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Abstract

Grounding has been argued to be a crucial com-
ponent towards the development of more com-
plete and truly semantically competent artificial
intelligence systems. Literature has divided
into two camps: While some argue that ground-
ing allows for qualitatively different general-
izations, others believe it can be compensated
by mono-modal data quantity. Limited empiri-
cal evidence has emerged for or against either
position, which we argue is due to the method-
ological challenges that come with studying
grounding and its effects on NLP systems.

In this paper, we establish a methodological
framework for studying what the effects are—
if any—of providing models with richer in-
put sources than text-only. The crux of it lies
in the construction of comparable samples of
populations of models trained on different in-
put modalities, so that we can tease apart the
qualitative effects of different input sources
from quantifiable model performances. Experi-
ments using this framework reveal qualitative
differences in model behavior between cross-
modally grounded, cross-lingually grounded,
and ungrounded models, which we measure
both at a global dataset level as well as for spe-
cific word representations, depending on how
concrete their semantics is.

1 Introduction

Some researchers have explicitly argued that
achieving natural, human-like linguistic behavior
requires a richer input scheme than pure text, and
specifically that perceptual input is necessary. This
has been one of the arguments of the well-known
position paper on the inherent limitations of lan-
guage modeling (Bender and Koller, 2020). Luck-
ily, recent developments have prepared the ground
for empirical computational testing of this line of
argumentation: pretrained Transformer-based mod-
els have been adapted to handle different modali-
ties, ranging from natural language text to images,
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programming code, and to video game controls
(e.g., Reed et al., 2022; Ni et al., 2021; Huang
et al., 2021). These approaches to multimodal-
ity are often practically motivated: the initial re-
search question of Reed et al. (2022) is specifically
whether a single model can handle multiple types
of inputs, that of Shichman et al. (2023) is specifi-
cally whether pretrained language models could be
co-opted for human-robot instructions.

This research field is vibrant, and novel insights
have been plenty: To date, researchers have put
forth theoretical arguments that we expect qualita-
tive differences among models due to grounding,
and have demonstrated practical use-cases where
handling multiple types of inputs is desirable and
feasible. There is however a dearth of empirical
studies bridging the two: a dearth of studies assess-
ing whether, when it comes to language modeling,
grounding systematically yields different textual
predictions. In this paper, we therefore take one
step back and focus on what evidence there might
be that grounding leads to an observable qualita-
tive difference in model behavior, beyond the trivial
quantitative expectation that richer input might lead
to better downstream performance.

This sort of endeavor is difficult to set up, due to
interrelated confounding factors one is confronted
with. Firstly, data for different modalities tend to
not be easily comparable—images are after all rad-
ically different from text. As such it is difficult to
assess whether models trained on different modal-
ities are of similar quality—and therefore useful
points of comparison are hard to come by. Sec-
ondly, there is somewhat of a lack when it comes to
defining what reasonable expectations with respect
to grounding ought to be and how to measure them.

However, none of these hurdles are insurmount-
able, and in the present paper we propose a method-
ological framework for studying the effects of
grounding. This framework is built upon a dis-
tinction between two notions of grounding (section
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3.1): one weaker and one stronger, depending on
whether we can disentangle input representation
from task processing. On a more practical level,
we focus on multimodal and multilingual data, and
define a procedure to construct samples of models
so that they are broadly comparable. We apply this
approach to cross-lingually grounded (Tiedemann,
2018), cross-modally grounded, and ungrounded
models so as to better characterize how these dif-
ferent groups of models compare to and contrast
with each other.

Our experiments! demonstrate that access
to richer and more diverse inputs impacts
model behavior, even when factoring in model
performance—which we observe both on a global,
dataset-wide level and more narrowly with respect
to a lexicon of concrete and abstract words.

2 Related Work

The idea that language data alone do not suffice
to build full-fledged semantic representations has
been discussed by numerous philosophers, with
various areas of focus. One controversial land-
mark work is Searle (1980), which introduces a
thought experiment based on translation to argue
that systems that only ever deal with symbols can-
not gain understanding of their surroundings. Jack-
son (1982) discusses the need of perceptual input;
Harnad (1990) provides a thought experiment for
monolingual situations.

This line of thought has led to more modern
theory-focused approaches, i.e., NLP scientists try-
ing to repurpose the cognitive science concept of
grounding to make sense of the behavior of neu-
ral language models. One particular discourse-
provoking piece is that of Bender and Koller (2020),
which questions whether modern language models
can be expected to display some form of under-
standing despite lacking grounding. It is worth
echoing some remarks of Chandu et al. (2021),
who outline that, while cognitive science defines
grounding as establishing a common ground for
communication, the NLP community has adopted
a specific, more restricted definition of grounding
as linking concepts from different sources such as
text (single and multiple languages), images, video
and speech, and so on.

The opposite trend, viz. researchers interested
in perceptual information in human development

'Code and data for our experiments are available at
github.com/TimotheeMickus/vid-txt-diff.

using neural networks as models, also exist: see
for instance the work of Khorrami and Résénen
(2021); Nikolaus and Fourtassi (2021). A related
trend in computational semantics relates specific
aspects of meaning to situated information (Ebert
et al., 2022; Ghaffari and Krishnaswamy, 2023,
e.g.). We also refer the reader to the survey of
Chrupata (2022) on recent visually grounded mod-
els of spoken language from the NLP and cognitive
science communities.

The works cited above focus primarily on the-
oretical aspects of grounding; other works take a
more practical angle. These latter fall into two
broad categories: (i) works that probe for specific
aspects of grounding, e.g. Patel and Pavlick (2022);
Tenney et al. (2019); Hwang et al. (2021); and (ii)
works tackling engineering challenges and oppor-
tunities that come with systems handling multiple
channels of inputs (e.g., Reed et al., 2022; Ni et al.,
2021; Li et al., 2020; Jia et al., 2021; Kim et al.,
2021; Shichman et al., 2023). In recent years, most
research in this area has converged on Transformer-
based systems which align inputs from different
channels into a shared semantic space to enable
multimodal interaction.

Most research on grounding involves signal from
different modalities, most commonly text and im-
ages. Cross-lingual grounding, on the other hand,
is still an under-researched area, even though al-
ready Hjelmslev (1943) remarked on the usefulness
of bilingual lexicons to study fine-grained seman-
tic differences. The idea that cross-lingual stud-
ies could provide insights into semantics eventu-
ally informed practical applications, e.g. Dyvik
(2004) used translations as a source of semantic
information that can elucidate the relations be-
tween words that are hard to specify based on
a monolingual corpus. This idea also underlies
works that use multilingual corpora to automati-
cally construct language-specific WordNets (e.g.,
FiSer, 2009). More recently, Tiedemann (2018)
demonstrates how a model trained on a massively
multilingual corpus can give rise to an ‘interlin-
gua’ space that enables translation between lan-
guage pairs that are not in the training corpus, link-
ing cross-lingual grounding to another core con-
cept long studied in machine translation (Richens,
1956).

There is nonetheless an important difference be-
tween cross-modal and cross-lingual grounding:?

*We are indebted to an anomyous reviewer of this work
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While the former is generally understood as linking
symbols to non-symbolic external data such as per-
ceptual data, Tiedemann’s (2018) proposal slightly
alters the definition of grounding as possessing rep-
resentations that can “resolve language-internal
ambiguities” (§1). These two positions are not as
incompatible as one might initially think: For in-
stance Harnad (1990) does concede that symbolic
meaning can be derived from “[grounding] in a
first language and in real world experience and
knowledge" (§2.2). In that respect, Tiedemann’s
view can be understood as positing that the avail-
ability of a first language is already sufficient for
grounding, regardless of real world experience and
knowledge.

3 Methodology

3.1 Theoretical framework

We start by reframing the question of grounding
as follows: are agents that have access to richer
inputs functionally different? There are two ways
in which this could be the case.

The first case to consider is that functional differ-
ences can be accurately described solely in terms of
what input a model can receive. Under such a sce-
nario, it may sometimes be possible to factorize the
function implemented by a grounded model into
sub-functions g o f, where the first sub-function f
would map input data coming from different chan-
nels into a common semantic space, and the sec-
ond sub-function g would perform the model’s task
proper. This leads to a weaker notion of grounding,
where the effects of exposing a model to varied in-
put sources are limited to requiring the model to
learn a map between different input spaces.>

The second possibility is that the functional dif-
ferences cannot be subsumed to learning a mapping
from different input sources to a common repre-
sentational spaces, and that there is a non-trivial
processing to be done that is dependent on the spe-
cific input source. This therefore corresponds to a
stronger notion of grounding, whereby we assume
that the handling of an input of a given source can-
not be neatly disentangled from the processing of
the information it conveys—simply put, that there
are things that can be shown but not said.*

for this point.

3This is for instance explicitly the approach espoused by
interlingua-based approaches to machine translation.

“Note that in the case of cross-lingual grounding, this
would entail some form of linguistic relativism.

To clarify, we can reframe weak grounding as
simply satisfying that a system has a access to some
other modality, on top of the language it processes.
Any system with multiple input channels, in that
sense is weakly grounded. However, some of the
recent literature suggests grounded systems should
have further nontrivial properties than simply being
able to (meaningfully) process alternative modality
input: For instance, a properly grounded system
might be less likely to hallucinate about perceptu-
ally salient properties even if there is no informa-
tion about them in the specific input. These sup-
plementary properties are what we expect strong
grounding to capture. All strongly grounded sys-
tems are weakly grounded, but a system can be
weakly grounded without being strongly grounded.
As such, one of the questions we explore in the
paper is whether strong grounding, i.e. nontrivially
different language-only processing by grounded
systems, can be observed in a controlled setting.

3.2 Comparable tasks

Our intent is to ensure that whatever difference we
find can only be imputed to the different types of
inputs the models receive. As such, the first factor
for us to control is that of ensuring that our models
are exposed to comparable data.

We work on the Vatex dataset (Wang et al.,
2019), which contains video features, Chinese cap-
tions and English captions.’ Each datapoint corre-
sponds to one video, ten Chinese and ten English
captions.This allows us to define three tasks: a
captioning task (C), where we generate English
captions from video features, a translation task (T),
where we generate English captions from Chinese
captions, and a paraphrasing task (P) where we gen-
erate English captions from other English captions.

All three of these tasks have the same output
space, i.e., they all aim at generating English cap-
tions. We also ensure that the intrinsic ambiguity of
the examples is the same across tasks by selecting
only one English and Chinese captions per data-
point to serve as sources, and using all ten English
captions as possible targets. This ensures that the
three tasks are as comparable as possible, such that
the only factor to explain variation is the type of
input the models receive.

Owing to practical considerations, we re-split
the Vatex dataset. We use the official Vatex vali-

Shttps://eric-xw.github.io/vatex-website/
about.html
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dation set as a held out test set, since no labels are
made publicly available on the official test set. We
furthermore select 1000 datapoints from the official
training set to create a validation set.

3.3 Different implementations of grounding

As our interest lies in providing a better understand-
ing of the effects of cross-lingual and cross-modal
grounding, we consider three ways of combining
inputs and training models in these tasks. Figure 1
illustrates the different setups we use in this paper.

Single-task setups involve training models on
only one of the three tasks P, T, or C. Mod-
els trained in this fashion provide useful base-
lines against which to compare grounded mod-
els. We expect single-task models to shed some
light as to what differences we should expect sim-
ply due to the difference in inputs and modalities—
independently of proper grounding.

Multi-task setups involve training models such
that they can handle two or more of the tasks. As
such, a multi-task model trained on P and T can
either generate an English caption from another En-
glish caption, or generate an English caption from
a Chinese caption. Consistent with the focus of this
work, we only consider multi-task setups that in-
volve the P task: our interest lies in characterizing
the effects of adding input sources of other modal-
ities or languages, hence we take the P task as a
base case. These models are intended to be repre-
sentative of approaches such as Reed et al. (2022),
which are trained to handle varied input sources
using the same parameters. They will also prove
especially convenient for teasing apart evidence
for and against the stronger and weaker notions of
grounding we have outlined in Section 3.1, as we
can contrast the functional behavior of a single-task
model trained on P to that of multi-task model pre-
sented with P inputs. For notational convenience,
we denote a multi-task model trained with features
from tasks X and Y as a XVY model.

Multi-modal setups involve training models to
generate English captions using inputs from more
than one task at once. For instance, a multi-modal
model trained on P and C inputs will use as input
both an English caption and a video, and will use
both jointly to generate a novel English caption;
which we denote as a PAC model.® As previously,

*Whereas a P\VC multi-task model either makes a predic-
tion §j using a video as input or make a prediction ¢p using a
caption as input, a PAC multi-modal model uses both a video
and a caption as inputs to produce a single prediction §p,c -

we only consider multi-modal models that involve
P task inputs. These models provide an alternative
take on how to implement grounding, where we
attempt to enrich the environment that the model
has access to when making its predictions.

3.4 Comparable models

Having defined our tasks and how to combine
them, we now turn to the actual training of model
populations. All of these models are defined as
sequence-to-sequence models with Transformer de-
coders (Vaswani et al., 2017), and are trained with
Adafactor to generate English captions. So as to
ensure that models are strictly comparable, we rely
on pretrained encoder representations (namely the
3D convolutional segment-level video features pro-
vided with Vatex for C, vectors from bert-base
for P and from bert-base-chinese for T; Devlin
et al., 2019), and learn only decoder parameters.
This allows us to contrast models with the exact
same parameter counts and architecture, bypassing
concerns of how to properly account for the needs
of handling datapoints of different structure using
a single common architecture.

However, this approach introduces another con-
founding factor, namely the intrinsic quality of the
encoder representations. We have no strict guar-
antee that the Vatex video features and the BERT
embeddings capture their inputs equally accurately.
We respond to this concern by constructing samples
of models that we know to be of equal performance
a posteriori, by measuring their accuracy on a held-
out validation split. In practice, we greedily select
one model from each of the different groups we
wish to compare such that the selected models have
the most similar accuracy, and iteratively repeat
this greedy selection until a sample large enough
has been selected.’

So that we can ensure that our models display
various degrees of accuracy—and that we can there-
fore overcome any quality differential due to the
encoders—we consider two factors likely to impact
their performance. The first is simply the number of
training epochs: For each model that we train, we
save checkpoints after 5, 10, 15, 20 and 25 training
epochs; all checkpoints are then considered as dis-
tinct models when constructing comparable groups.

7As such, we can ensure that they maximize the p-value
on a Kruskal-Wallis H-test of accuracy scores where samples
correspond to the different groups we wish to compare. We
select samples of 40 models, which in our experiments always
guaranteed a p-value > 0.5 on a H-test.

11034



Single-task

Multi-task

Input spaces

P PvC PvCvT PvT

EN Video ZH captions
captions features captions Video Video 7H
features

EN captions EN captions EN captions

features captions
ZH

captions

Input spaces

EN

captions

Output space

Input spaces

P PAC PACAT PAT

EN EN Video EN Video ZH EN ZH
captions captions | features captions | features captions captions | captions

Multi-modal

Figure 1: Setups for training the models used in this study.

As we generally expect models from later epochs to
outperform models from earlier epochs, this allows
us to introduce more diverse models at no cost.

The second consists in adding Gaussian noise
to the encoder representations. We control the
strength of this noise by means of a scalar n €
{0,0.5,1,1.5}: we substitute every encoder repre-
sentation x with a noisy version X = x +nz where
z is a randomly sampled standard Gaussian vector
z ~ N(0,I). We expect that higher noise levels
n deteriorate the quality of the encoder representa-
tions, as subtler topological relations in the encoder
embedding space might be distorted.

We train models with 5 different seeds for each
level of noise n and training setup from Section 3.3.

3.5 Implementation details

All the decoders we train have 6 layers, 8 heads per
multihead sublayer, hidden dimensions of 512, and
latent feedforward dimensions of 2048, or approxi-
mately 64M parameters. For multi-modal models,
we also learn a simple linear projection for input
features, so as to allow the model to handle fea-
tures of varying dimensionality, component scale
and orientation across the different tasks; features
for all input spaces are then simply concatenated as
attention banks. Models optimize a cross entropy
loss, using AdaFactor (Shazeer and Stern, 2018)
and a batch size of 1024 over 25 epochs.

4 Difference in behavior

The first question we address is as follows: are we
justified in expecting that different input sources
should lead to qualitatively different predictions,
after having controlled for model accuracy? Re-

mark that in principle, we have no reason to expect
qualitatively different predictions from models that
reach equivalent accuracy: all of these models are
trained to predict the same outputs and are con-
fronted to equally ambiguous inputs.

To answer this, we construct three samples of
models to compare: (i) a sample where we com-
pare P, C, and T single-task models; (ii) a sam-
ple where we compare single-task P models to
multi-task PVC, PVT, and PVCVT models; and
(iii) a sample comprised of single-task P models
and multi-modal PAC, PAT, and PACAT models.
We then compute agreement rates for every pair
of models M1, M5 in each sample—i.e., how of-
ten they make the same prediction, given the same
target prefix. For multi-task models, we use the P
features to derive predictions, both for constructing
the sample and computing agreement.

The distributions of agreement scores are shown
in Figure 2. We observe that most comparisons
involving models of the same setups tend to yield
higher agreement scores than most comparisons
of models from different setups. This leads to a
very salient contrast for single-task models in Fig-
ure 2a: Pairs of models of the same setup yield
higher agreements than pairs of different setups
(Mann Whitney U, p < 10726, common lan-
guage effect size f = 0.88). This also holds for
multi-modal models in Figure 2b (p < 2 - 107171,
f = 0.62) and even multi-task models in Figure 2c
(p < 2-107%, f = 0.52) though the effect is
much weaker and mostly noticeable through third
quartiles. For single-task models, we also see that
comparing two models trained on text yields higher
scores than comparing text and video models.
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Figure 2: Distribution of agreement scores for every pair of setups (task pairs sorted by median agreement score)

To sum up, even after controlling for accuracy,
we can highlight a qualitative difference in behav-
ior: models of the same setup make more similar
predictions than models of different setups. The
contrast is starkest with single-task models; and
while this effect tends to be less pronounced in
multi-modal models and very subtle in multi-task
models, we can still observe it. It should not be sur-
prising that models in the multi-task sample barely
display a difference: recall that these models all
use the same inputs (P features) on top of being
conditioned on the same target prefix. That we can
register a difference at all after controlling for accu-
racy suggests that the use of different input sources
impacts the learned parameters. This effect cannot
be subsumed to a mere difference in inputs that
translates into different outputs; rather, it has to
be construed as guiding models towards different
behaviors. Referring back to our theoretical frame-
work in Section 3.1, this is evidence in favor of the
stronger notion of grounding that we outlined.

In multi-modal models, given their implementa-

tion as Transformer decoders, we can further high-
light the importance of the different input sources
in model behavior by focusing on source-attention
patterns. We compute the attention paid to features
from P, C, and T, and contrast whether similar at-
tention patterns entail similar behaviors. While
attention-based overviews are known to have lim-
itations (Serrano and Smith, 2019; Wiegreffe and
Pinter, 2019; Vazquez et al., 2022), they do offer a
practical insight into the models’ computation.

In practice, for every multi-modal model and
every item in our test set, we can compute the
average attention per feature type in P, C, T. As
such, every multi-modal model has a correspond-
ing 3D vector describing its general attention pat-
tern. These are displayed in Figure 3a. Given that
the attention-pattern vectors’ components sum to
one, they furthermore lie on the positive quadrant
of the ¢; unit-sphere; i.e., the equilateral triangle
with summits (1,0,0), (0,1,0), (0,0,1). A visual-
ization of the corresponding vector population is
shown in Figure 3b: each point corresponds to a
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Figure 3: 3D attention patterns of multi-modal sample

different model, hues correspond to input features;
the three summits P, T and C marked with a cross
would correspond to the position of models only
attend to P, T or C input features respectively.

All multi-modal models exhibit different behav-
iors: models trained on P and C tend to attend to
paraphrasing features rather than captioning fea-
tures; models trained on P and T tend to display
more balanced patterns; attention patterns for mod-
els trained with all three input spaces P, T and C
vary more along how much they attend C and T fea-
tures rather than how much they attend to P features.
Remark that some models trained with C features
may entirely ignore captioning features, whereas
the same never holds for paraphrase and translation
input features. This likely highlights that the NLG
task at hand tends to be more straightforward using
cross-lingual, rather than cross-modal, features.

Beyond these general observations, we focus on
whether we can establish a correlation between
distance in attention patterns and pairwise agree-
ment scores. We expect an anti-correlation, since a
lesser distance between attention patterns ought to
correspond to a greater degree of agreement. We
consider three measures of vector dissimilarity: co-
sine distance, viz. 1 — cos(aj, bz), as well as ¢;
and /5 distances. Corresponding results are shown

in Table 1. If we look at global results, or at re-
sults within a given setup, we find the expected
anti-correlation; however results appear contrary to
our assumptions when comparing across setups. In
particular, comparing PAC and PAT multi-modal
models yields a correlation instead of the expected
anti-correlation. In short, studying the attention
patterns of the models explains some, but not all
of the observed variation in behavior across mod-
els.® This lends further credit to the stronger no-
tion of grounding we outline in Section 3.1. If we
were to assume the weaker notion instead, then anti-
correlations should arise across different modalities
as well: The presence or absence of a given input
type should not perturb the underlying processing
function g. Instead, what we observe is that the
presence or absence of a given input type can alter
model behavior beyond what we can account for by
solely looking at the distribution over input types.
This suggests that we cannot disentangle input rep-
resentation mapping from processing—i.e., that
the stronger notion of grounding more appropri-
ately describe the facts at hand. This corroborates
our earlier observation with respect to multi-task
models that grounding should not be characterized
as providing different inputs to the same function;
rather, grounded models correspond to a different
type of function altogether.

5 Concreteness

We have established that there is some evidence
in favor of a stronger notion of grounding, that is
to say, that we expect the functions described by
grounded models to differ across setups. We now
turn to whether we can connect these qualitative
functional differences with other prior observations.
Namely, we focus on concreteness (Pezzelle et al.,
2021; Tikhonov et al., 2023), and study how it
might affect model parameters (viz., the input em-
bedding layer) as well as model activations (viz.,
the last hidden state before vocabulary prediction).

8We have replicated these findings with KL-divergences,
however other statistical indicators need not align with this be-
havior. In particular, differences in terms of entropy are rarely
statistically significant, tentatively suggesting that grounding
does not reduce uncertainty. In detail, we only observe a signif-
icant difference for single-task models (Kruskal-Wallis H-test:
p < 0.011), which is owed to C models having lower entropy
than P or T models (Mann-Whitney U-tests: P vs C p < 0.04,
f =063 CvsT, p < 0.0031, f = 0.31. This could be
a side effect of selecting checkpoints at different number of
epochs: If some models have been optimized for longer, they
may have converged onto more peaked distributions. We leave
a proper evaluation of this aspect for future work.
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Setups p p-val p p-val p p-val
PAC PAC —0.26 8.57-107* |—0.18 1.99-10~19 |—0.27 2.04-10~ 4
PAC PAT 0.11 7.25-10706 0.07 3.23-10703 0.09 2.51-10704
PAC PACAT | —0.17 2.62-10~*1 | —0.21 3.98.10°'7 |—-0.19 1.52.10~™
PAT PAT —0.26 1.44-.10713 | —0.26 1.38-10~'% | —0.26 1.38.10~13
PAT PACAT | — 047 — 0091 — 040
PACAT PACAT |—0.27 2.46-1074 | —0.27 3.57-10714 |—0.27 7.98-10~1%

overall —0.26 4.98-107111 | —0.28 1.88-1071%* | —0.28 2.35.107132

same setup —0.18 1.07-107*® | —0.18 1.99-107*° | —-0.19 5.29-10~2

Table 1: Spearman correlation between attention patterns and agreement rates in the multi-modal sample. overall
row: across all sampled multi-modal models.; same setup row: only comparisons involving models of the same

setup (P/P, PAC/PAC, PAT/PAT and PACAT/PACAT).

We use concreteness ratings of words from Brys-
baert et al. (2014). These ratings were gathered
through crowd sourcing where annotators were in-
structed to rate how concrete the meaning of each
word is on the scale of 1-5. Higher ratings char-
acterize concrete words, which refer to a percepti-
ble entity and can be experienced directly through
the senses (experience-based). Conversely, words
with low ratings are abstract, referring to concepts
that cannot be directly experienced; instead, their
meaning has to be derived through other words
(language-based). For simplicity, we binarize this
dataset by taking the 1000 lowest rated words to
construct a set of abstract words, and similarly the
1000 highest rated to construct a concrete set.

We compare the embeddings of concrete and ab-
stract words learned by models trained on the dif-
ferent setups that we outlined. We consider two sce-
narios: In the first, we assess whether concrete and
abstract word sets cluster into two (and only two)
distinct groups of embeddings: More precisely, we
evaluate the compactness of each group through
their silhouette scores. In the second, we relax
the assumption that embeddings need form only
two clusters: instead, we perform clustering using
affinity propagation (Frey and Dueck, 2007), a clus-
tering method that does not rely on a predefined
number of clusters, and evaluate the purity of the
formed clusters.’

Table 2 shows the silhouette and purity scores
for the single-task, multitask, and multimodal
models. In the single-task models, we observe
that C models—models that use video features
exclusively—consistently exhibit behavior differ-
ent from P and T models. The C models have
the higher silhouette scores when using the input

"We use scikit-learn (Pedregosa et al., 2011) with
damping to 0.90 and default values for all other parameters.

embeddings than the P or T models'®. With the
embeddings from the last hidden state, however, C
has lower scores than P or T!!: This shows that the
input embedding layer of C models is better able
to separate abstract and concrete words compared
to models that received only text features (P and
T models). This ability to separate abstract from
concrete words is reinforced in the clustering ex-
periment where C models form purer clusters with
both the input and last hidden state embeddings
than P and T as shown by the higher purity and
inverse purity scores.'?

In the multi-task models, PVC and PVCVT mod-
els tend to have higher silhouette scores than P or
PVT models in both cases where we use embed-
dings from the input and last hidden state layers.'3
In the clustering experiment, PVCVT tends to form
purer clusters than all other models when using the
embedding layer representations but not when us-
ing the last hidden state. As discussed previously,
we do not expect models in the multi-task setup
to display stark differences in behavior since that
they all receive P inputs to generate predictions in
the same output space. It is therefore somewhat
surprising that models that receive video features
(PVvC and PVCVT) still behave differently from the
models that receive only text (P and PVT).

The multimodal models exhibit a somewhat dif-
ferent behavior. All models have similar silhouette
scores and purity scores when using the embed-

"Mann-Whitney U tests: Pvs Cp < 7.4-1075, Cvs T
p<12.-1073

"pvsCp<89-107%CvsTp<3.1-107*

12Such low inverse purity scores nonetheless suggest that
concreteness is not the most important factor when it comes
to shaping representation spaces in grounded models.

BInput embedding: P vs PVCVT p < 3.6 - 107%; PVC
vs PVCVT p < 2.8 - 1072, PVCVT vs PVT p < 6.0 - 1073,
Last hidden state: P vs PVC p < 2.1 -1072; P vs PVCVT
p<71.-1073
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Silhouette Purity Inverse Purity

Model input last hidden state input last hidden state input last hidden state
Single-task

P 0.021(£0.004)  0.054(£0.007)  0.746(£0.021)  0.887(+0.005)  0.062(£0.015)  0.049(£0.005)

C 0.026(£0.002)  0.049(£0.006)  0.760(+0.013)  0.890(+0.005)  0.080(£0.025)  0.068(+0.014)

T 0.023(£0.004)  0.056(+0.006)  0.748(+0.016)  0.884(40.005)  0.060(£0.014)  0.047(£0.006)

Multitask

P 0.023(£0.004)  0.051(£0.005)  0.757(£0.017)  0.888(£0.005)  0.073(£0.021)  0.050(£0.008)

pvC 0.024(£0.004)  0.056(£0.009)  0.752(£0.021)  0.891(£0.007)  0.070(£0.021)  0.061(£0.011)

PVCVT 0.027(£0.004)  0.055(£0.007)  0.765(+0.016)  0.889(£0.006)  0.073(£0.016)  0.052(=£0.009)

PVT 0.024(£0.004)  0.053(£0.008)  0.754(£0.019)  0.889(£0.006)  0.069(£0.016)  0.050(£0.007)
Multimodal

P 0.025(£0.004)  0.051(£0.007)  0.759(£0.022)  0.890(+0.006)  0.074(£0.023)  0.054(+0.010)

PAC 0.026(£0.003)  0.052(+£0.006)  0.761(+0.018)  0.891(+0.007)  0.073(£0.019)  0.052(£0.006)

PACAT  0.024(£0.004)  0.056(£0.007)  0.759(£0.017)  0.889(£0.0067)  0.072(£0.032)  0.048(%0.005)

PAT 0.026(£0.004)  0.051(£0.008)  0.765(+0.017)  0.886(+0.007)  0.065(£0.014)  0.046(=£0.005)

Table 2: Silhouette and cluster purity scores for single-task, multitask, and multimodal models. Cells in bold
correspond to optima per embedding and setup when the difference with the second best value is significant.

dings from the input layer. But with the last hidden
state embeddings, PACAT and PAC models show
higher silhouette and purity scores, respectively,
than the models that do not incorporate video fea-
tures in their inputs.'* This suggests that models
that have to process multimodal features (visual
and textual) in order to generate a prediction in a
unimodal (text-only) output space behave differ-
ently from models that process inputs from the
same modality. Overall, our experiments in this
section show that models that receive video or text
and video features learn parameters that are subtly
different from models that only receive text inputs
despite the fact that they are trained to generate
predictions in the same output space.

6 Conclusion

In the present work, we have proposed to study
cross-lingual and cross-modal grounding by con-
structing samples of comparable models.

Our experiments have revealed how populations
of models using different types of input sources
make different textual predictions. At a global
dataset level, we have observed that models tend
to agree less when they come from different setups
than when they share the same training conditions
(Section 4). Adopting a more linguistically moti-
vated approach, we have also discussed how the
representations of concrete and abstract words are
impacted by grounding (Section 5): in particular,
we can highlight that our captioning-like task was
the most impactful when it came to cleanly delin-

P vs PACAT p < 2.3-1073; PAC vs PACAT p <
1.5-1072; PACAT vs PAT p < 1.6 - 1073

eating abstract and concrete words.

The methodology we outlined in Section 3.4
allowed us to select groups of models so as to guar-
antee they are of similar accuracy, thereby teasing
apart variation due to performance from that due
to the type of input sources a model receive. This
methodology can easily be adapted to any other
situation where one wishes to control for a spe-
cific variable. In our specific case, it allows us to
smooth over the necessary differences between text
and video features and provide a more principled
outlook on grounding. We believe the adoption of
methodologies such as the one proposed here to
be invaluable to studies on grounding: They allow
for systematic empirical comparisons which are of-
ten missing, as most studies focus on foundational
models or theoretical arguments.

Beyond these methodological contributions, the
core finding our experiments suggest is that the
effects of grounding on neural network models can-
not be subsumed to simply learning adequate rep-
resentations: Rather, we observe results consistent
with a stronger notion of grounding, where we can-
not disentangle the effects of learning to represent
inputs of different modalities or languages from
that of learning how to solve the task at hand.

A second conclusion that emerges from our ex-
periments is that the effects of cross-lingual ground-
ing are empirically distinct from that of cross-
modal grounding. Cross-lingually grounded mod-
els were found in several instances to be more
closely in line with models trained on a paraphrase-
like task. A better characterization of the difference
between cross-lingual and cross-modal grounding
is one direction we hope to address in future work.
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Limitations

One crucial limitation of the proposed approach is
that it ignores how scaling up can impact the phe-
nomena we study. Scaling up, in terms of number
of parameters and volume of data a model is ex-
posed to, can lead to behaviors that need not be ob-
servable in our more restricted experiments. Repli-
cating our experiments to larger models, while in
principle possible, poses practical challenges: The
experiments we have conducted here entail train-
ing hundreds of models. This is likely not real-
istically feasible for parameter-intensive models,
which are often the core focus of current discus-
sions about grounding. The emergence of ground-
ing in large NLP models is therefore left untouched
in the present article.

Lastly, the proposed approach remains limited in
scope: We have only focused on one dataset, one
architecture, two languages and two modalities.
While we have striven to make our experimental
protocol as broadly replicable and adaptable as pos-
sible, any conclusions drawn in the present paper
need not carry to other setups.
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