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Abstract

Aspect-based sentiment analysis (ABSA) aims
to align aspects and corresponding sentiment
expressions, so as to identify the sentiment
polarities of specific aspects. Most exist-
ing ABSA methods focus on mining syntac-
tic or semantic information, which still suffers
from noisy interference introduced by the at-
tention mechanism and dependency tree when
multiple aspects exist in a sentence. To ad-
dress these issues, in this paper, we revisit
ABSA from a novel perspective by proposing
a novel scope-assisted multi-view graph con-
trastive learning framework. It not only miti-
gates noisy interference for better locating as-
pect and its corresponding sentiment opinion
with aspect-specific scope, but also captures
the correlation and difference between senti-
ment polarities and syntactic/semantic infor-
mation. Extensive experiments on six bench-
mark datasets show that our proposed ap-
proach substantially outperforms state-of-the-
art methods and verifies the effectiveness and
robustness of our model.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment classification task, aiming at
identifying the sentiment polarities (i.e., positive,
neutral, or negative) of specific aspects in a given
sentence (Wang et al., 2016; Tang et al., 2022; Chen
et al., 2022). Different from document- or sentence-
level sentiment analysis, different aspects in a sen-
tence may express different sentiment polarities.
For example, given a sentence “Service was slow
but people were friendly”, the sentiment labels of
aspect “service” and “people” are negative and pos-
itive, respectively. The main challenge of ABSA is
how to effectively capture the relationship between
aspect term and its corresponding opinion expres-
sions while preventing interference from irrelevant
context words.
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Figure 1: Examples of input sentence “Service was
slow but people were friendly”. (a) semantic relations
of aspect “people” derived by attention mechanism. (b)
the dependency tree of input sentence. (c) Our scope-
assisted contrastive learning method.

Recent studies on ABSA task either utilize var-
ious attention mechanisms to model the seman-
tic relationships between aspect and its context
words to obtain aspect-related sentiment represen-
tation (Chen et al., 2017; Tan et al., 2019; Oh et al.,
2021; Li et al., 2021; Pang et al., 2021), or leverage
syntactic information derived from syntax depen-
dency tree to model syntactic structures to capture
the structural dependencies between aspect and its
sentiment expressions (Sun et al., 2019; Wang et al.,
2020; Chen et al., 2020; Zhou et al., 2021).

Despite remarkable progress made by the exist-
ing methods, they suffer from the interference of
irrelevant context words when modeling the rela-
tionship between aspect words and the correspond-
ing sentiment clues. On the one hand, attention-
based methods may improperly assign high atten-
tion scores to the words irrelevant to the anchor
aspect term. As shown in Figure 1 (a), for the an-
chor aspect “people”, its attention score with the
corresponding opinion word “friendly” (0.20) is
only slightly higher than the word “slow” w.r.t. as-
pect “service” (0.18), and much lower than that
with its neighbor words (e.g. 0.24 for “were”). On
the other hand, the dependency tree structure in
the syntactic-based methods may also introduce
noisy signals, because of the interference among
multiple aspects and their corresponding opinions.
As shown in Figure 1 (b), it is easy to observe that
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the dependency tree builds an unexpected relation
between “slow” and “friendly” (see the arc with red
color), which are opinion words of different aspects
(“service” and “people”). In other words, existing
methods are insufficient to accurately capture the
relationship between aspect and its corresponding
opinion words, discouraging the learning of aspect-
dependent sentiment representations.

To address the above issues, we separate dif-
ferent aspect-related context words to prevent the
noisy interference from other aspects. Specifi-
cally, inspired by the constituent tree-based struc-
ture (Xu et al., 2022), we try to outline a struc-
tural text region related to a specific target aspect,
named aspect-specific scope, and ignore all other
connections involving the target aspect in the re-
maining part of the sentence, as shown in Fig-
ure 1 (c). The aspect-specific scope is expected to
cover all the corresponding opinion words and ex-
clude the irrelevant opinion words of other aspects.
Based on this idea, we propose a novel aspect-to-
scope multi-view contrastive learning (A2SMvCL)
framework to preferably facilitate the capture of
the crucial aspect-dependent sentiment clues to im-
prove the performance of ABSA. More concretely,
we first construct two graphs, namely DepG and
SemG, to provide syntactic-structure and semantic-
correlation from different graph views. Then, a
scope-assisted multi-view (intra- and inter-view)
graph contrastive learning module is proposed to
enhance the model to learn the correlations and dif-
ferences among aspect-related and aspect-unrelated
sentiment representation derived by both views.
The scope-based intra-view contrastive learning
aims to align each aspect and its corresponding
opinion words while separating different aspect-
related words (scope) at the same time. The scope-
based inter-view contrastive learning aims at fur-
ther obtaining a richer aspect-dependent sentiment
representation by incorporating different types of
information from two graph views. Finally, an
adaptive multi-graph fusion module is proposed to
fuse syntax dependency and semantic information
for capturing the syntax- and semantic- enhanced
sentiment representation. Our main contributions
are summarized as follows:

• The ABSA task is approached from a new
perspective that devises the aspect-specific
scope to separate different aspect-related con-
text words, so as to preferably eliminate
the noisy interference from different aspect-

corresponding opinion words.
• A novel multi-view graph contrastive learn-

ing framework is proposed to integrate syn-
tactic dependency and semantic correlation
information, facilitating the learning of aspect-
dependent sentiment-aware representation.

• Extensive experiments on six public bench-
mark datasets show the effectiveness and ro-
bustness of our proposed A2SMvCL.

2 Methodology

In this section, we describe our proposed
A2SMvCL framework for ABSA in detail. As
shown in Figure 2, the proposed A2SMvCL frame-
work mainly contains five components: 1) Aspect-
specific scope Detection, which detects the scope
of the given aspect based on word vectors in a
sentence; 2) Multiple Graphs Generation, which
constructs and encodes two types of graph views
for each sentence; 3) Scope-Assisted Multi-View
Graph Contrastive Learning, which encodes differ-
ent types of information while filtering out noisy
signals from other aspect-specific scopes based on
syntactic and semantic graphs. 4) Adaptive Multi-
Graph Fusion, which fuses syntactic and semantic
information, and outputs the final representations;
5) Aspect-oriented Sentiment Classification, which
classifies the sentiments of given aspect.

2.1 Task Definition

Given a sentence s consists of n words s =
[w1, ..., wt+1, ..., wt+m, ..., wn] and its correspond-
ing aspect a = [wt+1, ..., wt+m], aspect-based
sentiment classification aims to identify the sen-
timent polarity (i.e. Positive, Negative, or Neu-
tral) of this aspect, where wi is the i-th word.
Moreover, for each aspect in a sentence, we de-
sign an auxiliary aspect-specific scope detection
task to identify a sequence of aspect-related terms
Y a = [ya1 , y

a
2 , ..., y

a
n], where yai ∈ {B, I,O} anno-

tated by Xu et al. (2022) denotes the beginning of,
inside of, and outside of aspect-related words.

2.2 Text Encoder

We adopt a pre-trained language model BERT (De-
vlin et al., 2019) as encoder to encode both sentence
s and its corresponding aspect a. We follow previ-
ous works to construct a BERT-based sentence-
aspect pair sequence “[CLS]s[SEP ]a[SEP ]”
and feed the sequence into BERT to ac-
quire the contextualized representation H =
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Figure 2: The architecture of the proposed A2SMvCL framework.

[h1, ...,hn] ∈ Rn×dm , defined by H =
BERT([CLS]s[SEP ]a[SEP ]), where hi ∈ Rdm
is the hidden representation of the i-th word.

2.3 Aspect-specific Scope Detection

To accurately identify the aspect-related context
words, we introduce a constituent tree-based struc-
ture, aspect-specific scope, to separate aspect-
related and aspect-unrelated words. Aspect-specific
scope is the smallest continuous sub-region of the
input sentence, containing an aspect and the corre-
sponding sentiment expression. Specifically, given
word vector matrix H learned by the Text Encoder,
we utilize a linear-chain conditional random fields
(CRF) layer (Lafferty et al., 2001) to predict the
aspect-specific scope, which can be formulated as:

Y a = CRF(H) (1)

where Y a = [ya1 , .., y
a
n], and yai ∈ {B, I,O}. Note

that, yai = B or I denotes the i-th word of sentence
s is in aspect-specific scope, and yai = O indi-
cates the i-th word is not in aspect-specific scope.
The objective of aspect-specific scope detection is
minimizing the negative log-likelihood (NLL) loss:

Lscope = −
∑

log p(Y a|H) (2)

2.4 Multiple Graph Generation

To leverage the syntactic structure and semantic cor-
relation information of the input sentence, we de-
sign syntax graph construction and semantic graph
construction modules. We feed the generated De-
pendency Graph (DepG) containing syntactic struc-
ture information obtained by dependency tree and
Semantic Graph (SemG) containing rich semantic
correlation information obtained by self-attention
mechanism into two GCN encoders for acquiring
aspect-dependent graph representations.

Syntax-based Graph Construction. For an in-
put sentence s, we obtain the corresponding de-
pendency tree T s over s through syntactical de-
pendency parser1. We subsequently build an
undirected graph Gdep (dubbed DepG) by taking
each word in s as a node and representing head-
dependent relations in T s as edges. Formally, the
adjacent matrix Adep ∈ Rn×n is defined by

Adep
ij =

{
1 if link(i, j) = 1 or i = j,
0 otherwise.

(3)

where link(i, j) means i-th and j-th words have
dependency relation. To encode the syntactic infor-
mation of Gdep, we employ a GCN module (named
DepGCN) to capture richer syntactic graph repre-
sentation Hdep,

Hdep
l = ReLU(AdepHdep

l−1W
dep
l + bdepl ) (4)

where W dep
l ∈ Rdm×dm and bdepl ∈ Rdm are

model parameters for the l-th layer. The initial
input Hdep

0 of first GCN is derived by the node
representations H learned by Text Encoder in Sec-
tion 2.2, i.e. Hdep

0 = H = [h1, ...,hn].

Semantic-based Graph Construction. Addi-
tionally, to capture the semantic correlations among
words in a sentence, we build a directed graph
Gsem (dubbed SemG) by taking each word as a
node and the similarity scores between two ar-
bitrary words computed by self-attention mech-
anism as edges. Formally, the adjacent matrix
Asem ∈ Rn×n is given by

Asem = softmax

(
(QWq)(KWk)

T

√
dm

)
(5)

where Q and K are two copies of H , representing
query and key vectors, respectively. Wk,Wq ∈

1We use spaCy toolkit: https://spacy.io/
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Rdm×dm are model parameters. dm is the dimen-
sionality of node feature. Similar to DepG, we also
employ a SemGCN module (same structure with
DepGCN but does not share parameters) to capture
richer semantic representation Hsem of SemG.

2.5 Scope-Assisted Multi-View Graph
Contrastive Learning

Based on the generated DepG and SemG learned
over syntax dependency tree and semantic correla-
tion information, here we discuss how to effectively
leverage these two types of information to capture
richer aspect-dependent sentiment representation.
To mitigate the noise like irrelevant relations and
irrational attention scores brought up by DepG and
SemG, we introduce aspect-specific scope, and de-
sign a novel scope-assisted multi-view graph con-
trastive learning to align each aspect and its corre-
sponding opinion words while separating in- and
out-scope words at the same time. Specifically,
intra-view contrastive learning is conducted within
each graph, and inter-view contrastive learning is
processed between two graphs.

2.5.1 Intra-View Contrastive Learning
To better align each aspect and its corresponding
opinion words while separating different aspect-
related words (scope) at the same time, we define
an intra-view contrastive loss on the node repre-
sentations generated by DepG and SemG views
based on aspect-specific scope. For ease of dis-
tinction, we denote node representations2 in DepG
and SemG views as {ui}i∈[n] and {vi}i∈[n], re-
spectively. We denote aspect-specific scope in
DepG and SemG views as Su and Sv, respectively.
Taking the SemG view in Figure 2 as an exam-
ple, we define the aspect node representation vi
as the anchor. For any node vj in aspect-specific
scope Sv (vj ∈ Sv), its representation vj forms
the positive sample, and any node vk not in Sv
(vk /∈ Sv) is naturally regarded as negative sam-
ple. Then the contrastive loss is computed across
all positive paris, (vi,vj) in a sentence by mir-
roring the InfoNCE (van den Oord et al., 2018)
objective,

LVintra(vi)=−log

∑
j∈Sv\i e

ϕ(vi,vj)/τ

∑
k 6=i e

ϕ(vi,vk)/τ
(6)

where τ is a temperature parameter. We define the
critic ϕ(·, ·) = sim(σ(·), σ(·)), where sim(·, ·) is

2Note that, ui and vi are the i-th vector of Hdep and
Hsem respectively, defined in Section 2.4.

the cosine similarity and σ(·) is a nonlinear projec-
tion to enhance the expression power of the critic.

Similarly, we calculateLUintra for the DepG view.
Finally, by combining the two losses, we have the
intra-view contrastive learning objective function
in each mini-batch B, which can be defined as:

Lintra=
1

NB

∑

vi,ui∈B
(LVintra(vi)+LUintra(ui)) (7)

2.5.2 Inter-View Contrastive Learning
To further enhance the sentiment representation of
aspect-related embedding, we perform contrastive
learning between two graph views. This takes the
correlation among different types of graph views
into consideration while preferentially performing
the contrastive learning learning of aspect-related
word representation.

More concretely, taking the SemG view as an ex-
ample, we define the aspect node representation vi
as the anchor, its corresponding representation ui
and aspect-specific scope Su generated in another
view are treated as positive samples. Naturally,
we define all remaining nodes in another view as
negative samples. Moreover, to integrate the im-
portance between different positive sample pairs
into contrastiveness, we use the similarity ω of two
views to re-weight positive sample pairs to improve
the diversity of positive samples. The contrastive
loss for SemG view is computed as follow:

`(vi,ui)=−log(
eϕ(vi,ui)/τ+

∑
j∈Su\i e

ω·ϕ(vi,uj)/τ

∑n
k=1 e

ϕ(vi,uk)/τ
)

(8)

We define the similarity of the two views ω =
sim(vi,ui), where vi and ui are aspect node rep-
resentations learned by SemG and DepG, respec-
tively.

Since the two views are symmetric, the loss of
the DepG view `(ui,vi) is similarly defined as
`(vi,ui). The overall inter-view contrastive ob-
jective in each mini-batch B is formally given as:

Linter=
1

2NB

∑

vi,ui∈B
(̀ (vi,ui)+`(ui,vi)) (9)

By combining the intra- and inter-view contrastive
learning, the overall loss of scope-assisted multi-
view graph contrastive learning module is :

Lgcl = Lintra + Linter. (10)

2.6 Adaptive Multi-Graph Fusion
Based on the graph representation of DepG and
SemG, Hdep and Hsem, derived by dependency
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tree and semantic correlation information, here we
propose an adaptive multi-graph fusion module to
adaptively fuse syntax dependency and semantic
information for capturing syntax- and semantic-
enhanced aspect-dependent output representation,

Ĥdep=ReLU(W (αHdep + βHsem)) (11)

α = ρ · σ(g(Hdep)), β = 1− α (12)

where α and β are the dynamic fusing proportions,
g(·) is a self-gating function with a shared convolu-
tional kernel. ρ ∈ [0, 1] is the hyper-parameter of
prior knowledge.

Since the two graph are symmetric, the fused
SemG representation Ĥsem is defined similarly
as Ĥdep. Finally, we concatenate DepG repre-
sentation Ĥdep and SemG representation Ĥsem

to obtain syntax- and semantic-enhanced aspect-
dependent representation r:

r = Ĥdep ⊕ Ĥsem. (13)
where r ∈ Rn×2dm .

2.7 Model Training
Aspect-oriented Sentiment Classification. By
applying average pooling on aspect node repre-
sentations of r, we get the final aspect-oriented
representation vector z:

z = AvgPooling(ra1 , ra2 , · · · , ram) (14)

where rai denotes the i-th word in aspect a of sen-
tence s. After that, we adopt a fully-connected
layer with softmax normalization to yield a proba-
bility distribution of sentiment representation:

ŷ = softmax(Wsz + bs) (15)

where ŷ ∈ Rdp is the predicted sentiment polarity,
dp is the dimensionality of sentiment labels. Ws ∈
Rdp×dm and bs ∈ Rdp are parameters to be learned.
Then the cross-entropy loss between the predicted
labels and the ground-truth label y of i-th instance
is defined as:

Lcls = −
NB∑

i=1

dp∑

j=1

yji log ŷji (16)

Joint Learning Objective. The learning objec-
tive of our proposed model is to train model by
jointly minimizing the three losses generated by
sentiment classification, aspect-specific scope de-
tection, and multi-view graph contrastive learning,
which can be formulated as:

L(Θ)=γcLcls+γsLscope+γgLgcl+λ||Θ||2 (17)

Dataset
#Positve #Negative #Neutral

Train Test Train Test Train Test

LAP14 976 337 851 128 455 167
REST14 2164 727 807 196 637 196
REST15 912 326 36 34 256 182
REST16 1657 611 101 44 748 204

TWITTER 1507 172 1528 169 3016 336
MAMS 3380 400 2764 329 5042 607

Table 1: Satistics on six datasets of ABSA.

where γc, γs, and γg are the coefficients. Θ rep-
resents all trainable parameters. λ represents the
coefficient of L2-regularization.

3 Experimental Setup

3.1 Datasets

We conduct experiments on six public standard
datasets and the detailed statistics are shown in Ta-
ble 1. The REST14, LAP14, REST15 and REST16
datasets are from SemEval ABSA challenges (Pon-
tiki et al., 2014, 2015, 2016), consisting of reviews
in the restaurant and laptop domains. The TWIT-
TER dataset is a collection of tweets (Dong et al.,
2014). The MAMS dataset is consisted of sen-
tences with multiple aspects (Jiang et al., 2019).
Furthermore, in order to use scope labels, we use
the expanded versions of these six datasets from
Xu et al. (2022).

3.2 Implementation Details

We use Stanford parser3 to get syntactic depen-
dency trees and employ the pre-trained BERT4 in
PyTorch. To alleviate overfitting, we set dropout
at a rate of 0.3, learning rate at 2× 10−5 of adam
optimizer and a L2 regulation at 10−5 for training.
The layers of DepGCN and SemGCN are 2. The
parameters γc and γs are set to 1 and 0.03 for all
datasets. The hyper-parameters γg and τ are respec-
tively set to (0.4, 0.11), ( 0.22, 0.13), (0.81, 0.1),
(0.2, 0.14) and (0.19, 0.12) for the five datasets.
Accuracy(Acc.) and macro-f1 (F1.) are evaluation
metrics.

3.3 Baselines

We compare the proposed A2SMvCL with a se-
ries of strong ABSA baselines, including semantic

3https://stanfordnlp.github.io/CoreNLP/
4https://github.com/huggingface/transformers
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LAP14 REST14 REST15 REST16 TWITTER MAMS
Model

Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%)

BERT-SRC 80.56 77.20 84.55 75.74 83.03 63.92 90.75 74.00 73.41 72.38 82.82 81.90
SDGCN 81.35 78.34 83.57 76.47 - - - - - - - -

BATAE-GRU 78.59 74.78 84.11 76.09 - - - - 74.34 72.76 - -
IMA 77.44 73.48 82.81 73.66 79.29 64.41 83.24 64.63 - - - -

R-GAT 78.21 74.07 86.60 80.16 - - - - 76.15 74.88 84.52 83.74
KumaGCN 81.98 78.81 86.43 80.30 86.35 70.76 92.53 79.24 77.89 77.03 - -

ACLT 79.68 75.83 85.71 78.44 84.44 72.08 92.15 78.64 75.48 74.51 - -
HGCN 79.59 - 86.45 - 83.91 - 91.72 - - - - -

dotGCN 81.03 78.10 86.16 80.49 85.24 72.74 93.18 82.32 78.11 77.00 84.95 84.44
BiSyn-GAT 79.43 75.07 86.70 79.57 83.39 71.72 88.82 71.75 76.51 75.34 - -

DGEDT 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00 77.90 75.40 - -
BERT4GCN 77.49 73.01 84.75 77.11 83.23 67.27 87.78 75.34 74.73 73.76 - -

DualGCN 81.80 78.10 87.13 81.16 84.69 72.97 89.87 77.26 77.40 76.02 - -
CPA-SA 75.18 71.5 82.64 73.38 - - - - - - - -
MGFN 81.83 78.26 87.31 82.37 84.40 72.66 92.04 81.57 78.29 77.27 - -

A2SMvCL (Ours) 82.12 78.82 87.86 82.41 86.74 75.05 93.42 83.80 78.49 77.18 85.10 84.65

Table 2: Experimental results comparison on five publicly available ABSA datasets. The results with “-” denote
that no results were reported or code was not released in the original paper.

information based methods: BERT-SPC (Devlin
et al., 2019), SDGCN (Zhao et al., 2020), BATAE-
GRU (Wang and Wang, 2021), and IMA (Wang
et al., 2022), syntax information based methods:
R-GAT (Wang et al., 2020), KumaGCN (Chen
et al., 2020), ACLT (Zhou et al., 2021), HGCN
(Xu et al., 2022), dotGCN (Chen et al., 2022), and
BiSyn-GAT (Liang et al., 2022), both semantic and
syntax information based methods: DGEDT (Tang
et al., 2020), BERT4GCN (Xiao et al., 2021), Du-
alGCN (Li et al., 2021), CPA-SA (Huang et al.,
2022), and MGFN (Tang et al., 2022).

In addition, we also design several variants of our
proposed A2SMvCL in the ablation study. “w/o
Lgcl” denotes without all contrastive learning. “w/o
Lintra” and “w/o Linter” denote without intra- and
inter-view contrastive learning, respectively. “w/o
Adaptive Fusion” denotes without Adaptive Multi-
Graph Fusion module. “w/o Scope” denotes with-
out considering scope, simply performing graph
contrastive learning on all the node representations
learned by SemG and DepG.

4 Experimental Results

4.1 Main Results
The main comparison results of ABSA on five
datasets are reported in Table 2. It can be ob-
served from the experimental results that our pro-
posed A2SMvCL framework consistently outper-
forms all comparison baselines on the LAP14,
REST14, REST15, REST16 datasets, and MAMS
datasets, and achieves an overall better perfor-
mance than comparison baselines on the TWIT-

TER dataset. These indicate the effectiveness of
our proposed A2SMvCL in the ABSA task. More
concretely, compared with semantic information
based methods such as BERT-SPC and SDGCN,
our A2SMvCL framework removes the noise in-
terference from the irrelevant opinion words that
could be introduced through the attention mecha-
nism. Moreover, compared with the syntax infor-
mation based methods, such as ACLT and dotGCN,
our A2SMvCL improves significantly across all
datasets on both metrics. This verifies that explor-
ing scope-assisted graph contrastive learning to sep-
arate different aspect-related opinion words can bet-
ter facilitate the capturing of aspect-dependent sen-
timent clues, so as to improve the performance of
ABSA. In addition, compared with both semantic
and syntax information based methods, our model
achieves better performance. This demonstrates
that our model can better capture aspect-oriented
semantic and syntax information as well as elim-
inate the interference introduced by the attention
mechanism and dependency tree structure.

4.2 Ablation Study

To further investigate the role of different compo-
nents in our A2SMvCL model, we conduct exten-
sive ablation studies and report the results in Ta-
ble 3. We observe that removing the scope-assisted
multi-view graph contrastive learning (“w/o Lgcl”,
“w/oLintra”, and “w/oLinter”) sharply reduces the
performance across all datasets. This demonstrates
that intra- and inter-view contrastive learning based
on aspect-specific scopes can help the model ignore
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LAP14 REST14 REST15 REST16 TWITTER
Model

Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%)

A2SMvCL (ours) 82.12 78.82 87.86 82.41 86.74 75.05 93.42 83.80 78.49 77.18
w/o Lgcl 79.65 76.48 86.05 80.38 84.86 71.83 92.11 79.37 77.18 75.58
w/o Lintra 79.97 76.72 86.96 80.84 85.79 72.03 93.09 83.10 77.88 76.65
w/o Linter 80.29 77.32 86.16 80.49 86.55 72.64 92.43 82.78 77.18 76.18
w/o Scope 80.57 77.40 86.70 81.42 85.80 74.77 92.27 80.57 78.20 76.86
w/o Adaptive Fusion 81.41 77.60 87.14 81.57 86.36 74.64 92.76 82.45 77.47 76.00

Table 3: Experimental results of ablation study.
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Figure 3: Results of model that training on the TWIT-
TER dataset, and testing the trained model on the other
four datasets.

the noise interference from other aspect-specific
scopes, improving the quality of aspect-dependent
sentiment representation which in turn results in
a better performance of the ABSA task. It can
also be observed that the performance degrades
significantly on all datasets when removing the
scope (w/o Scope) and performing vanilla graph
contrastive learning on all node representations of
two graph views. This indicates that scope can ef-
fectively separate aspect-based context words. Ad-
ditionally, A2SMvCL without adaptive multi-graph
fusion module (“w/o Adaptive Fusion”) performs
slightly worse, which implies that incorporating
DepG and SemG representations together can fur-
ther improve the performance of ABSA.

4.3 Robustness Study

We further conduct experiments in the cross-
domain scenario to analyze the robustness of our
A2SMvCL. To be more specific, we first train a
source model on the TWITTER dataset and test its
performance on the other four datasets. As shown
in Figure 3, our model outperforms three compari-
son methods across all four datasets, illustrating the
strength of our proposed A2SMvCL in learning the
aspect-dependent sentiment representation. This
implies that the scope-assisted multi-view graph
contrastive learning framework has strong robust-
ness for grasping aspect-opinion interactions.

Figure 4: Visualization of contrastive representation.
The darker the color of the point, the greater the ac-
curacy. The arrows indicate the training direction.
Bottom-left is better.

4.4 Analysis

Analysis of Contrastive Representation. To
further analyze how the proposed A2SMvCL works
in contrastive representation learning, we train
the four variants of A2SMvCL and A2SMvCL it-
self and visualize the alignment and uniformity
metrics in Figure 4. We follow Wang and Isola
(2020) and use the same evaluation metrics, align-
ment Lalign and uniformity Luniform, where lower
Lalign and Luniform denotes better performance
of the model. Compared with the four variants
of A2SMvCL, our model has the lowest Lalign
and Luniform during training, which indicates that
our A2SMvCL attains strong ability in contrastive
learning. Compared with “w/o Lintra” and “w/o
Linter”), A2SMvCL w/o Scope presents worse
alignment and uniformity, indicating that scope
is helpful to obtain a better aspect-dependent sen-
timent representation. This implies the effective-
ness and superiority of our proposed scope-assisted
multi-view graph contrastive learning.

Case Study. To investigate how A2SMvCL
works in eliminating noisy interference from other
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Figure 5: Case study of samples with multiple aspects.
(a) Both “service” and “people” are aspects. (b) “pasta”
and “food” are two aspect terms.

aspect-related opinions, we conduct a case study
and visualize the attention weights of words for
each aspect in Figure 5. We can observe that the
weights between aspect and its corresponding opin-
ion words are higher than ones between aspect and
aspect-unrelated words (like “service” and “slow”,
“service” and “friendly”). This implies that our pro-
posed A2SMvCL can indeed separate the opinion
words from distinct aspect-related words and ac-
curately grasp the aspect-opinion interactions, so
as to improve the performance of ABSA. Due to
the page limitation, we place more case studies in
Appendix A.

Visualization. To more intuitively verify the ef-
fectiveness of our model, we utilize t-SNE (Van der
Maaten and Hinton, 2008) to visualize the interme-
diate embeddings of aspect-dependent sentiment
representations learned by BiSyn-GAT and our pro-
posed A2SMvCL on LAP14 dataset. As shown
in Figure 6, it can be seen that the embeddings
within the same sentiment are more aggregated
and the boundaries between different sentiments
are more distinct for A2SMvCL. This verifies that
A2SMvCL can derive more definite correlations
and clearer differences among different sentiments,
which facilitates the ABSA task. See more visual-
ization samples in Appendix B.

5 Related Works

Early efforts in ABSA mainly use the traditional
machine learning techniques, such as bag-of-words,
SVM, and so on, to manually extract engineered
features to classify the sentiment (Wang et al.,
2011; Hegde and Seema, 2017). Recently, some
methods use attention mechanism to explore the
word-level semantic correlations between contex-
tual words (Chen et al., 2017; Fan et al., 2018; Gu
et al., 2018; Devlin et al., 2019; Zhao et al., 2020;
Wang and Wang, 2021; Wang et al., 2022; Xiao
et al., 2021), which aims at capturing the word-

(a) BiSyn-GAT (b) A2SMvCL (Ours)

Figure 6: Visualization of intermediate embeddings on
the LAP14 dataset. Blue dots denote Positive examples,
red dots denote Negative examples, and green dots de-
note Neutral examples. More results in Appendix B.

level semantic interaction between aspect and con-
text. Some methods use syntax dependency trees
to model the syntactic relationship between aspect
and its corresponding opinion. For example, Zhang
et al. (2019), Wang et al. (2020) and Liang et al.
(2022) utilize aspect-oriented dependency trees to
capture the syntactic relationship with graph neural
network. Chen et al. (2020) uses GCN to incorpo-
rate syntactic information and HardKuma-based la-
tent graph information. Xu et al. (2022) introduces
the concept of scope, which outlines a structural
text region related to a specific aspect.

Moreover, some works (Tang et al., 2020; Li
et al., 2021; Tang et al., 2022) utilize GCN to ef-
fectively fuse syntactic and semantic information
to obtain richer aspect-oriented sentiment repre-
sentation. Our work shares a similar syntactic and
semantic information extraction approach, however
we focus on designing the multi-view graph con-
trastive learning to capture the significant aspect-
dependent sentiment clues to improve ABSA task.

6 Conclusion

We have re-examined the challenges encountered
by existing models for ABSA, and pointed out the
suitability of the scope-assisted graph contrastive
learning for addressing these issues. Accordingly,
we have proposed a novel aspect-to-scope oriented
multi-view contrastive learning framework to mit-
igate noisy interference, and leverage the correla-
tions and differences among different sentiment
polarities and different types of information (syn-
tactic dependency and semantic correlation) Ex-
tensive experiments on the six benchmark datasets
have demonstrated the effectiveness and superiority
of our proposed model.
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Limitations

The major limitation is that our method is not suit-
able for simultaneously identifying multiple senti-
ment polarities of multiple aspects in one sentence.
Actually, this is a common limitation of existing
ABSA methods. In our A2SMvCL framework, we
generate semantic and syntax graphs. Both two
graphs can provide richer information to advance
a better performance of ABSA task. For an input
sentence with very long text, this could result in
increasing of the number of generated graph nodes.
Accordingly, the training time of our model will
increase, which it would prevent our A2SMvCL
from applying to the scenarios with document data.
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# Sentence DualGCN BiSyn-GAT A2SMvCL
1 Other than the crappy service from two individuals, it ’s great. (P7) (NX) (NX)

2
Even fancy ingredients don’t make for good pizza unless someone
knows how to get the crust right.

(P7) (P7) (NX)

3
Service is highly refined but our seating was delayed
35 minutes past our reservation.

(PX, O7) (PX, NX) (PX, NX)

4 Usually the waiters are kind enough to split the dish in half. (PX, P7) (PX, P7) (PX, OX)

5
The food is all-around good, with the rolls usually
excellent and the sushi not quite on the same level.

(PX, PX, P7) (PX, PX, P7) (PX, PX, NX)

6
Not only is the service great, but atmosphere can
easy to form conversation around a table.

(PX, N7) (PX, N7) (PX, PX)

Table 4: Case studies of our A2SMvCL model compared with other baselines.

(a) BiSyn-GAT (b) A2SMvCL (Ours)

Figure 7: Visualization of intermediate embeddings on
the REST14 dataset.

A More Case Studies

Table 4 shows the aspect-based sentiment predic-
tions of some cases by using different compari-
son models, where the symbols P, N, and O rep-
resent positive, negative, and neutral sentiments
respectively. The words with red color and blue
color represent the aspect and its corresponding
opinion expressions respectively. Note that, the
samples with id from #3 to #6 contain multiple
aspects, in which the fifth sentence contains three
aspects. For the single aspect case (like second
sentence #2), only our proposed A2SMvCL model
predicts it as negative. For DualGCN that using
attention mechanism and BiSyn-GAT that using
dependency tree, they fail to capture the impor-
tant sentiment clues “don’t”, representing negative
sentiment. For a sentence that contains two as-
pects (like fourth sentence #4), when the aspect
is “dish” and it does not have explicit opinion ex-
pressions, the DualGCN and BiSyn-GAT models
may suffer from the noisy interference introduced
by attention mechanism and syntactic dependency
tree, leading to the deviation in terms of locating
aspect and its corresponding expressions. For a
sentence that contains three aspects (like fifth sen-
tence #5), when the aspect is “sushi” and it does
not also have explicit opinion expressions, both Du-

(a) BiSyn-GAT (b) A2SMvCL (Ours)

Figure 8: Visualization of intermediate embeddings on
the TWITTER dataset.

alGCN and BiSyn-GAT models align aspect “sushi”
and sentiment expression “excellent”, and thus pre-
dict its sentiment polarity is positive, which is the
wrong result. Because the expression “excellent” is
the corresponding opinion word of aspect “rolls”.
Both DualGCN and BiSyn-GAT models are mis-
lead by the sentiment expressions related to other
aspects. Therefore, compared with other models,
our A2SMvCL model can directly eliminate the
interference of aspect-unrelated words and capture
significant aspect-dependent sentiment clues more
accurately. In addition, these cases also demon-
strate that our A2SMvCL model can achieve better
performance in the scenario with multiple aspects.

B More Visualization Results

Figure 7 and Figure 8 show the visualization results
on REST14 and TWITTER datasets. We show the
t-SNE visualization of intermediate embeddings
learned by BiSyn-GAT and our A2SMvCL mod-
els. Again, the visualization results show that the
embeddings within the same sentiment are more
aggregated, and the boundaries between different
sentiments are more distinct. This verifies that
A2SMvCL can derive more definite correlation
and clearer difference among different sentiments,
which is more conducive to the ABSA task.
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