re

Step Size
0.1
0.05

(b) SQuAD

12 14 16 18 20 22 24
#Interations in Inference

77

78

79

80

81

82

F1
 S

co
re

Step Size
0.1
0.05

(c) SQuAD2.0

Figure 9: The inference performance of partially-shared models with n = 12 sets parameters on SST-2, SQuAD
and SQuAD2.0. The red dashed line represents the performance of the unshared 12 layer model.

F Configurations for the Early Exit

We employ the methodology from DeeBERT (Xin
et al., 2020) for the early exit experiment. During
the training phase, we keep the BERT model and
the original classification head fixed and only train
the additional classifiers on each layer. The training
loss is computed as the sum of the losses from all
additional classifiers.

In the inference phase, we calculate the entropy
of the output logits at each layer. If the entropy
value falls below a predetermined threshold at a
layer, we halt the computation and take the predic-
tion at this layer as the final prediction. We record
the average number of iterations at the point of out-
put across all instances. The thresholds utilised in
this experiment are as follows: [0, 0.01, 0.05, 0.07,
0.1, 0.2, 0.3, 0.4, 0.5]. Higher thresholds induce an
earlier exit.

G Performance under n = 24 Setting

In this section, we extend our partially-shared
model to include n = 24 sets of parameters, which
renders it equivalent to an unshared 24-layer model.
The only difference is that we use the same initial-
ization for the 24 sets of parameters. This attempt
is only made on the GPT-2large model, and the cor-

responding results are presented in Table 5.
On close examination, we note a peculiar trend:

as the iteration count reduces from 24 to 12, the
zero-shot perplexity on the Wikitext-103 dataset
first increases, and then decreases. This anomaly
could be attributed to the model’s inability to learn
the usage of linear interpolation between the end-
point parameters for derivative calculation when
n = 24. That is, when n = 24, the linear interpola-
tion (Eq. 6) always returns the parameters on one
of the endpoint. Consequently, during the inference
phase, as we increase the step size, the parameters
derived through linear interpolation start deviating
from the parameters utilized by the model during
training. This divergence is potentially responsible
for a significant degradation in the model’s perfor-
mance.

Interestingly, when the scaling factor β for each
iteration is adjusted to 2 and the iteration count is
reduced to 12, the model yields a reasonable per-
formance. We hypothesize this is due to the fact
that when scaling factors are integers, the parame-
ters derived remain endpoint parameters, which the
model has been accustomed to handle during the
training phase. However, the experiment still high-
light the potential of our method when applying to
the unshared model.

11065

Hyper-Parameter MNLI SST-2 RACE SQuAD SQuAD2

Step Size = 1

lr 2e-05 1e-05 1e-05 3e-05 2e-05
epochs 5 5 5 3 5
batch size 64 32 16 32 32
warmup ratio 0.05 0.01 0.1 0.01 0.01

Step Size = 0.1

lr 1e-05 1e-05 2e-05 3e-05 2e-05
epochs 5 5 5 3 5
batch size 16 32 16 32 32
warmup ratio 0.1 0.1 0.05 0.1 0.1

Step Size = 0.05

lr 1e-05 3e-05 2e-05 3e-05 2e-05
epochs 5 5 5 3 5
batch size 16 32 32 32 16
warmup ratio 0.1 0.05 0.1 0.01 0.01

Step Size = 0.01

lr 4e-05 2e-05 3e-05 2e-05 3e-05
epochs 5 5 5 3 5
batch size 64 16 16 16 32
warmup ratio 0.05 0.01 0.01 0.05 0.01

Table 4: Hyper-parameters for downstream tasks with different step sizes.

#Iters PPL

24 19.74
20 34.67
16 168.68
14 77.21
12 57.93

Table 5: Zero-shot perplexity on Wikitext-103 of the
partially-shared model with n = 24.

11066

MNLI SST-2 RACE SQuAD SQuAD2 LAMBADA Wiki
Task

100

101

102

Ab
so

lu
te

 D
iff

er
en

ce

Step Size
1.0
0.1
0.05
0.01

(a) 12 Layer Absolute Difference

MNLI SST-2 RACE SQuAD SQuAD2 LAMBADA Wiki
Task

100

101

102

Ab
so

lu
te

 D
iff

er
en

ce

Step Size
1.0
0.1
0.05
0.01

(b) 16 Layer Absolute Difference

MNLI SST-2 RACE SQuAD SQuAD2 LAMBADA Wiki
Task

100

101

102

103

Ab
so

lu
te

 D
iff

er
en

ce

Step Size
1.0
0.1
0.05
0.01

(c) 20 Layer Absolute Difference

MNLI SST-2 RACE SQuAD SQuAD2 LAMBADA Wiki
Task

101

102

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

Step Size
1.0
0.1
0.05
0.01

(d) 12 Layer Relative Difference

MNLI SST-2 RACE SQuAD SQuAD2 LAMBADA Wiki
Task

101

102

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

Step Size
1.0
0.1
0.05
0.01

(e) 16 Layer Relative Difference

MNLI SST-2 RACE SQuAD SQuAD2 LAMBADA Wiki
Task

101

102

103

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

Step Size
1.0
0.1
0.05
0.01

(f) 20 Layer Relative Difference

Figure 10: The absolute and relative difference between the final hidden states obtained with 24 iterations and 12,
16, 20 iterations.

11067

