
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 10846–10858
December 6-10, 2023 ©2023 Association for Computational Linguistics

Argument mining as a multi-hop generative machine reading
comprehension task

Boyang Liu1, Viktor Schlegel1,2, Riza Batista-Navarro1, Sophia Ananiadou1,3

1 Department of Computer Science, The University of Manchester, UK
2 ASUS Intelligent Cloud Services (AICS), Singapore

3 Artificial Intelligence Research Center, AIST
{boyang.liu-2@postgrad., riza.batista@, sophia.ananiadou@}manchester.ac.uk

viktor_schlegel@asus.com

Abstract

Argument mining (AM) is a natural language
processing task that aims to generate an argu-
mentative graph given an unstructured argu-
mentative text. An argumentative graph that
consists of argumentative components and ar-
gumentative relations contains completed infor-
mation of an argument and exhibits the logic
of an argument. As the argument structure
of an argumentative text can be regarded as
an answer to a “why” question, the whole ar-
gument structure is therefore similar to the
“chain of thought” concept, i.e., the sequence
of ideas that lead to a specific conclusion for
a given argument (Wei et al., 2022). For ar-
gumentative texts in the same specific genre,
the “chain of thought” of such texts is usually
similar, i.e., in a student essay, there is usually
a major claim supported by several claims, and
then a number of premises which are related
to the claims are included (Eger et al., 2017).
In this paper, we propose a new perspective
which transfers the argument mining task into
a multi-hop reading comprehension task, allow-
ing the model to learn the argument structure
as a “chain of thought”. We perform a compre-
hensive evaluation of our approach on two AM
benchmarks and find that we surpass state-of-
the-art results.1 A detailed analysis shows that
specifically the “chain of thought” information
is helpful for the argument mining task.

1 Introduction

Argument mining involves automatically identify-
ing and extracting arguments and their relationships
from natural language texts, such as persuasive es-
says or political speeches. This task aims to iden-
tify the various claims and supporting evidence
used to support a particular argument.

AM can be broken down into four different sub-
tasks (Eger et al., 2017): argumentative component

1Our code is availble from https://github.com/
Boyang-L/MRC-GEN4AM

segmentation (ACS) aims to separate argumenta-
tive units from non-argumentative units; argumen-
tative component classification (ACC) focuses on
classifying argumentative components (AC) into
specific types; argumentative relation identifica-
tion (ARI) determines which ACs are related to
each other, and the direction of these argumen-
tative relations (AR); and argumentative relation
classification (ARC) handles the labelling of the
ARs. The ARI and ARC subtasks can be combined
together as an argumentative relation identification
and classification (ARIC) subtask where the model
needs not only to predict the existence and the di-
rection (if exists) of an AR but also its type (Si
et al., 2022).

The argument structure of an argumentative text
can be regarded as an answer to a “why” question;
therefore, the whole argument structure is similar
to the “chain of thought” concept—spelling out
a sequence of reasoning steps (forming a reason-
ing path) that leads to a specific conclusion for a
given argument (Wei et al., 2022). For argumenta-
tive texts of the same genre, the structure of such
“chains of thought” tends to be similar: In a student
essay, there is usually a major claim supported by
several other claims, and then a number of premises
which are related to the claims (Eger et al., 2017).
Similarly, for scientific abstracts such as shown in
Figure 1, premises about experimental results are
used to support aspect-based claims (i.e., AC5 in
Figure 1 mentions three aspects: postoperative IOP,
bleb morphology and complications), which are
further used to support a high-level claim (AC6 in
Figure 1) as the conclusion of the abstract. How-
ever, most of the previous works (Mayer et al.,
2020; Rodrigues and Branco, 2022; Saadat-Yazdi
et al., 2023) ignore such structural similarity and
mainly pay attention to single ACs for the AC-
related subtasks and AC pairs for the AR-related
subtasks.

To enable the model to learn such chains and

10846

https://github.com/Boyang-L/MRC-GEN4AM
https://github.com/Boyang-L/MRC-GEN4AM

extract argument structure simultaneously, we pro-
pose to convert AM into a generative multi-hop ma-
chine reading comprehension (MRC) task (Yavuz
et al., 2022). It is a sequence-to-sequence task
where the input sequence is a combination of a
query as well as a context, and the output sequence
is the answer with the reasoning path showing how
the model obtains the answer. Concretely, given
an AC as a query and the whole text as the context,
our approach predicts both the reasoning path and
the type of the AC or any other ACs related to the
query AC according to the different subtasks of
argument mining as answer. Here, the reasoning
path is a path from the ROOT AC to the query AC,
where the ROOT AC is defined as the source node of
the longest path in an argumentative graph, which
usually contains the core opinion of an argument,
such as the main conclusion of the abstract. An
example is shown in Figure 1. It is worth mention-
ing that the direction of the path is reversed from
the AR so that the model can learn the high-level
semantics first. The reason that we chose the gener-
ative paradigm is so that only the output is changed
and no extra parameters are included, thus letting
the model leverage the path information. There-
fore, we can directly test the impact of the path
information.

Furthermore, to alleviate the bias arising from
the order of answers learned by the generative
model, we propose a two-direction-based method
that allows the model to learn the output sequence
from both directions.

To summarise, our contributions are as follows:
1) to our best knowledge, we are the first to cast
the argument mining task as a multi-hop MRC
task to let the model learn argumentative reasoning
chains; 2) to alleviate the bias in the order of an-
swers learned by the generative model, we propose
a two-direction-based method; 3) extensive exper-
imentation on two different benchmark datasets
shows that our framework outperforms related mod-
els on most subtasks.

2 Related Work

Argument Mining. Recently, AM has received
increasing attention from the research community,
and a range of models has been proposed (Eger
et al., 2017; Gemechu and Reed, 2019; Hewett
et al., 2019; Lytos et al., 2019; Dutta et al., 2020;
Liu et al., 2022; Cheng et al., 2022; Liu et al., 2023).
Most of them mainly pay attention to local features

to solve the argument mining task. For example,
some models only leverage single ACs or a pair
of ACs as input without wider contextual informa-
tion (Mayer et al., 2020; Accuosto et al., 2021).
Despite using similar input, Galassi et al. (2023)
recognised that individual propositions may not
always provide enough information for AM.

In contrast, alternative studies take advantage
of a broader document context by providing the
entire text to their models. They adopt different
approaches for the AM task, such as treating it as
a sequence tagging task (Eger et al., 2017), a de-
pendency parsing task (Ye and Teufel, 2021) or em-
ploying a prompt-based model (Dutta et al., 2022).

Further, some researchers found that combining
plain text with its structural information is bene-
ficial for AM. Examples include the distance be-
tween two ACs (Galassi et al., 2023); the position
of the AC in the document or paragraph (Potash
et al., 2017; Bao et al., 2021); discourse parser fea-
tures (Hewett et al., 2019); and argumentative zon-
ing information (Liu et al., 2022). Although these
types of information are helpful for the model to
understand the structure of an argumentative text,
a model cannot understand the “chain of thought”
from such structural information and the plain text
only.
Other tasks as MRC task. A recent successful
trend involves treating various other natural lan-
guage processing tasks as an MRC task, such as
relation extraction (Levy et al., 2017), named entity
recognition (Li et al., 2019), event extraction (Liu
et al., 2020) and coreference resolution (Wu et al.,
2020). Unlike traditional MRC, multi-hop MRC
requires the machine to not only predict the answer
of a given query, but also provide the reasoning
path showing how the answer is obtained. In this
paper, we propose a model to transfer the argument
mining task into a multi-hop MRC task so that the
model can learn the “chain of thought” from the
prediction of the reasoning path.

3 Method

As previously mentioned, we assume that the ACS
subtask has been solved and we only focus on the
other subtasks. There are two ways to combine the
remaining subtasks, i.e., ACC + ARIC and ACC
+ ARI + ARC. Considering that there is no estab-
lished preference in existing literature—the former
is used on the AbstRCT dataset (Mayer et al., 2020;
Si et al., 2022; Galassi et al., 2023) and the latter

10847

<non_AC> We assessed bleb morphology and the intraocular pressure (IOP)-lowering effect
of trabeculectomy with ologen compared to mitomycin C (MMC) in juvenile open-angle
glaucoma (JOAG)... <AC1>The mean postoperative IOP was statistically significantly
lower than the mean preoperative IOP at each follow-up in each group. <AC2> At 1 year,
the mean postoperative IOP was significantly lower in group A. <AC3> According to the
MBGS, blebs with an ologen implant showed significantly better scoring than those with
MMC. <AC4> AS-OCT showed that ologen-induced blebs had significantly more fluid-
filled spaces, cleavage planes, and less fibrosis. <AC5> Ologen resulted in a lower long-
term postoperative IOP, a better bleb morphology, and fewer complications. <AC6> Our
results suggest that ologen may be a useful alternative to MMC in JOAG.

Context

<AC5> Ologen resulted in a lower long-term postoperative IOP, a better bleb morphology, and
fewer complications.

Query

ACC : <path> <AC6> <AC5> <answer> <Claim>
ARIC : <path> <none> <AC6> <support> <AC5> <answer> <support> <AC1> <support>
<AC2> <support> <AC3> <support> <AC4>

Output sequence

6

5

1 2 3 4

Graph

Claim

Premise

AR

Path

Figure 1: An example of how our model works on the AbstRCT dataset. Given AC5 as a query and the whole
abstract as the context, the output sequence is the combination of the predicted path (the tokens between the special
tokens <path> and <answer>) and the answer (the tokens following <answer>). In this example, the path contains
two ACs, the ROOT node AC6 and the query node AC5. The answer varies depending on the subtask, i.e., for the
ACC subtask, the answer is <Claim> which means the type of AC5 is claim; for the ARIC subtask, the answer
means that AC1, AC2, AC3 and AC4 are ACs that support AC5. The whole argumentative graph of the context in
the right part can be obtained after all ACs are used as queries. All relation types in this graph are “support”.

is used on the PE dataset (Eger et al., 2017; Kurib-
ayashi et al., 2019; Bao et al., 2021)—we focus on
all four subtasks to enable a fair comparison.

In this section, we introduce how to cast argu-
ment mining as a multi-hop generative MRC task,
which consists of four parts, namely, <query, con-
text, answer, path>, where the input sequence is
the query and the context, and the output sequence
is the answer and the path. We introduce the details
of these two sequences in the following.

3.1 Input sequence

The input of the model is a word sequence that
contains the context and the query.
Context Representation. Let DOC =
{t1, t2, ..., tl} denote an argumentative document,
where ti represents the i-th token in DOC. As
mentioned in Section 1, we assume that the posi-
tion of all ACs in the document is known. The
context representation consists of all tokens in the
document, with additional tokens inserted to de-
note the boundaries of each AC. Specifically, we
insert an < AC_i > token before the start token
of the i-th AC token sequence in document D and
a < non_AC > token before the first token of
all non-argumentative sequences. The context se-
quence C is shown below:

C =< AC_1 > t1, t2... < non_AC > ...ti...
(1)

Query Representation. We use the AC tokens as
queries. There are two types of query representa-
tion Q according to the subtasks: a unary query
Qu that consists of one AC for the ACC, ARI and
ARIC subtasks, and a binary query Qb which is
composed of two ACs separated by the special to-
kens for the ARC subtask:

Qu = tACi1
, ..., tACin

Qb =< ACi > tACi1
, ..., tACin

< ACj > tACj1
, ..., tACjn

(2)

Finally, the input sequence is the concatenation
of the query Q and the context C differentiated by
two specific tokens <query> and <context>.

Input =< query > Q < context > C (3)

3.2 Output sequence
The output sequence of a given query consists of
two parts, the answer sequence and the path se-
quence.
Answer Representation. The answer representa-
tion differs for different subtasks. The details are

10848

Path Representation Answer Representation
ACC < ACp1 > .. < ACpn > < ACTi >
ARI < ACp1 > .. < ACpn > < ACa1 > ... < ACan >
ARC < ACp1 > .. < ACpn > < ARTi >
ARIC < ART1 >< ACp1 > ... < ARTn ><

ACpn >
< ART1 >< ACa1 > ... < ARTn ><
ACan >

Table 1: The path and answer representations for different subtasks. Here, < ACp1
> is the ROOT AC and

< ACpn
> denotes the query AC; < ACa1

> ... < ACan
> are ACs that point to the query AC; < ACTi > and

< ARTi > represent the AC type and the AR type.

shown in Table 1. For the ACC subtask, given
an AC as a query, the model needs to predict the
type of the AC. Similar to the ACC subtask, given
a pair of ACs with a relation between them, the
answer for the ARC subtask is a specific token
< ARTi > representing the AR type. For the ARI
subtask, the answer to a given query contains all
ACs that are related to it. As for the ARIC subtask,
given an AC as a query, the model needs to predict
all the ACs related to it and the relation types at
the same time. Therefore, the ARIC subtask on
the AbstRCT dataset is defined as a directed rela-
tion classification task with three possible types:
None, Support and Attack. Here, a true positive
is an outcome where the model correctly predicts
both the relation type and direction, given two ACs.
Therefore, the answer contains both the type tokens
< ARTi > and the AC tokens < ACai >.

Path Representation. A reasoning path starts from
the ROOT node and ends at the query AC. We define
< ACi > as ROOT when it satisfies the follow-
ing: first, < ACi > does not point to any other
< ACj >; second, there is a path that starts with
< ACi > and the length of the path is the longest
among all the paths. We use the path representa-
tion without relation types for the ACC, ARI and
ARC subtasks. For the ARIC subtask, we also in-
clude type information in the path representation to
align it with the answer representations. The path
representations are shown in Table 1.

The final output sequence is the combination of
the path sequence and the answer sequence denoted
by two specific tokens <path> and <answer>.2

Output =< path > P < answer > A (4)

2Incorporating the whole graph rather than the path infor-
mation might incorporate additional global information, but it
performed worse in initial experiments (see Appendix B).

3.3 Output Order Debiasing

For the ARI and ARIC subtasks, the output is a
set of correct answers rather than a single one,
which raises the question of its order in the out-
put sequence. Arranging them in ascending order
(< AC1 >,< AC2 >, . . .) might teach the model
an order bias and disincentivise the generation of
< ACj > tokens when an < ACi>j > token is
generated, resulting in unrecoverable errors.

To alleviate this issue, we propose a simple but
effective two-direction augmentation method. Con-
cretely, for each ARI and ARIC query, we create
two training samples with different answers, one
sorted by the ordinal number of the AC tokens ap-
pearing in the sequence and the other one sorted in
reverse.

3.4 Training and Inference

Training. The output sequence contains two parts,
path and answer; this is a form of a multi-task
paradigm that includes the learning of both se-
quences jointly. Thus, during training, we calculate
the loss of each part separately and then sum the
two as our final loss function.

L = (1− λ)Lpath + λLanswer (5)

where L is the cross entropy loss function and
λ ∈ [0, 1] denotes the weights of Lanswer.

To let the model leverage the information from
pre-trained language models, we employ a warm
start strategy inspired by (Guo et al., 2022). To
be specific, we use the embedding of number i
as the initial representation for the specific token
< ACi > instead of training the embedding from
scratch. The model will cost more time and the
training will be unstable if the model learns the
embeddings from scratch during fine-tuning. The
representation of the context is kept the same for
all four subtasks.

10849

During the training phase, we optimise the nega-
tive loglikelihood using teacher forcing.3

Inference. During inference, we use beam search
decoding to obtain the output sequence Output in
an autoregressive manner. We then post-process the
decoded sequence using the answer indicator (<an-
swer>) to obtain the answer and convert the output
sequence into labels according to their meanings
described in Section 3.2.

4 Empirical study

4.1 Dataset

We used two publicly available datasets to evaluate
our model and compare it with results obtained by
previously proposed models. Descriptive informa-
tion on these two datasets is provided in Table 2.
Next, we will give a brief description of them.

Documents All ACs All ARs
Neo_train 350 2267 1427
Neo_dev 50 326 210
Neo_test 100 686 424
Gla_test 100 594 367
Mix_test 100 570 329
PE 2235 6095 3832

Table 2: Statistics of datasets used in our paper. In order
to show the difference between different test sets of the
AbstRCT dataset, we report the data statistics of three
test sets separately. Here, Neo, Gla and Mix represent
neoplasm, glaucoma and mixed. The statistics of the PE
dataset are paragraph level.

AbstRCT (Mayer et al., 2020) is comprised of
659 abstracts from biomedical publications. These
abstracts are annotated with three types of ACs
(major claim, claim and evidence) and two types of
ARs (support and attack). The dataset is divided
into three parts. The first part, the neoplasm corpus,
is further divided into training, development and
test sets. Additionally, there are two separate test
sets: one for glaucoma and another for a mix of
topics. The argumentative graphs in this dataset
exhibit a non-tree (graph) structure.
Persuasive Essays (PE) (Eger et al., 2017) con-
tains of 402 essays (2235 paragraphs). Three types
of ACs (MajorClaim, Claim, and Premise) are used
for annotation. In addition, there are two types of

3Note that we experimented with multi-task learning by
training the model on all subtasks at once, but this set-up
performed worse than the formulation introduced above (see
Appendix A for details).

ARs: support and attack. In order to maintain con-
sistency with previous studies (Bao et al., 2021;
Kuribayashi et al., 2019), each paragraph with its
ACs and ARs is considered as an instance. Here,
each AC is associated with at most one outgoing
AR, which means that the argumentative graph of
each paragraph has a tree or forest structure.

4.2 Evaluation and Implementation

Evaluation. For the AbstRCT dataset, we follow
previous studies (Mayer et al., 2020; Si et al., 2022;
Galassi et al., 2023) by merging major claim and
claim into a single category. All results on both
datasets are averaged scores of three different ran-
dom seeds and are reported as macro-averaged F1
scores. For the AbstRCT dataset, we use the same
train-development-test split as Si et al. (2022). For
the PE dataset, we keep the same train-test split
and randomly select 10% of the training set for
validation, like Bao et al. (2021) do.
Implementation. We fine-tune a BART-Base
model (Lewis et al., 2020) for the PE dataset and
a BioBART-Base model (Yuan et al., 2022) for
the AbstRCT dataset. Regarding the learning rate,
we set it to 3e-5 for the ACC and ARC subtasks,
2e-5 for the ARI subtask, and 8e-5 for the ARIC
subtask. The max sequence length is 512 for the
PE dataset and 768 for the AbstRCT dataset. The
batch size is 16, and we assign a value of 0.7 to
the hyperparameter λ. During inference, we em-
ploy beam search with a beam size of 4 for decod-
ing purposes. To optimise our model, we employ
AdamW (Loshchilov and Hutter, 2017). We train
our model for 15 epochs except for the ARC sub-
task where we train it for 20 epochs and select the
best checkpoint on the development set.

4.3 Baselines

We compare our method it with the following base-
lines on AbstRCT:
ResArg (Galassi et al., 2018) is a residual network
model combined with a long short-term memory
(LSTM) network that jointly addresses the ACC,
ARI and ARIC subtasks.
ResAttArg (Galassi et al., 2023) is an extension of
the ResArg model that includes an attention module
and ensemble learning. Both ResArg and ResAt-
tArg have an average and an ensemble version.
SeqMT (Si et al., 2022) implements a multi-task
learning framework that leverages the sequential
dependency between the ACC and ARIC subtasks

10850

ACC ARIC
Neo Gla Mix Neo Gla Mix

ResArg(avg) 86.18 85.53 86.74 59.15 57.23 60.31
ResArg(Ensemble) 86.38 87.13 87.59 63.16 61.86 68.35
ResAttArg(avg) 86.19 86.26 87.51 66.49 62.68 63.47
ResAttArg(Ensemble) 87.87 87.71 89.70 70.92 68.40 67.66
SeqMT 91.89 92.35 92.21 71.24 73.27 72.71
MRC_GEN 92.76* 92.62* 93.97* 74.97* 74.28* 73.87*

Table 3: Overall results on the AbstRCT dataset. Here, Neo, Gla and Mix correspond to the results achieved for the
neoplasm, glaucoma and mixed test sets, respectively. The highest scores are emboldened. * indicates statistically
significant improvements over the baselines with our model, according to pair-wise t-test with p < 0.05.

ACC ARI ARC
Macro MC Claim Premise Macro Rel No-Rel Macro Support Attack

Joint-ILP 82.6 89.1 68.2 90.3 75.1 58.5 91.8 68.0 94.7 41.3
St-SVM-full 77.6 78.2 64.5 90.2 - 60.1 - - - -
Joint-PN 84.9 89.4 73.2 92.1 76.7 60.8 92.5 - - -
Span-LSTM 87.3 - - - 81.1 - - 79.0 96.8 61.1
BERT-Trans 88.4 93.2 78.8 93.1 82.5 70.6 94.3 81.0 - -
MRC_GEN 89.2* 94.8* 79.6* 93.2 82.7* 70.9* 94.4 78.2* 97.7* 58.9*

Table 4: Overall results on the PE dataset.* indicates statistically significant difference between the baselines with
our model, according to pair-wise t-test with p < 0.05.

by transferring the representation of the input and
output of the ACC subtask to the ARIC subtask.

For PE, we compare with the following baseline
approaches:
Joint-ILP (Stab and Gurevych, 2017) is an end-
to-end argumentation structure parser that globally
optimizes ACs and ARs through Integer Linear
Programming (ILP).
St-SVM-full (Niculae et al., 2017) is a linear struc-
tured SVM which formulates AM as inference in a
full factor graph (Kschischang et al., 2001), which
solves the ACC and ARI subtasks jointly.
Joint-PN (Potash et al., 2017) is a joint model
based on a Pointer Network architecture to classify
types of ACs and identify relations between ACs.
Span-LSTM (Kuribayashi et al., 2019) is an
LSTM-minus-based span representation model
with argumentative markers as extra information.
BERT-Trans (Bao et al., 2021) is a neural
transition-based model designed for ACC and ARI
subtasks. It is now the state-of-the-art (SOTA)
model on this dataset.

4.4 Main Results

Performance comparisons between our model and
the baselines are shown in Table 3 and Table 4. Our
model achieves SOTA results on most of the tasks

for both datasets, even though our model is a fine-
tuned BART-Base model, while other baselines are
considerably more complex than ours.

Specifically, on the AbstRCT dataset, our model
achieves the best performance on both the ACC and
ARIC subtasks on all test sets. We also observe
that for the PE dataset, our improvement is smaller
on the ARI subtask and the performance does not
reach that of the BERT-Trans model on the ARC
subtask. However, BERT-Trans uses additional fea-
tures, such as the relative distance between each
two ACs and the bag-of-words vectors to improve
the performance, while such features are not in-
cluded in our model.

4.5 Ablation Study

We perform ablation experiments to investigate
the effect of our method design on the overall per-
formance on both benchmarks. There are mainly
three models for the ablation study, MRC_GEN(-
path) is designed to test whether the path informa-
tion can improve the performance; MRC_GEN(-td)
aims to test the effect of the two-direction method;
and MRC_GEN(-ws) is for exploring the impact
of warm start. Since the two-direction method
is only suitable for the ARI and ARIC subtasks
where the answer is a sequence of special tokens,

10851

ACC ARIC
Neo Gla Mix Neo Gla Mix

MRC_GEN 92.76 92.62 93.97 74.97 74.28 73.87
MRC_GEN(-path) 92.29 92.27 93.72 72.47 70.10 71.20
MRC_GEN(-td) - - - 74.29 71.90 73.50
MRC_GEN(-ws) 92.83 92.72 94.11 74.23 70.12 73.09

Table 5: Results of ablation experiments on the AbstRCT dataset. MRC_GEN(-path) denotes that the model only
needs to predict the answer without the path information; MRC_GEN(-td) means that the two-direction method is
excluded; MRC_GEN(-ws) uses a cold start method and the specific tokens are trained from scratch.

ACC ARI ARC
Macro MC Claim Premise Macro Rel No-Rel Macro Support Attack

MRC_GEN 89.2 94.8 79.6 93.2 82.7 70.9 94.4 78.2 97.7 58.9
MRC_GEN(-path) 88.0 93.3 78.2 92.7 79.8 65.6 93.8 75.7 97.4 54.1
MRC_GEN(-td) - - - - 81.7 69.0 94.4 - - -
MRC_GEN(-ws) 87.9 93.5 78.0 92.5 81.1 68.6 93.5 74.0 97.5 50.5

Table 6: Results of ablation experiments on the PE dataset.

MRC_GEN(-td) can not be applied to the ACC sub-
task. The results are shown in Table 5 and Table 6.
Two-Direction Method. Comparing the results
of MRC_GEN(-td) and MRC_GEN, reveals that
our two-direction method works for the ARI and
ARIC subtasks. To explain this observation, we
calculate the percentage of examples where the
order of answer AC tokens is strictly ascending.
For the ARIC subtask on the AbstRCT dataset,
the percentage is 27.09%. The proportion on the
PE dataset for the ARI subtask is 34.83%. This
shows that forcing the model to learn only from
examples in ascending order may inhibit its ability
to generate the correct answer.
Warm Start. The warm start method improves
the performance in most cases, in line with liter-
ature (Guo et al., 2022). Leveraging pre-trained
embeddings as starting points for newly-added to-
kens is better than training their embeddings from
scratch, since the size of the dataset for fine-tuning
is much smaller than that of the pre-training dataset.
Therefore, it is difficult for the model to fully learn
the semantics of the new tokens only from the fine-
tuning data. However, from Table 5, we also find
that warm start is clearly hurting the ACC task on
AbstRCT. From an intuitive point of view, each
AC token needs to include two types of informa-
tion: the location of the AC and the content of
the AC. The warm start method only includes lo-
cation information since we use the embedding of
the numbers as a starting point for each AC token,
while the model also needs to learn that this token

is about the content of the AC. However, overlearn-
ing the representation from the warm start method
may also decrease the performance. Therefore,
good hyper-parameters are also important to let
the model learn a balanced representation of these
two types of information. Thus, we believe that
the hyper-parameters for the ACC subtask on the
PE dataset are good enough to learn a balanced
representation.

Path Information. In general, without path in-
formation, the scores drop for all tasks on both
datasets. The decrease is more obvious on the
relation-based tasks such as ARI, ARC and ARIC
as opposed to ACC. Specifically, for the ACC task,
the average improvement from the path informa-
tion on all three test sets on the AbstRCT and PE
datasets is 0.36 points and 1.2 points, respectively.
This may be due to the model without path informa-
tion already reaching high performance on this sub-
task. As for the ARI and ARC subtasks, generating
path information results in improvements of 2.9 and
2.5 points on the PE dataset, which shows the pos-
itive impact of the path information and indicates
that the “chain of thought” method is useful for
the argument mining task. The path information is
most important for the ARIC subtasks. Here, with-
out the path information, the performance drops 3.1
points on average, possibly because the ARIC sub-
task is a combination of the ARI and ARC subtasks
which both benefit from path information.

10852

4.6 Impact of the Path

In Section 4.5, we only show the general impact
of the path for the argument mining task by com-
paring model performance with and without path
information. Here, we examine the effect of path
information.

1 2 3 4 all
ACC 83.19 70.49 38.09 6.25 70.61
ARI 87.72 71.63 31.59 10.41 72.16
ARC - 89.51 57.14 0 81.33

Table 7: Accuracy of the predicted path on the PE
dataset. Here, 1, 2, 3 and 4 refer to the length of the
path; all denotes the accuracy on all lengths.

First, we calculate the accuracy of the predicted
path. Here, only exactly matching true and pre-
dicted paths are treated as a correct instance. We
not only report the overall accuracy, but also the
accuracy according to the length of the path. It is
clear in Table 7 and Table 9 that an increasing path
length leads to significant drops in prediction accu-
racy. This is in line with our hypothesis that longer
paths are harder to learn for the model. Another
interesting phenomenon is that the overall accuracy
on the ARI and ARIC subtasks is higher than that
on the ACC subtask. One possible reason is that the
path prediction subtask requires the understanding
of ARs, and thus might benefit from the ARI and
ARIC subtasks.

Furthermore, we explore whether correctly pre-
dicting the path indeed improves the overall task
performance. Therefore, we compare the results
of MRC_GEN with MRC_GEN(-path) when the
path is predicted correctly or wrongly, respectively.
Specifically, we first run the MRC_GEN model and
then split the test set into parts where the predicted
path is correct and incorrect. Then, we report the
performance difference between the two models
on these two subsets. The results are shown in Ta-
ble 10 and Table 11. On the PE dataset, it is clear
that with the path information, the performance of
our model drops when the predicted path is wrong,
while it increases when the predicted path is correct.
This means that the performance truly improves be-
cause of correctly predicted paths.

More interestingly, however, for the AbstRCT
dataset, the performance increases on most of
the subtasks on all three test sets regardless of
the correctness of the predicted path. To inves-
tigate this issue, we manually analyse the cases

where MRC_GEN(-path) predicts the wrong an-
swer while MRC_GEN predicts the correct answer
even though the path is predicted wrongly. We
find two main behaviours. We call the first one
path extension, where the predicted path is an ex-
tension of the ground truth path. It usually occurs
on sub-graphs with a smaller number of nodes,
when an argumentative graph consists of two un-
connected sub-graphs. Because in most cases, the
smaller sub-graphs do not contain the full “chain of
thought”, the model may learn it from the biggest
sub-graph to have a more general understanding
of an argument. One example can be seen in Ex-
ample 1 of Table 8. There are two unconnected
sub-graphs, the smaller one containing AC3 and
AC7. To understand the full “chain of thought”,
AC6 is wrongly predicted as the predecessor of
AC7, while the model correctly predicts the answer.
The second behaviour, which we refer to as claim
replacement, occurs when one claim is exchanged
with another one with similar high-level semantics
to conclude the whole paper. As shown in Table 8,
the model wrongly predicted the path as ‘<none>
<AC9> → <support> <AC6>’ given Example 2
due to the similarity of AC8 and AC9. Seemingly,
in these two situations, a slightly wrong path is
also beneficial to the model. We sampled 30 ex-
amples where the path was predicted wrongly and
manually analysed them. We found that 16 were in-
stances of path extension whereas 6 were instances
of claim replacement.

4.7 Tree vs. Non-tree Argument Structure

As we mentioned in Section 4.1, the argumentative
graphs in the two datasets exhibit different struc-
tures (non-tree structure for the AbstRCT dataset
vs. tree structure for the PE dataset). In this sec-
tion, we will discuss the impact of the difference in
structure.

Intuitively, the graph structure is more random
compared with the tree structure. That might be the
reason that the accuracy of the path prediction on
the PE dataset (from 70.61 to 81.33 on all subtasks)
is higher than that on the AbstRCT dataset (from
60.34 to 66.44) as shown in Table 7 and Table 9.

Another conclusion is that the path information
might be more useful on the graph-based dataset.
From Table 10 and Table 11 we can see that even
when the path information is predicted wrongly,
the model could still improve the performance. See
Example 1 in Table 7. The argumentative graph

10853

Example 1 Example 2
Text <AC3> Kaplan-Meier estimates showed a trend in over-

all survival favoring epoetin alfa (P =.13, log-rank test),
<non_AC> ... < AC6> Epoetin alfa safely and effec-
tively ameliorates anemia and significantly improves
QOL in cancer patients receiving nonplatinum chemother-
apy.< AC7 > Encouraging results regarding increased sur-
vival warrant another trial designed to confirm these find-
ings.

. . . <AC6> Hepatic glucose production decreased after
rapamycin pre-treatment (- 1.1 ± 1.1 mg/kg/min, p =
0.04) and after ITx (- 1.6 ± 0.6 mg/kg/min, p = 0.015),
<non_AC>... <AC8> Rapamycin pre-treatment before
ITx succeeds in reducing insulin requirement, enhancing
hepatic insulin sensitivity. <AC9> This treatment may
improve short-term ITx outcomes, possibly in selected
patients with T1DM complicated by insulin resistance.

Rel (<AC1> sup <AC6>), (<AC2> sup <AC6>), (<AC4> sup
<AC6>), (<AC5> sup <AC6>), (<AC3> sup <AC7>)

(<AC2> sup <AC8>), (<AC3> sup <AC8>), (<AC6> sup
<AC8>)

TP ’<none> <AC7>’ ’<none> <AC8>’ → ’<support> <AC6>’
PP ’<none> <AC6>’ → ’<support> <AC7>’ ’<none> <AC9>’ → ’<support> <AC6>’

Table 8: Two examples where MRC_GEN(-path) predicts the wrong answer while MRC_GEN gets the correct
answer even though the path is predicted wrongly. Rel denotes the relations in the given argumentative text. TP
denotes “true path” and PP represents “predicted path”.

1 2 3 4 all
ACC NEO 67.60 69.81 21.49 9.52 60.73

GLA 62.24 66.22 5.3 - 61.89
MIX 60.46 67.29 24.11 22.22 60.44

ARIC NEO 69.92 64.09 27.41 19.04 60.34
GLA 66.53 66.11 13.33 - 64.08
MIX 67.13 69.30 48.93 22.22 66.44

Table 9: Accuracy of the predicted path on the AbstRCT
dataset. Here, 1, 2, 3 and 4 refer to the length of the
path; all denotes the accuracy on all lengths.

ACC ARI ARC
Wrong_path -9.22 -4.42 -4.08
Correct_path +4.13 +6.09 +3.97

Table 10: The difference between MRC_GEN
and MRC_GEN(-path) on the PE dataset when
the path is predicted correctly or wrongly. Here,
(Wrong/Correct)_path means that the path is predicted
wrongly/correctly. Positive values mean that the path
information improves the performance.

ACC ARIC
NEO Wrong_path +1.07 +2.86

Correct_path +0.30 +2.45
GLA Wrong_path -1.49 +11.52

Correct_path +0.66 +4.75
MIX Wrong_path -1.49 +3.67

Correct_path +0.81 +3.31

Table 11: The difference between MRC_GEN and
MRC_GEN(-path) on the AbstRCT dataset when the
path is predicted correctly or wrongly.

consists of two unconnected subgraphs. The first
one includes five ACs with AC1, AC2, AC4 and
AC5 supporting AC6. The second one contains
only two ACs (AC3 supports AC7). When AC7 is
used as a query, the true path is ‘<none> <AC7>’.
However, the model predicts a wrong path ‘<none>
<AC6>’→ ‘<support> <AC7>’ that includes the
information of AC6 and correctly predicts the rela-
tion between AC3 and AC7. It is clear that AC7 is
a more general claim which can be used in many
papers while AC6 and AC3 share some important
information that is specific in this paper, such as
epoetin alfa. From this point of view, AC6 can
be regarded as a piece of implicit information for
the relation between AC3 and AC7. Therefore, the
path extension is helpful for the non-tree structures
because some sub-graphs may not contain enough
information. Meanwhile, for the tree structures, all
the relations are connected explicitly. Thus, the
model will surf from the wrongly predicted paths
significantly.

5 Conclusion

In this paper, we cast the argument mining task as
a multi-hop generative MRC task, which provides
us with a means to leverage the “chain of thought”
of an argument in a generative manner for the argu-
ment mining task. In addition, we also introduce a
two-direction method to alleviate the order bias of
the output sequences of our model. The extensive
experimental results and detailed analysis demon-
strate the positive impact of the “chain of thought”.
One direction for future work is quantifying the
error of the path prediction to develop a reward
model and train the generative model on that using
proximal policy optimization.

10854

Limitations

In this paper, we show that the “chain of thought”
information can improve the performance of ar-
gument mining models. However, such informa-
tion may be not useful in user-generated arguments
drawn from other domains such as social media,
i.e., online forums, where the “chain of thought”
can be more random compared with scientific ab-
stracts and student essays. Another shortcoming
is that we use only path information as the chain
of thought. However, this captures only part of
the semantics since argument structure is usually a
graph rather than a single path.

Acknowledgement

This work is supported by the computational
shared facility at the University of Manchester
and the project JPNP20006 from New Energy
and Industrial Technology Development Organi-
zation (NEDO).

References
Pablo Accuosto, Mariana Neves, and Horacio Saggion.

2021. Argumentation mining in scientific literature:
from computational linguistics to biomedicine. In
Frommholz I, Mayr P, Cabanac G, Verberne S, ed-
itors. BIR 2021: 11th International Workshop on
Bibliometric-enhanced Information Retrieval; 2021
Apr 1; Lucca, Italy. Aachen: CEUR; 2021. p. 20-36.
CEUR Workshop Proceedings.

Jianzhu Bao, Chuang Fan, Jipeng Wu, Yixue Dang, Ji-
achen Du, and Ruifeng Xu. 2021. A neural transition-
based model for argumentation mining. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6354–6364, Online.
Association for Computational Linguistics.

Jianzhu Bao, Yuhang He, Yang Sun, Bin Liang, Ji-
achen Du, Bing Qin, Min Yang, and Ruifeng Xu.
2022. A generative model for end-to-end argument
mining with reconstructed positional encoding and
constrained pointer mechanism. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10437–10449, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Liying Cheng, Lidong Bing, Ruidan He, Qian Yu, Yan
Zhang, and Luo Si. 2022. IAM: A comprehensive
and large-scale dataset for integrated argument min-
ing tasks. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2277–2287, Dublin,
Ireland. Association for Computational Linguistics.

Subhabrata Dutta, Dipankar Das, and Tanmoy
Chakraborty. 2020. Changing views: Persuasion
modeling and argument extraction from online dis-
cussions. Information Processing & Management,
57(2):102085.

Subhabrata Dutta, Jeevesh Juneja, Dipankar Das, and
Tanmoy Chakraborty. 2022. Can unsupervised
knowledge transfer from social discussions help ar-
gument mining? In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7774–7786,
Dublin, Ireland. Association for Computational Lin-
guistics.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning for
computational argumentation mining. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 11–22, Vancouver, Canada. Association
for Computational Linguistics.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2018.
Argumentative link prediction using residual net-
works and multi-objective learning. In Proceedings
of the 5th Workshop on Argument Mining, pages
1–10, Brussels, Belgium. Association for Compu-
tational Linguistics.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2023.
Multi-task attentive residual networks for argument
mining. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 31:1877–1892.

Debela Gemechu and Chris Reed. 2019. Decomposi-
tional argument mining: A general purpose approach
for argument graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 516–526, Florence,
Italy. Association for Computational Linguistics.

Qipeng Guo, Yuqing Yang, Hang Yan, Xipeng Qiu,
and Zheng Zhang. 2022. DORE: Document ordered
relation extraction based on generative framework.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 3463–3474, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Freya Hewett, Roshan Prakash Rane, Nina Harlacher,
and Manfred Stede. 2019. The utility of discourse
parsing features for predicting argumentation struc-
ture. In Proceedings of the 6th Workshop on Argu-
ment Mining, pages 98–103, Florence, Italy. Associa-
tion for Computational Linguistics.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger.
2001. Factor graphs and the sum-product algorithm.
IEEE Transactions on information theory, 47(2):498–
519.

Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul
Reisert, Toshinori Miyoshi, Jun Suzuki, and Ken-
taro Inui. 2019. An empirical study of span rep-
resentations in argumentation structure parsing. In

10855

https://doi.org/10.18653/v1/2021.acl-long.497
https://doi.org/10.18653/v1/2021.acl-long.497
https://aclanthology.org/2022.emnlp-main.713
https://aclanthology.org/2022.emnlp-main.713
https://aclanthology.org/2022.emnlp-main.713
https://doi.org/10.18653/v1/2022.acl-long.162
https://doi.org/10.18653/v1/2022.acl-long.162
https://doi.org/10.18653/v1/2022.acl-long.162
https://doi.org/10.18653/v1/2022.acl-long.536
https://doi.org/10.18653/v1/2022.acl-long.536
https://doi.org/10.18653/v1/2022.acl-long.536
https://doi.org/10.18653/v1/P17-1002
https://doi.org/10.18653/v1/P17-1002
https://doi.org/10.18653/v1/W18-5201
https://doi.org/10.18653/v1/W18-5201
https://doi.org/10.1109/TASLP.2023.3275040
https://doi.org/10.1109/TASLP.2023.3275040
https://doi.org/10.18653/v1/P19-1049
https://doi.org/10.18653/v1/P19-1049
https://doi.org/10.18653/v1/P19-1049
https://aclanthology.org/2022.findings-emnlp.253
https://aclanthology.org/2022.findings-emnlp.253
https://doi.org/10.18653/v1/W19-4512
https://doi.org/10.18653/v1/W19-4512
https://doi.org/10.18653/v1/W19-4512
https://doi.org/10.18653/v1/P19-1464
https://doi.org/10.18653/v1/P19-1464

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4691–
4698, Florence, Italy. Association for Computational
Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan,
Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-
relation extraction as multi-turn question answering.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1340–
1350, Florence, Italy. Association for Computational
Linguistics.

Boyang Liu, Viktor Schlegel, Riza Batista-Navarro, and
Sophia Ananiadou. 2022. Incorporating zoning in-
formation into argument mining from biomedical
literature. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
6162–6169, Marseille, France. European Language
Resources Association.

Boyang Liu, Viktor Schlegel, Riza Batista-navarro, and
Sophia Ananiadou. 2023. Entity coreference and
co-occurrence aware argument mining from biomed-
ical literature. In Proceedings of the 4th Workshop
on Computational Approaches to Discourse (CODI
2023), pages 54–60, Toronto, Canada. Association
for Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Anastasios Lytos, Thomas Lagkas, Panagiotis Sarigian-
nidis, and Kalina Bontcheva. 2019. The evolution
of argumentation mining: From models to social me-
dia and emerging tools. Information Processing &
Management, 56(6):102055.

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020.
Transformer-based argument mining for healthcare

applications. In ECAI 2020, pages 2108–2115. IOS
Press.

Vlad Niculae, Joonsuk Park, and Claire Cardie. 2017.
Argument mining with structured SVMs and RNNs.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 985–995, Vancouver, Canada.
Association for Computational Linguistics.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. Here’s my point: Joint pointer architecture
for argument mining. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1364–1373, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

João António Rodrigues and António Branco. 2022.
Transferring confluent knowledge to argument min-
ing. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 6859–
6874, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Ameer Saadat-Yazdi, Jeff Z. Pan, and Nadin Kokciyan.
2023. Uncovering implicit inferences for improved
relational argument mining. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2484–
2495, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Jiasheng Si, Liu Sun, Deyu Zhou, Jie Ren, and Lin Li.
2022. Biomedical argument mining based on sequen-
tial multi-task learning. IEEE/ACM Transactions on
Computational Biology and Bioinformatics.

Christian Stab and Iryna Gurevych. 2017. Parsing argu-
mentation structures in persuasive essays. Computa-
tional Linguistics, 43(3):619–659.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei
Li. 2020. CorefQA: Coreference resolution as query-
based span prediction. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6953–6963, Online. Association
for Computational Linguistics.

Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, Ni-
tish Shirish Keskar, and Caiming Xiong. 2022. Mod-
eling multi-hop question answering as single se-
quence prediction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 974–990,
Dublin, Ireland. Association for Computational Lin-
guistics.

10856

https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/P19-1129
https://aclanthology.org/2022.lrec-1.663
https://aclanthology.org/2022.lrec-1.663
https://aclanthology.org/2022.lrec-1.663
https://doi.org/10.18653/v1/2023.codi-1.6
https://doi.org/10.18653/v1/2023.codi-1.6
https://doi.org/10.18653/v1/2023.codi-1.6
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/P17-1091
https://doi.org/10.18653/v1/D17-1143
https://doi.org/10.18653/v1/D17-1143
https://aclanthology.org/2022.coling-1.597
https://aclanthology.org/2022.coling-1.597
https://aclanthology.org/2023.eacl-main.182
https://aclanthology.org/2023.eacl-main.182
https://doi.org/10.1162/COLI_a_00295
https://doi.org/10.1162/COLI_a_00295
https://doi.org/10.18653/v1/2020.acl-main.622
https://doi.org/10.18653/v1/2020.acl-main.622
https://doi.org/10.18653/v1/2022.acl-long.69
https://doi.org/10.18653/v1/2022.acl-long.69
https://doi.org/10.18653/v1/2022.acl-long.69

Yuxiao Ye and Simone Teufel. 2021. End-to-end ar-
gument mining as biaffine dependency parsing. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 669–678, Online. As-
sociation for Computational Linguistics.

Hongyi Yuan, Zheng Yuan, Ruyi Gan, Jiaxing Zhang,
Yutao Xie, and Sheng Yu. 2022. BioBART: Pretrain-
ing and evaluation of a biomedical generative lan-
guage model. In Proceedings of the 21st Workshop
on Biomedical Language Processing, pages 97–109,
Dublin, Ireland. Association for Computational Lin-
guistics.

A Multi-task Training

We also try to use a multi-task training paradigm.
As mentioned in Section 3, we use the same query
token <query> for all the subtasks. However, it
is not suitable for the multi-task training setting
because given the same query and the context, the
model needs to predict different answers accord-
ing to the different subtasks. In this setting, we
need to distinguish queries for different subtasks.
Concretely, we use <q_acc>, <q_ari>, <q_arc> and
<q_aric> to represent the queries for the ACC, ARI,
ARC and ARIC subtasks.

The loss function for each subtask is the same
as the single subtask setting, and the final loss for
both subtasks is shown as below:

LAbstRCT = LACC + LARIC (6)

LPE = LACC + LARI + LARC (7)

We report the results in Table 12 and Table 13. It
can be seen that the results of the multi-task training
for most subtasks on both datasets are lower than
the single task training setting. For the AbstRCT
dataset, the reason may be that the difference be-
tween the best learning rate for the ACC (3e-5)
and ARIC (8e-5) subtasks is large. Meanwhile,
on the PE dataset, our results are in line with pre-
vious works (Bao et al., 2021; Kuribayashi et al.,
2019) which found that multi-task training for all
the three subtasks decreases the performance. One
possible factor is the weight of each subtask. In
our paper, we use 1:1:1 when there are three sub-
tasks (ACC, ARI and ARIC) and 1:1 when there
are two subtasks (ACC and ARIC). Fine-tuning this
hyper-parameter might improve the performance.

B Graph as Reasoning Path

We also conducted some initial experiments to
leverage the whole graph information instead of

Single Multi
ACC NEO 92.76 92.83

GLA 92.62 93.03
MIX 93.97 94.26

ARIC NEO 74.97 74.35
GLA 74.28 72.06
MIX 73.87 73.14

Table 12: Results of multi-task training and single task
training on the AbstRCT dataset.

ACC ARI ARC
Single 89.2 82.7 78.2
Multi 87.5 80.2 72.4

Table 13: Results of multi-task training and single task
training on the PE dataset.

the path information since the path information can
only include part of the argument structure infor-
mation. Since our model is a BART-Base model
and the output is only a sequence but not a graph,
we need to transfer the graph representation into a
sequence. We propose two ways to do this. Due to
the nature of argumentation, argumentative graphs
are all directed acyclic graphs. Therefore, we use a
graph traversal algorithm, namely topological sort-
ing, to represent a graph as a sequence. Given an
argumentative graph G = {V, E}, the algorithm
returns a sequence of nodes:

< AC1 >< AC2 > ... < ACn > (8)

In order to show the hierarchical structure of the
graph, we use ‘|’ as a separator between different
layers.

G =< ACl11
>< ACl21

> | < ACl12
> ... (9)

In addition, we also leverage the adjacency ma-
trix to represent the argumentative graph inspired
by (Guo et al., 2022; Bao et al., 2022). Each edge
is represented by the start and end pairs of the edge,
and ‘|’ is used to distinguish different edges:

G =< AC1 >< AC2 > |...
| < ACi >< ACj > |...
| < ACn−1 >< ACn >

(10)

From Table 14 we find that the models using the
graph information instead of the path information
work poorly even when compared with the case
where there is no further information included. It

10857

https://doi.org/10.18653/v1/2021.eacl-main.55
https://doi.org/10.18653/v1/2021.eacl-main.55
https://doi.org/10.18653/v1/2022.bionlp-1.9
https://doi.org/10.18653/v1/2022.bionlp-1.9
https://doi.org/10.18653/v1/2022.bionlp-1.9

no_path graph_adj graph_topo
ACC NEO 92.29 90.14 92.70

GLA 92.27 91.92 93.02
MIX 93.72 91.20 94.14

ARIC NEO 72.47 67.79 64.03
GLA 70.10 64.99 62.74
MIX 71.20 67.45 64.75

Table 14: Results of leveraging the whole graph infor-
mation on the AbstRCT dataset.

seems that the topological sorting representation is
helpful on the ACC subtask; however, it decreases
the performance on the ARIC subtask significantly.

In general, we believe that the reason why includ-
ing the whole argument graph instead of the reason-
ing path harms performance is that the sequence-
to-sequence model is not strong enough to learn
the whole graph information. The accuracy (based
on exact match) of the predicted graph is too low
(5.86% on the AbstRCT dataset). We think that
there are mainly two reasons. First, the number
of tokens for the representation of a whole graph
(from 5 tokens to 26 tokens) is much longer than
that of a path (from 1 token to 4 tokens). As shown
in Table 7 and Table 9, the accuracy of the path
prediction drops significantly with the increase of
the path length. When the path length is 4, the accu-
racy can be only 9.52%. Another reason is that the
semantics of a path is in a sequential order which is
consistent with the learning method of pre-trained
language models, while the graph structure is more
complex and is not easy to learn in a sequential
order.

C Hyperparameter Analysis

Figure 2: The performance on the ACC subtask based
on the AbstRCT dataset using different values of λ.

In this section, we investigate the effect of the
loss weight λ. The value of λ is set between 0.1

Figure 3: The performance on the ARIC subtask based
on the AbstRCT dataset using different values of λ.

and 0.9. As mentioned in Section 3.4, the higher λ
is, the less attention is paid to the path information.
Figure 2 and Figure 3 show the impact of λ on the
AbstRCT dataset. It is clear that when λ is too
small, the model cannot learn the answer part of
the output sequence well, which causes a lower
performance. However, if the λ is too large, the
model mainly concentrates on the answer part and
the path information is not fully understood by the
model.

10858

