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Abstract

Several recent studies have shown that ad-
vanced models for natural language understand-
ing (NLU) are prone to capture biased features
that are independent of the task but spuriously
correlated to labels. Such models often per-
form well on in-distribution (ID) datasets but
fail to generalize to out-of-distribution (OOD)
datasets. Existing solutions can be separated
into two orthogonal approaches: model-centric
methods and data-centric methods. Model-
centric methods improve OOD performance
at the expense of ID performance. Data-centric
strategies usually boost both of them via data-
level manipulations such as generative data
augmentation. However, the high cost of fine-
tuning a generator to produce valid samples lim-
its the potential of such approaches. To address
this issue, we propose PDD, a framework that
conducts training-free Perturbations on sam-
ples containing biased features to Debias NLU
Datasets. PDD works by iteratively conducting
perturbations via pre-trained mask language
models (MLM). PDD exhibits the advantage
of low cost by adopting a training-free per-
turbation strategy and further improves the la-
bel consistency by utilizing label information
during perturbations. Extensive experiments
demonstrate that PDD shows competitive per-
formance with previous state-of-the-art debias-
ing strategies. When combined with the model-
centric debiasing methods, PDD establishes a
new state-of-the-art.

1 Introduction

Although recent language models have demon-
strated impressive performance on many natural
language understanding (NLU) benchmarks (Wang
et al., 2018), several studies show that models
tend to leverage dataset biases for inference (Po-
liak et al., 2018; Zhang et al., 2019). Such biases
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are commonly characterized as spurious correla-
tions between task-independent features and labels
(Gardner et al., 2021). These task-independent
features exhibiting such spurious correlations are
viewed as biased features. Models relying on these
biased features for inference usually produce su-
perior in-distribution (ID) performance but fail to
generalize to out-of-distribution (OOD) datasets.
For instance, in the MultiNLI (MNLI) dataset
(Williams et al., 2018), negation words are highly
correlated with the contradiction label and consid-
ered as biased features (Joshi et al., 2022; Shah
et al., 2020). Models trained on the MNLI dataset
tend to arbitrarily classify pairs containing negation
words into the contradiction category.

Previous solutions to resolve the issue can be
roughly separated into two types: model-centric
methods and data-centric methods (Wu et al., 2022).
Model-centric methods boost the robustness of
models by designing new training objectives or
model architectures to force the models into pay-
ing less attention to the biases during training, at
the expense of ID performance (Karimi Mahabadi
et al., 2020; Clark et al., 2019). Data-centric meth-
ods conduct data-level manipulations to debias the
original datasets (Ross et al., 2022; Wu et al., 2022;
Yang et al., 2020). Recently, data-centric debiasing
methods, especially those through generative aug-
mentations, are gaining increasing attention due to
their ability to enhance both ID and OOD perfor-
mance simultaneously.

However, existing data-centric methods based
on generative augmentations are still faced with
the limitation of high cost (Ross et al., 2022).
These methods usually take effort to finetune a
large task-specific generator, such as a GPT-2
(Radford et al., 2019), on large-scale NLU datasets
to generate new samples. Additionally, they
inevitably require costly retraining once the dataset
varies, further increasing the computational costs.
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To address the limitation of existing data-centric
debiasing methods, we propose PDD (Perturbing
samples containing biased features to Debias NLU
Datasets), a novel and cost-effective debiasing
framework for NLU datasets based on a training-
free perturbation strategy. To reduce expenses, we
adopt a pre-trained mask language model (MLM)
to perturb samples rather than finetuning a gen-
erator to generate new samples. Specifically, we
perturb the samples containing biased features to
mitigate the strong statistical correlations between
such features and the labels, which is measured by
z-statistics (Gardner et al., 2021). Moreover, we
design label-specific prompts to incorporate label
information into perturbations and further adopt a
confidence filter step to improve label consistency.

To verify the effectiveness of PDD, we carry
out experiments on three NLU tasks: natural
language inference (Bowman et al., 2015), fact
verification (DAGAN et al., 2009), and para-
phrase identification. Experimental results demon-
strate that PDD shows comparable OOD perfor-
mance to previous state-of-the-art debiasing meth-
ods. Since PDD is data-centric, we enhance
it with model-centric methods and observe fur-
ther improvements in performance, exceeding
any previous state-of-the-art to the best of our
knowledge. Our code and data are available at:
https://github.com/GuoQi2000/Debias_PDD.

In summary, our contributions include:

* We introduce PDD, an effective and low-
cost dataset debiasing framework based on a
training-free perturbation strategy, compensat-
ing for the drawbacks of existing data-centric
debiasing methods.

* We conduct extensive experiments on several
NLU benchmarks and demonstrate that our
framework outperforms strong baselines on
several ODD datasets.

2 Related Work

Biases in Datasets: Biases in NLU benchmarks
are idiosyncratic artifacts introduced in the
annotation processes and are often modeled as
spurious correlations between simple features
and labels. Several works trying to provide a
theoretical framework to measure such spurious
correlations. Gururangan et al. (2018) involves
pointwise mutual information (PMI) to quantify
the spurious correlations in datasets. Veitch

et al. (2021) formalize spurious correlations in
a causal framework and consider the model’s
prediction should be invariant to perturbations
of the spurious feature. Gardner et al. (2021)
assume a uniform distribution obeyed by the
prediction conditioned on any single feature and
figure out spurious features with hypothesis testing.

Model-centric  Methods: Model-centric
strategies aim to prevent models from overfitting
the biased features in samples during training.
Belinkov et al. (2019b) improves the robustness
of models on OOD datasets through the removal
of biased features at a representative level with
adversarial training techniques. Product-of-Expert
(Karimi Mahabadi et al., 2020) and its variant
Learned-Mixin (Clark et al., 2019) debias the
model by adjusting the loss function to down-
weight the samples that can be easily solved by
bias-only models. Tang et al. (2023) capture
the model biases automatically by shuffling the
words of the input sample and further debias the
models in product of experts. Utama et al. (2020)
introduce a confidence regularization method to
discourage models from exploiting biases, without
harming the ID performance. Yaghoobzadeh et al.
(2021) robustify models by fine-tuning the models
twice, first on the full data and second on the
minorities with low confidence.

Data-Centric Methods: Several works try
to improve the robustness by conducting data-level
manipulations such as data augmentations and
data filtering. Bartolo et al. (2021) generate
adversarial datasets to improve the robustness of
question answering models. Le Bras et al. (2020)
propose AFLITE which adjusts the distribution
through adversarial filtering. Wu et al. (2022)
fine-tunes a GPT-2 (Radford et al., 2019) to
fit the original dataset, then conducts spurious
filtering to generate a debiased dataset. Ross et al.
(2022) alleviate the syntactic biases in datasets by
semantically-controlled perturbations to generate
samples with high semantic diversity. Different
from these approaches, PDD generates samples
via a training-free perturbation strategy and can be
applied to a variety of known dataset biases.

3 Methodology

In this section, we describe how our framework
PDD works in detail. We start by selecting a set
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Figure 1: An overview of PDD. The z-value of z is rejected by the uniform hypothesis (above the threshold). To
reduce its z-value, we iterate through the samples that contain & and conduct perturbations to generate new samples
to make p closer to pg. Each time a sample is perturbed, we update the p and z-value. The process is stopped when

the z-values over all labels are under the threshold.

of task-independent features based on prior knowl-
edge (Poliak et al., 2018; McCoy et al., 2019) and
quantify their correlations to the labels via z-value
so as to identify the biased features (section 3.1).
Then we iteratively conduct perturbations on the
samples containing biased features to reduce the
z-value and produce debiased datasets (section 3.2).
The key component — a training-free perturbation
strategy — is described separately (section 3.3).

Throughout this section, we use the NLI task as
an example for illustration. Note that our frame-
work is not limited to the NLI task but is applicable
to a wide range of NLU tasks.

3.1 Quantifying Dataset Biases

We start by selecting a set of task-independent fea-
tures that are widely studied in previous works (Gu-
rurangan et al., 2018; McCoy et al., 2019; Poliak
et al., 2018). Specifically, we select the following
three features: (1) unigrams; (2) lexical overlap
(the number of words shared by premise and hy-
pothesis normalized by the length of hypothesis);
(3) hypothesis-only predictions (the predictions of
a model that takes only the hypothesis as the input).

To identify biased features and quantify the
dataset biases, we follow Gardner et al. (2021)

to utilize a hypothesis testing technique. The as-
sumption behind is that the posterior probability
given only a task-independent feature should fol-
low a uniform distribution. And the features vi-
olating the assumption are considered as biased
features. More formally, for each task-independent
feature x, let N be the number of samples contain-
ing x, K the number of classes, and py = 1/K
the ideal probability following the uniform distri-
bution. The conditional probability p(y = [|x),
which is approximated by its expectation value
ply = lz) = XN, I(y; = 1), should be uni-
form over the class labels [. Under the uniform
hypothesis: p(y = l|x) = py, we compute the
standardized z-statistics, which measures the devi-
ation of p from the uniform distribution:

b —Po

Vol —po)/n

2*(l,x) = (1)

We refer to the absolute value of z-statistic as z-
value. The larger the z-value is, the stronger the
correlation between x and [. We consider the fea-
tures whose z-value exceeds a predefined threshold
T as the biased features and collect them as a biased
feature set Xjp.
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3.2 Debiasing Datasets by Reducing Z-value

Under the uniform hypothesis, debiasing a dataset
is equivalent to weakening the correlation between
the task-independent features and the labels un-
til their z-values are all within the threshold. To
achieve this, we iteratively perturb the samples that
contain biased features to reduce the z-value.

Let Dy denote the original biased dataset, and
D the debiased dataset. we initialize the debiased
dataset D = Dy. For each x € X}, we compute
the z-values of x over all labels. Then we iter-
ate through the samples (P, H,!) that contain x
and conduct perturbations on those samples with
z-value exceeding the threshold 7. Those samples
to be perturbed can be separated into two cases:
() p(y = l|z) < po and (2) p(y = l|z) > po.
For each sample in the first case where p(y =
l|z) < po, we perturb it to generate a new sam-
ple S’ = (P’, H',1) still containing x and add it to
D, so as to increase p. For each sample in the sec-
ond case where p(y = l|z) > po, we perturb it to
get S’ = (P’, H', 1) not containing z and add it to
D and remove the original sample S from D, so as
to decrease p. Both the two operations above aim
to reduce the z-value by bringing the p(y = l|z)
closer to pg (see appendix C for proof). The pertur-
bations are conducted iteratively until the z-values
of all x over all labels are under the threshold 7.
The perturbation strategies are detailed in the next
section and the full algorithm is demonstrated in
Figure 1 and Algorithm 1.

3.3 Training-free Perturbations

In order to perturb the samples to generate new
samples at a low cost, we abandon the previous
way to fine-tune a large generator and instead pro-
pose a training-free perturbation strategy consisting
of two stages: (1) feature-specific masking and (2)
label-preserving augmentation via MLM. The first
stage regulates the appearance of biased features
in the generated samples by masking tokens and
the second stage helps generate samples while pre-
serving the original labels. The whole procedure is
depicted in Figure 2.

3.3.1 Feature-specific Masking

Since the biased features vary, we manually design
different masking rules for different biased features
according to the value of p (listed in appendix A.1).

e p(y = llx) < po : In this case, we gen-
erate new samples still containing z to increase
p(y = l|x) so as to bring it closer to pg. Therefore,

Algorithm 1: Z-value Reducing

Input: Biased dataset Dy; Biased feature set Xy;
Number of labels K'; Threshold 7
Output: Debiased dataset D.

Initialize D+ Dy.

for x € X} do

Compute z*(I,z) I =1,..., K)

while max (|2*(l,z)|) > 7 do

for S = (P,H,l) € Dy do

if S contains x and |2* (I, z)| > T
then

if p(y = l|z) < po then

Perturb S to get
' = (P, H1)
containing x

Add S’ to D

end

else

Perturb S to get
' = (P, H',1)
not containing =

Add S’ to D

Remove S from D

end
Update z* (I, x)

end

end

end
Dy<—D

end

x should be retained when masking words. To be
specific, for unigrams, we skip the biased words
and randomly mask the rest of the words to a fixed
percentage. For lexical overlap, we retain the over-
lapped words in the premise and the hypothesis
and randomly mask the rest. For hypothesis-only
predictions, we retain the hypothesis and randomly
mask the premise.

e p(y = l|x) > po : In this case, we generate
new samples not containing z to decrease p(y =
[|x) to bring it closer to pg. Therefore, x should be
eliminated in the masking stage. Specifically, for
unigrams, we mask the biased word and the rest
randomly to a fixed percentage. For lexical overlap,
we mask the overlapped words and the rest to a
fixed percentage. In terms of the hypothesis-only
predictions, we randomly mask the hypothesis.

3.3.2 Label-preserving Augmentation via
MLM

After masking, we employ MLM to fill in the
blanks to generate new samples. To improve label
consistency, we propose prompt-based filling to
encourage the MLM to preserve the labels and a
confidence filtering step to filter out the generated
samples with inconsistent labels.
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P: He is sleeping. P: He is awake.
H: |Nobociz]sleeps H: He sleeps.

=

P: He is <mask>.
—_— ?
H: <mask> sleeps. He is <mask>. No . <mask> sleeps.

(1) p(C| Nobody) > py

: Everyone stays. P: Nobody stays.
Nobod_] leaves. H: Nobody remains.

E E

P: <mask> stays.

MLM
H: Nobody <mask>.

—p <mask> stays. ? Yes . Nobody <mask>.

(2) p(E | Nobody) < po

Figure 2: An illustration of our perturbations in NLI. Each sample consists of a premise (P) and a hypothesis (H).
E, N, and C represent entailment, neutral, and contradiction respectively. The biased word “Nobody” is highly
correlated with the label and rejected by the uniform hypothesis testing. In the case p > pg (left), we mask “nobody”
and adopt prompt-based filling to generate a batch of candidates. Then we adopt a confidence filter to select the one
with the highest confidence on the correct label. In the case p < pg (right), we preserve “nobody” during masking,

followed by a similar subsequent augmentation process.

Prompt-Based Filling: To improve label
consistency of generated samples, we design
label-specific prompts to incorporate the label
information into the input of the MLM. In this way,
the MLLM is encouraged to take the label informa-
tion into consideration. To build such prompts, we
follow Zhou et al. (2022) to map the label [ to a
relevant prompting word [w]. Specifically, We map
“entailment” to “Yes”, “neutral” to “Maybe”, and
“contradiction” to “No”. We feed the connected
input “Ppask?[w]. Hpask” into the MLM, where
Phask denotes the masked premise and H g5k
denotes the masked hypothesis, to encourage it to
generate samples with correct labels.

Confidence Filtering: Though label-specific
prompts help to preserve the labels, the MLM may
still generate samples that are inconsistent with
the labels. To address this, we follow previous
works (Yang et al., 2020; Wu et al., 2022) to train
a BERT-base model on the original dataset and use
it as a filter. For each masked sample, we generate
various candidates and feed them to the filter. We
choose the one with the highest output confidence
to maintain label consistency.

4 Experimental Setup

To validate the effectiveness of PDD, we conduct
experiments on three NLU tasks: natural language

inference, fact verification, and paraphrase identi-
fication. We compare PDD with existing state-of-
the-art debiasing strategies on several OOD chal-
lenging datasets (Karimi Mahabadi et al., 2020;
Clark et al., 2019; Utama et al., 2020; Meissner
et al., 2022; Wu et al., 2022; Sanh et al., 2021).

4.1 Natural Language Inference

Source Dataset: Following previous works
(Poliak et al., 2018; McCoy et al., 2019), we use
the MultiNLI (MNLI) (Williams et al., 2018) as
the original dataset. MNLI has two ID test sets
(MNLI-m and MNLI-mm), one that matches
the domains of the training data and one with
mismatching domains.

Biases in Dataset: (1) syntactic bias: Mc-
Coy et al. (2019) find that models tend to exploit
syntactic biases in datasets (e.g., the syntactic
overlapping between the premise and hypothesis is
strongly correlated with the entailment label). (2)
hypothesis-only bias: Poliak et al. (2018) shows
that a hypothesis-only model that can only see the
hypothesis during training captures statistical cues
in the hypothesis and succeed in predicting the
majority of the test samples accurately.

Debiased Dataset: Considering the biases
in MNLI, we select three features: (1) unigrams;
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(2) lexical overlap > 0.8; (3) hypothesis-only
predictions and debias them one by one. We first
debias the hypothesis-only prediction, then the
lexical overlap, and finally the unigrams. The
order is determined by ranking the z-value from
highest to lowest. Details of our debiased datasets
are shown in appendix A.

OOD Evaluation Dataset: For syntactic
bias, we adopt HANS (McCoy et al., 2019), a
challenging evaluation dataset where the lexical
heuristics in MNLI fails. For hypothesis-only bias,
we choose the MNLI-hard (Belinkov et al., 2019a)
that is constructed from the two ID test datasets
by filtering out the samples that can be accurately
predicted by a hypothesis-only model.

4.2 Fact Verification

Source Dataset: This task involves verifying a
claim sentence in the context of a given evidence
sentence. We use the FEVER dataset (Aly et al.,
2021) that consists of pairs of claims and evidence
generated from Wikipedia. FEVER consists of
samples with three labels: support, refutes, and not
enough information.

Biases in Dataset: Claim-only bias: Schus-
ter et al. (2019) find that in FEVER the occurrence
of words and phrases in the claim is biased toward
certain labels, which is exploited by claim-only
models for inference.

Debiased Dataset: We select two features
(1) unigrams and (2) claim-only predictions, and
debias the claim-only predictions first then the
unigrams. The order is determined by ranking
the z-value from highest to lowest. Note that
samples with “not enough information” labels just
account for a fairly small proportion of the whole
training set, which makes it difficult to reduce
the z-value. To address the difficulty, we view
“refutes” and “not enough information” as one
class when computing z-values.

OOD Evaluation Dataset: For claim-only
bias, we use the Fever-symmetric dataset (Schuster
et al., 2019) for evaluation. This challenging set is
constructed by making claim and evidence appear
with each label to avoid the idiosyncrasies in
claims. Hence, models relying on biases in claims
fail on the challenging OOD datasets.

4.3 Paraphrase Identification

Source Dataset: This task is to determine whether
two given questions are semantically matching
(duplicate) or not. We adopt the Quora Question
Pairs (QQP) (DataCanary, 2017) dataset for
debiasing. QQP consists of pairs of questions
which are labeled duplicate or non-duplicate.

Biases in Dataset: Syntactic bias: In QQP,
pairs with low word overlap (<0.8) are heavily
unbalanced over labels, indicating a severe
lexical overlap bias in QQP. Models trained on
QQP heavily rely on lexical-overlap features for
inference and fail on negative question pairs with
high word overlap (Zhang et al., 2019).

Debiased Dataset: We consider two fea-
tures: (1) lexical overlap < 0.8 and (2) unigrams,
and debias them in descending order of z-value.
Notice that samples in QQP with low lexical
overlap are heavily biased to the non-duplicate
label. Hence we choose lexical overlap < 0.8
instead of lexical overlap > 0.8.

OOD Evaluation Dataset: We select the
QQP subset of PAWS (Paraphrase Adversaries
from Word Scrambling) (Zhang et al., 2019) for
evaluation. Paws contains 108,463 pairs where the
majority of non-paraphrase pairs have high lexical
overlap. Models trained on QQP fail miserably on
PAWS, much worse than the random baseline.

4.4 Compared Methods

For a comprehensive evaluation, we compare PDD
against a range of existing debiasing methods.

e BERT-base (baseline) (Devlin et al., 2019)
which shows impressive performance on dif-
ferent NLU benchmarks (Wang et al., 2018),
is considered as the base model.

e Product-of-Expert (PoE) (Karimi Mahabadi
et al., 2020) ensembles a bias-only prediction
with the prediction of the main model to en-
force the main model to focus on the samples
that are not predicted correctly by the bias-
only model.

* Learned-Mixin (Clark et al., 2019) improves
the performance by proposing a learnable
weight for the bias-only model’s predictions.
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MNLI-m MNLI-mm
Method D 00D D 00D
dev test dev-hard test-hard dev test dev-hard test-hard

BERT-base (baseline) 84.06 84.69 76.42 76.21 84.65 83.49 71.71 75.68
PoE (Karimi Mahabadi et al., 2020)#* 84.6 84.1 78.2 71.5 849 835 79.1 783
Learned-Mixin (Clark et al., 2019)#*  80.5  79.5 79.2 81.2 804 - 78.2
Reg-conf (Utama et al., 2020)#* 84.6 84.1 78.3 85.0 84.2 - 77.3
Z-aug (Wu et al., 2022)¢* 84.72 85.12 78.95 78.60 85.14 84.09 80.29 78.51
PDD (ours)4 84.81 85.09 79.12 78.67 84.95 83.73 80.06 78.27
PoE + MNLI (baseline) 81.84 82.32 78.19 78.23 82.31 81.29 79.58 77.01
PoE + Z-aug 82.39 83.47 79.86 79.84 82.35 82.15 81.12 78.92
PoE + PDD (ours) 83.14 83.72 79.88 79.79 83.28 8242 81.06 78.95

Table 1: Accuracy of models on the in-distribution datasets of MNLI-m and MNLI-mm along with their hard
datasets: MNLI-m hard and MNLI-mm hard. We present the best results in bold and the second with underlines. &
and ¢ represent the model-centric methods and data-centric methods respectively. * are results reported in previous

works.

¢ Reg-conf (Utama et al., 2020) utilizes confi-
dence regularisation to avoid the drop in ID
performance and simultaneously improves the
OOD performance.

* Reweighting (Schuster et al., 2019) assigns
a balancing weight to each training sample
based on the correlation of the n-grams within
the claims with labels for FEVER.

* Debiasing-Masking (Meissner et al., 2022)
assumes that bias in NLI is caused by a certain
subset of weights in the network and designs
a mask search to remove the biased weights.

* Weak-Learner (Sanh et al., 2021) leverages
limited capacity models which learn to exploit
biases to train a more robust model via PoE.

e Z-aug (Wu et al., 2022), a typical data-centric
debiasing method for NLI datasets, augments
samples via a fine-tuned GPT-2 with a subse-
quent z-filtering step.

Enhancing PDD with Model-Centric Methods:
Since PDD is a data-centric debiasing method and
is agnostic to the models, we examine whether
model-centric debiasing methods can also benefit
from our debiased datasets and further improve the
robustness of models. Following (Wu et al., 2022),
we experiment PoE on our debiased MNLI dataset
and evaluate on MNLI and HANS (implementation
details listed in appendix D).

4.5 Implementation

We adopt the BERT-base model (Devlin et al.,
2019) as the backbone for all the methods. As

for PDD, we adopt XLM-large (Conneau et al.,
2019) as the MLM and train the BERT-base model
on the debiased dataset produced by PDD. Experi-
ments are repeated 5 times with different random
seeds and the average scores are reported. More
implementation details are listed in appendix B.

5 Results

Experimental results on MNLI-hard, HANS,
FEVER and QQP are shown in Table 1, Table 2,
Table 3, and Table 4 respectively. The main results
are summarized as follows.

e PDD outperforms the BERT baseline on
both ID and OOD datasets. Compared with the
BERT-base model trained on the original dataset,
PDD greatly boosts the OOD accuracy by 5.71% on
HANS, 2.46% on MNLI-m hard, 2.59% on MNLI-
mm, 4.43% on FEVER-symmetric and 6.49% on
PAWS respectively. Additionally, PDD also shows
better ID performance than the baseline on these
benchmarks except QQP. The substantial ID im-
provements on FEVER (85.66—88.51) may be at-
tributed to the distributional gap between the train-
ing set and the development set.

e PDD demonstrates competitive perfor-
mance with existing state-of-the-art methods.
On MNLI-hard and HANS, PDD obtains similar
improvements to model-centric debiasing methods.
On FEVER, we notice that PDD achieves the best
scores on both the development set (88.51) and the
symmetric set (62.48).

e PDD yields further improvements when
combined with model-centric methods. After
conducting PoE on our debiased dataset, we find
that models exceed any single debiasing method
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and establish a new state-of-the-art on HANS to
the best of our knowledge.

Method HANS
BERT-base (baseline) 63.25
PoE(Karimi Mahabadi et al., 2020)#* 66.31
Learned-Mixin (Clark et al., 2019)d* 66.15
Reg-conf (Utama et al., 2020)#* 69.1
Reg-confye; f—depias (Utama et al., 2020)d* 67.1
Weak-Learner (Sanh et al., 2021)d* 67.9
Debiasing-Masking (Meissner et al., 2022)#*  68.69
Z-aug (Wu et al., 2022)¢* 67.69
PDD (ours) ¢ 68.96
PoE+ MNLI (baseline) 68.84
PoE + Z-aug 72.04
PoE + PDD (ours) 72.86

Table 2: The accuracy of models evaluated on HANS.

Method dev  symmetric
BERT-base (baseline) 85.66 58.05
PoE®# (Karimi Mahabadi et al., 2020)* 83.3 62.0
Learned-Mixind (Clark et al., 2019)* 83.1 60.4
Reg-confé (Utama et al., 2020)* 86.4 60.5
Reg-confyeif—depias# (Utama et al., 2020)*  87.6 60.2
Reweighting# (Schuster et al., 2019)* 85.5 61.7
Weak-Learnerd (Sanh et al., 2021)* 86.4 58.5
PDD¢ (ours) 88.51 62.48

Table 3: The accuracy of the models on the development
set of FEVER and FEVER-symmetric.

Method dev PAWS
BERT-base (baseline) 91.27 3582
PoE# (Karimi Mahabadi et al., 2020)* 86.9 56.5
Learned-Mixind (Clark et al., 2019)* 87.6 55.7
Reg-conféh (Utama et al., 2020)* 89.1 40.0
Reg-confyef—debias® (Utama et al., 2020)* 89.0 43.0
Reweightingd (Schuster et al., 2019)* 89.5 48.6
Debiasing-Maskingé (Meissner et al., 2022)*  89.6 443
PDD¢ (ours) 89.37 4231

Table 4: The accuracy of the models on the development
set of QQP and PAWS.

6 Discussions and Analysis

6.1 Generalisation to Larger PLMs

We verify whether PDD is able to generalize to
larger and more powerful Pre-trained Language
Models (PLMs). We select three widely-used
PLMs as substitute for Bert-base model: Roberta-
base, Roberta-large (Zhuang et al., 2021), and
Alberta-xxlarge (Lan et al., 2019).

As observed in Table 5, PDD successfully gen-
eralizes to larger PLMs, yielding average gain of

1.79%, 1.38%, 0.59% for Roberta-base, Roberta-
large and Albert-xxlarge respectively. Additionally,
great improvements in accuracy are observed on
the HANS dataset. One possible reason is that the
feature-specific masking helps to relieve the syntac-
tic heuristic by directly masking the words shared
between the premise and the hypothesis.

Model MNLI PDD A
On MNLI-m hard

Roberta-base 81.52 8220 +0.68
Roberta-large 85.24 86.21 +0.97
Albert-xxlarge 85.74  86.27 +0.53
On MNLI-mm hard

Roberta-base 81.92 82.83 +0.91
Roberta-large ~ 85.21 85.56 +0.35
Albert-xxlarge 86.13 85.98 -0.15
On HANS

Roberta-base 73.86 77.65 +3.79
Roberta-large  77.48 80.31 +2.83
Albert-xxlarge 76.31 77.71 +1.40

Table 5: Performance of larger PLMs on MNLI.

6.2 Debiasing Augmentation vs Common
Data Augmentation

To verify whether the improvement of robustness
on OOD datasets results from our perturbations or
just from the increment of data size, we contrast our
method with two common augmentation strategies:
Easy Data Augmentation (EDA) (Wei and Zou,
2019) and Back Translation (BT) (Fadaee et al.,
2017; Sennrich et al., 2016; Yu et al., 2018).

Figure 3 shows the results. The increment
of data size does not necessarily lead to better
OOD performance and the improvement of ro-
bustness mainly results from our perturbations.
PDD achieves higher accuracy on both MNLI-hard
and HANS, suggesting the models actually benefit
from our perturbations.

While the back translations help improve the
OQOD accuracy, EDA harms it. Additionally, we
exploit the potential of PDD as a regular augmenta-
tion framework by setting the threshold of z-value
to 0 to produce more samples and finally get a de-
biased dataset with 740K samples. We find slight
performance decrement after augmentation. One
possible explanation is that the increment of data
size introduces unknown biases.
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Figure 3: Accuracy of models trained on different aug-
mented datasets on MNLI-m hard (left) and HANS
(right).

6.3 Transfer Performance

Following Karimi Mahabadi et al. (2020), we eval-
uate how well PDD can generalize to multiple out-
of-domain test sets. We select 7 different datasets
including MPE (Lai et al., 2017), MRPC (el Said
et al., 2015), SCITAIL (Khot et al., 2018), SICK
(Marelli et al., 2014), QNLI, WNLI, and RTE
(Wang et al., 2018). We take the Bert-base models
trained on debiased MNLI and test them on the
development sets of these datasets.

PDD achieves substantial improvement in
generalization to multiple OOD datasets (Table
6). Models trained on debiased MNLI achieve an
average gain of 1.24% on accuracy and perform
better than the baseline on 6 of these datasets.

Dataset  Baseline PDD A

MPE 75.07 76.68 +1.61
MRPC 57.84 59.31 +1.47
QNLI 50.61 50.86 +0.25
WNLI 43.66  45.07 +1.41
SCITAIL  76.99 77.99 +1.00
SICK 55.13 54.07 -1.06
RTE 74.37 78.34 +3.97

Table 6: Accuracy of models trained on debiased MNLI
transferring to new target datasets.

Method MNLI-m hard HANS

Baseline 76.42 63.25

Full method 79.12 68.96
w/o unigrams 78.56_¢.56 67.58_138
w/o lexical overlap 78.80_¢.32 66.49_5 47
w/o hyp-only prediction  76.70_3 42 64.52_4 44
w/o confidence filtering ~ 74.87_4.95 56.96_12.00

Table 7: Ablation study conducted on MNLI-m hard
and HANS.

6.4 Ablation Study

We perform ablation studies to assess the impact of
different components in our framework including
(1) biased features and (2) the confidence filter.

Results on MNLI-m and HANS are presented
in Table 7. All the components contribute
to the improvement of model robustness. A
Performance drop is observed when any of
the selected components is removed. Even the
removal of hypothesis-only prediction which only
targets the hypothesis-only bias influences the
performance of models on HANS, indicating
that those features are not independent and all
contribute to the robustness of models.

7 Conclusions

We propose PDD, a novel and cost-effective de-
biasing framework for NLU datasets adopting a
training-free perturbation strategy to mitigate the
statistical correlations between biased features and
labels. In contrast with existing data-centric strate-
gies, PDD shows applicability to various biases
in different datasets at a low cost. Extensive ex-
periments demonstrate its effectiveness over exist-
ing baselines. When combined with model-centric
methods, PDD further improves the OOD perfor-
mance, achieving a new state-of-the-art. Future
work may concern extending PDD with automatic
identifications of biased features.

Limitations

Despite that PDD achieves impressive results on
several challenging OOD datasets, it still has the
following limitations: (1) The selection of biased
features heavily relies on prior knowledge. (2)
Since our algorithm to reduce the z-value is a
greedy one, the operation to mitigate the z-value
of one class may influence the z-values of other
classes. It is difficult to balance the z-value over all
classes for tasks with a large size of labels.
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A Debiased datasets

A.1 Data Size of Debiased Datasets

Dataset | Original | Debiased
MNLI | 391,120 | 594,220
FEVER | 242911 | 284,767
QQP 384,346 | 571,706

Table 8: Data size of our debiased datasets.

A.2 Debiased MNLI

Lexical overlap > 0.8 Lexical overlap > 0.8
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Figure 4: The label distribution of samples with lexical
overlap > 0.8 in MNLI (left) and debiased MNLI (right).
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Figure 5: The label distribution of samples under differ-
ent predictions of hypothesis-only model in MNLIL.
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Figure 6: The label distribution of samples under dif-
ferent predictions of hypothesis-only model in debiased
MNLIL

A.3 Debiased FEVER
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Figure 7: The label distribution of samples under differ-
ent predictions of claim-only model in FEVER.
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Figure 8: The label distribution of samples under dif-
ferent predictions of claim-only model in debiased
FEVER.

A.4 Debiased QQP

Lexical overlap < 0.8 Lexical overlap < 0.8

1.0 1.0
0.8 0.8
20.6 0.6
2
0.4 0.4
0.2 0.2
0.0 duplicate non-duplicate 00 duplicate non-duplicate

Figure 9: The label distribution of samples with lexical
overlap < 0.8 in QQP (left) and debiased QQP (right).

A.5 Masking Rules

We manually design the masking rules for different
biased features under two situations p > po and
p < po. All our masking rules derive from a
random masking method and are listed in table 9.
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feature

masking rules

P > po P < po

unigrams

mask the single word

mask the rest

lexical overlap

mask common words in P and H

mask the rest

hypothesis-only prediction

mask words of H

mask words of P

claim-only prediction

mask words of C'

mask words of &/

Table 9: List of masking rules. P and H denote the premise and hypothesis. C and E denote the claim and evidence.
All the masking rules derive from a random masking strategy: we mask the words of the samples to a fixed

percentage.

B Hyper-Parameters

We carry out all our experiments in a Linux en-
vironment with a single RTX 3090 (24G). B.2,
B.3 and B .4 list the details of hyperparameters for
fine-tuning a BERT-base model. For roberta-base,
roberta-large, and Albert, we fix other hyperparam-
eters and just change the batch size (32 for roberta-
base, 16 for roberta-large, and 8 for Albert) due to
the limitation of GPU memory. We roughly spend
30 hours to debias MNLI and 20 hours for FEVER
and QQP.

B.1 Perturbations

Hyperparameter Value
Masking ratio for unigram 0.25
Masking ratio for H-only prediction 0.4
Masking ratio for lexical overlap 0.4
Threshold 7 20
Pre-trained MLM XLM-large

Table 10: Hyperparameter for perturbations

B.2 NLI Model Training

Hyperparameter Value
Learning rate 2e-5
Batch size 32

Loss Cross-Entropy
Epoch 5
Optimizer Adam (default)
Learning rate scheduler Linear
Warm up steps 2000
Max sequence length 128

Table 11: Hyperparameter for training NLI models on
MNLI and our debiased MNLI

B.3 FEVER Model Training

Hyperparameter Value
Learning rate le-5
Batch size 8

Loss Cross-Entropy
Epoch 5
Optimizer Adam(default)
Learning rate scheduler Linear
Warm up steps 1500
Max sequence length 128

Table 12: Hyperparameter for training models on
FEVER and our debiased FEVER

B.4 QQP Model Training

Hyperparameter Value
Learning rate le-5
Batch size 16

Loss Cross-Entropy
Epoch 5
Optimizer Adam(default)
Learning rate scheduler Linear
Warm up steps 2000
Max sequence length 128

Table 13: Hyperparameter for training models on QQP
and our debiased QQP

C Reducing Z-values

Given feature = and label [, the object z-value to
optimize is

b —DPo

E Ty

We donate the number of samples under each

K A n,
label as ny, na,..., ng. n = X;_ n; p = #
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Reducing z-value equals to reduce

o l,x2: b —Po 2
ha) =1 po(l—Po)/”)

o n(p — po)*

When we conduct the perturbations we can only
see a sample with its label /, so we just consider
partial derivative along n;:

0z*(l,x)®>  2n;  ny? 9
_— = _— = 2
n2 Do + Po

ony n

= (2+po +p)(po — b)

Hence the operation on n; to reduce z-value ac-
tually work by minimizing the gap between p and
po. For p < pg we increase p by n; + 1 and for
p < po we decrease p by n; — 1.

D Details of Combining PoE with PDD

D.1 Bias-Only Model for Hypothesis-Only
Bias

We consider the BERT-base model that can only

see the hypothesis during training to model the

artifacts in the hypothesis.

D.2 Bias-Only Model for Syntactic Bias

Instead of using the manually designed features
proposed by (Karimi Mahabadi et al., 2020), we
train a BERT-base model that can only see the un-
ordered words to capture the syntactic bias (Tang
et al., 2023).

E Perturbation Strategies

In Table 14, we illustrate our masking rules for
MNLI with concrete examples.
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unigrams

Original: P: It’s kind of strange here the way things go uh here if you have an accident and no one’s injured the police won’t even show up.
H: The police don’t show up if is hurt.
I: entailment

Biased feature: # = nobody  p(l|z) < %

Masking rule: Preserve , randomly mask other words.

Masked: P: It’s kind of <mask> here the way we go uh here if you have an accident and no one’s <mask> the police won’t even <mask> up.
H: The police don’t show up <mask> <mask> hurt.
I: entailment

Perturbed: P: It’s kind of weird here the way we go uh here if you have an accident and no one’s hurt the police won’t even get up.
H: The police don’t show up even gets hurt.
I: entailment

Original: P: One of our number will carry out your instructions minutely.
H: A member of our team will execute your orders with great precision.
I: entailment

Biased feature: @ = carry  p(l|z) > %

Masking rule: Mask carry, randomly mask other words.

Masked: P: One of our number will <mask> <mask> your instructions minutely <mask>
H: A member of our team will execute your <mask> with <mask> <mask>.
I: entailment

Perturbed: P: One of our number will execute all your instructions minutely correct.
H: A member of our team will execute your instructions with immense efficiency.
I: entailment

hypothesis-only prediction

Original: P: Muller and most of his staff can be expecteded not to cause any more of the usual mid-night disturbances. .
H: Muller will most likely cause more trouble.
I: contradiction

Biased feature: « = prediction of a hypothesis-only model is p(l]z) < %

Masking rule: Preserve H, randomly mask P.

Masked: P: Muller and most of <mask> staff can be expecteded <mask> to cause <mask> more <mask> the usual pay-night disturbances.
H: Muller will most likely cause more trouble.
I: contradiction

Perturbed: P: Muller and most of his staff can be expecteded her to cause much more than the usual pay-night disturbances.
H: Muller will most likely cause more trouble.
I: contradiction

Original: P: My walkman broke so i’m upset now i just have to turn the stereo up real loud.
H: I'm upset because my walkman broken and now I have to turn the stereo up really loud.
I: entailment

Biased feature: 2z = prediction of a hypothesis-only model is entailment  p(I|z) > %

Masking rule: Preserve P, randomly mask H.

Masked: P: My walkman broke so i’m upset now I just have to turn my stereo up real loud.
H: I'm <mask> <mask> my walkman broken and now I have to turn my stereo up really <mask>.
I: entailment

Perturbed: P: My walkman broke so i’m upset now I just have to turn my stereo up real loud.
H: I’'m sorry that my walkman broken and now I have to turn my stereo up really high.
I: entailment

lexical overlap

Original: P: know very well.

H: quite dislike

1: contradiction
Biased feature: = = word overlap between Hand P> 0.8 j(l|z) < 1
Masking rule: Randomly mask unique words in P and H.

Perturbed: P: <mask> very well.
H: to <mask> dislike
1: contradiction

Perturbed: P: meet very well.
H: really dislike

I: contradiction
Original: P: They were pushing the pace all right.

H: They were pushing the pace.

I: entailment
Biased feature: = = word overlap between Hand P> 0.8 p(l|z) > %
Masking rule: Randomly mask words shared by P and H.
Masked: P: They were <mask> the pace all right.

H: They <mask> pushing the <mask>.

I: entailment
Perturbed: P: They were cleaning the pace all right.

H: They are pushing the car.

I: entailment

Table 14: A demonstration of how we conduct our perturbations under different situations for NLI.
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